I am searching for a simple code that encrypt a random number and letters with cipher shift. Example: -3 abcdefghijklmnopqrstuvwxyz output xyzabcdefghijklmnopqrstuvw
Be aware, that this is no encryption.
You are simply obfuscating the input. But this is being revealed quite easily.
Your question itself is very ambiguous. In what language do you want to look for? Please ask questions more specific.
Furthermore you could have look onto wikipedia:
https://en.wikipedia.org/wiki/Caesar_cipher
This is what you want to do. The code itself comes with the language.
Best,
Bent
Related
I am working on encryption & decryption of data using AES-CCM.
While studying AES, I came across a word called S-Box.
What is S-Box, and the relationship with AES? How can it be calculated? Is it depends on symmetric key or not?
How will cypher text be generated in AES-CCM 128 bit?
The S-Boxes are a system that is used in symmetric cryptographic algorithms to substitute and obscure the relationship between the key and the text that you want to cypher.
You can see more in this article. Here, you have a part:
There are different types of cyphers according to their design [68]. One of these is the Substitution–PermutationNetwork (SPN) that generates the ciphered text by applying substitution and permutation rounds to the original text and the symmetric key to create confusion. To do this, it must be used the Substitution boxes (S-boxes) and Permutation boxes (P-boxes). The S-boxes substitute one-to-one the bits of a block of the input text in the round with bits of the output text. This output is taken as an input in the P-boxes and then it permutes all the bits that will be used as S-box input in the next round.
As #CGG said, S-boxes are a component of a Substitution-Permutation Network. The Wikipedia entry has good diagrams which will help explain how they work.
Think of an S-box as a simple substitution cipher -- A=1, B=2, etc. In an SPN, you run input through an S-box to substitute new values, then you run that result through a P-box (permutation) to distribute the modified bits out to as many S-boxes as possible. This loop repeats to spread the changes throughout the entire cipher text.
In general, an S-box replaces the input bits with an identical number of output bits. This exchange should be 1:1 to provide invertibility (i.e. you must be able to reverse the operation in order to decrypt), should employ the avalanche effect (so changing 1 bit of input changes about half the output bits), and should depend on every bit of input.
is there any tool or method to figure out what is this hash/cipher function?
i have only a 500 item list of input and output plus i know all of the inputs are numeric, and output is always 2 Byte long hexadecimal representation.
here's some samples:
794352:6657
983447:efbf
479537:0796
793670:dee4
1063060:623c
1063059:bc1b
1063058:b8bc
1063057:b534
1063056:b0cc
1063055:181f
1063054:9f95
1063053:f73c
1063052:a365
1063051:1738
1063050:7489
i looked around and couldn't find any hash this short, is this a hash folded on itself? (with xor maybe?) or maybe a simple trivial cipher?
is there any tool or method for finding the output of other numbers?
(i want to figure this out; my next option would be training a Neural Network or Regression, so i thought i ask before taking any drastic action )
Edit: The Numbers are directory names, and for accessing them, the Hex parts are required.
Actually, Wikipedia's page on hashes lists three CRCs and three checksum methods that it could be. It could also be only half the output from some more complex hashing mechanism. Cross your fingers and hope that it's of the former. Hashes are specifically meant to be difficult (if not impossible) to reverse engineer.
What it's being used for should be a very strong hint about whether or not it's more likely to be a checksum/CRC or a hash.
This is a Vigenere cipher-text
EORLL TQFDI HOEZF CHBQN IFGGQ MBVXM SIMGK NCCSV
WSXYD VTLQS BVBMJ YRTXO JCNXH THWOD FTDCC RMHEH
SNXVY FLSXT ICNXM GUMET HMTUR PENSU TZHMV LODGN
MINKA DTLOG HEVNI DXQUG AZGRM YDEXR TUYRM LYXNZ
ZGJ
The index of coincidence gave a shift of six (6): I know this is right (I used an online Java applet to decrypt the whole thing using the key 'QUARTZ').
However, in this question we are only told the first and last two letters of the Key - 'Q' and 'TZ.'
So far I have split the ciphertext into slices using this awesome applet. So the first slice is 0, k, 2k, 3k, 4k; the second is 1, k + 1, 2k + 1, 3k + 1; et cetera.
KeyPos=0: EQEQQSCXQJJHDEYIUTSVMTVUMTYJ
KeyPos=1: OFZNMICYSYCWCHFCMUULILNGYUX
KeyPos=2: RDFIBMSDBRNOCSLNERTONOIADYN
KeyPos=3: LICFVGVVVTXDRNSXTPZDKGDZERZ
KeyPos=4: LHHGXKWTBXHFMXXMHEHGAHXGXMZ
KeyPos=5: TOBGMNSLMOTTHVTGMNMNDEQRRLG
My idea was to calculate the highest-frequency letter in each block, hoping that the most frequent letter would give me some clue as to how to find 'U,' 'A' and 'R.' However, the most frequent letters in these blocks are:
KeyPos=0: Q,4 T,3 E,3, J,3
KeyPos=1: C,4 U,3 Y,3
KeyPos=2: N,4 O,3 R,3 D,3 B,2
KeyPos=3: V,4 D,3 Z,3
KeyPos=4: H,6 X,6 M,3 G,3
KeyPos=5: M,4 T,4 N,3 G,3
Which yields QCNVHM, or QUNVHM (being generous), neither of which are that close to QUARTZ. There are online applets that can crack this no problem, so it mustn't be too short a text to yield decent frequency counts from the blocks.
I guess I must be approaching this the wrong way. I just hoped one of you might be able to offer some clue as to where I am going wrong.
p.s. This is for a digital crypto class.
Interesting question...
I don't have a programmatic solution for cracking the original ciphertext, but I was able to solve it with a little mind power and some helpful JavaScript.
I started by using this page and the information you supplied. Provide the ciphertext, a key length of 6 and hit initialize. What's nice about the approach here is that unknowns in either the plaintext or key are left as hyphens.
Update the key, adding only what you know Q---TZ and click 'update plaintext'. At this point we know:
o---sua---opo---oca---nha---enc---rom---dth---ama---int---ept---our---mun---tio---ewi---eus---the---ond---loc---onf---now---hed---off---ere---nsw---esd---tmi---ght
Here's where I applied a bit of brain power. You start recognizing bits of the plaintext. the, now and off make an appearance. At the end, there's ght - this made me think the prior letter is likely a vowel. For example light or thought. I replaced the corresponding hyphen with u and clicked update keyword to find what letter would have produced that combination. The matching letter turns out to be F. I think updated the plaintext to see the results. They didn't look promising. So I tried i instead which resulted in:
o--usua--ropo--loca--onha--eenc--prom--edth--eama--eint--cept--gour--mmun--atio--wewi--beus--gthe--cond--yloc--ionf--mnow--thed--poff--mere--insw--nesd--atmi--ight
Now we're getting somewhere. At the start I see something that might be usual, and further in I see int--cept and near the end w--nesd-- at mi--ight. Voila. Filling in the letters for wednesday and updating the keyword yielded QUARTZ.
... So, how to port this approach to code? Not sure about the best way to do that just yet. The idea of using the known characters in the key, partially decrypting the ciphertext and brute forcing the rest is appealing. But without a dictionary handy, I'm not sure what the best brute-forcing method would be...
To be continued (maybe)...
An algorithm wouldn't just consider the most frequent letters but the frequency pattern of the whole alphabet. Technically you compute the index of coincidence for each possible shift and consider the maximal ones.
I have the ciphertext and an encrypting program (with the key hardcoded in). How would I go about finding the key? Surely the availability of the encryptor must open up possibilities beyond brute-forcing it.
Yes knowing the algorithm may help in decoding the cypher text, but only if there is a flaw in the algorithm that may be exploited. (the good news is Playfair has some flaws that can be exploited)
Here are a few good starting points to read.
Wikipedia (read it all - particularly Cryptanalysis)
Basic Cryptanalysis (look at chapter 7)
The second one is not what I would call a light read, but interesting if you're into cyphers.
I've found a way in five lines (obviously re-evaluated a bit, and admittedly very long lines):
(a,b,c)="".join((input("CODE: ")).split()),input("Polybius Square: "),""
for i in a:
c+=str(int(((b.find(i))-((b.find(i))%5))/5))+str((b.find(i))%5)
for j in range(0,(int(len(c)/2))):
print((b[((5*(int((c[:(int(len(c)/2))])[j])))+(int((c[(int(len(c)/2)):])[j])))]).lower(),end="")
NB: When prompted to enter the polybius square, first enter row 1, then row 2 etc, no spaces
Then you just have to remove unnecessary 'x's and voila!
Try:
(a,b,f,g,c)="".join(input("CODE: ").split()),input("Polybius S: "),"","",1
for(i)in(a):
if(c%2)==0:
g+=i
else:
f+=i
c+=1
for(j)in(range(0,len(f))):
if(b.find(f[j])%5)!=(b.find(g[j])%5)and(int(((b.find(f[j]))-(b.find(f[j])%5))/5))!=(int(((b.find(g[j]))-(b.find(g[j])%5))/5)):
print(b[((int(((b.find(f[j]))-(b.find(f[j])%5))/5))*5)+(b.find(g[j])%5)],end="")
print(b[((int(((b.find(g[j]))-(b.find(g[j])%5))/5))*5)+(b.find(f[j])%5)],end="")
elif(b.find(f[j])%5)==(b.find(g[j])%5)and(int(((b.find(f[j]))-(b.find(f[j])%5))/5))!=(int(((b.find(g[j]))-(b.find(g[j])%5))/5)):
print(b[((((int(((b.find(f[j]))-(b.find(f[j])%5))/5))-1)%5)*5)+b.find(f[j])%5],end="")
print(b[((((int(((b.find(g[j]))-(b.find(g[j])%5))/5))-1)%5)*5)+b.find(g[j])%5],end="")
elif(b.find(f[j])%5)!=(b.find(g[j])%5)and(int(((b.find(f[j]))-(b.find(f[j])%5))/5))==(int(((b.find(g[j]))-(b.find(g[j])%5))/5)):
print(b[((int(((b.find(f[j]))-(b.find(f[j])%5))/5))*5)+((b.find(f[j])%5)-1)%5],end="")
print(b[((int(((b.find(g[j]))-(b.find(g[j])%5))/5))*5)+((b.find(g[j])%5)-1)%5],end="")
It's not pretty, but it works
Well I have been working on an assigment and it states:
A program has to be developed, and coded in C language, to decipher a document written
in Italian that is encoded using a secret key. The secret key is obtained as random
permutation of all the uppercase letters, lowercase letters, numbers and blank space. As
an example, let us consider the following two strings:
Plain: “ABCDEFGHIJKLMNOPQRSTUVXWYZabcdefghijklmnopqrstuvwxyz0123456789 ”
Code: “BZJ9y0KePWopxYkQlRjhzsaNTFAtM7H6S24fC5mcIgXbnLOq8Uid 3EDv1ruVGw”
The secret key modifies only letters, numbers, and spaces of the original document, while
the remaining characters are left unchanged. The document is stored in a text file whose
length is unknown.
The program has to read the document, find the secret key (which by definition is
unknown; the above table is just an example and it is not the key used for preparing the
sample files available on the web course) using a suitable decoding algorithm, and write
the decoded document to a new text file.
And I know that I have to upload an English dictionary into the program but I don't why it has been asked (may be not in that statement but I have to do THAT). My question is, while I can do that program using simple encryption/decryption algorithm then what's the use of uploading the English dictionary in our program? So is there any decryption algorithm that uses a dictionary to decrypt an encrypted algorithm? Or can somebody tell me what approach or algorithm should I use to solve that problem???
An early reply (and also authentic one) will be highly appreciated from you.
Thank you guys.
This is a simple substitution cipher. It can be broken using frequency analysis. The Wikipedia articles explain both concepts thoroughly. What you need to do is:
Find the statistical frequency of characters in Italian texts. If you can't find this published anywhere, you can build it yourself by analyzing a large corpus of Italian texts.
Analyze the frequency of characters in the cipher text, and match it to the statistical data.
The first Wikipedia article links to a set of tools that implement all of the above. You just need to use and possibly adapt it to your use case.
Your cipher is a substitution cipher. That is it substitutes one letter for another.
consider the cipher text
"yjr,1drv2ry1od1q1..."
We can use a dictionary to find the plaintext.
Find punctuation, since a space always follows a comma, you can find the substitution rule for spaces.
which gives you.
"yjr, drv2ry od q..."
Notice the word lengths. Since there only two 1 letter words in the english language the q is probably i or a. "yjr" is probably "why", "the", "how" etc.
We try why with the result
"why, dyv2yw od q..."
There are no english words with two y's, and end in w.
So we try "the" and get
"the, dev2et od q..."
We conclude that the is a likely answer.
Now we search our dictionary for words that start look like ?e??et.
rinse repeat.
That is, find some set of words which fit into the lengths available and do not break each others substitution rules.
Personally I just do the frequency analysis suggested above.
Frequency analysis, as both other respondents said, is the way to go, and you can use digrams and trigrams to make it much stronger. Just grab tons of Italian text from the web and churn ahead! It's really pretty simple programming.