Find approximate value for the probability 𝑃(𝑙𝑜𝑔(𝑌)>𝑠𝑖𝑛(𝑋)) using simulation - r

I have made a simulation to following distribution:
in the statistic program R and now I have to find a approximate value for the probability P(log(Y ) > sin(X)). How can I do that in R? Can anyone help me?
I hide my own simulation while other with same problem not should
copy it. But I have this simulation from another post that also work:
n <- 1e4
X <- data.frame(x = runif(n, -1, 1), y = runif(n, 0, 1), z = runif(n, 0, 3/2))
i <- with(X, 0 < y & x^2 + y^2 < 1 & z <= (3/2)*y)
X <- X[i, ]
How can I for example use this simulation to find the probability P(log(Y ) > sin(X)) in R?

I do not know how to post the solution without your mates are going to see it as well ... ;-)
# part 1: prepare probability density distribution on rect -1,...1
n <- 1e4
X <- data.frame(x = runif(n, -1, 1), y = runif(n, -1, 1), h=1)
X$h <- 3/2*X$y # set probability density h = 3/2*y
head(X)
# part 2: restrict to half disk and normalize probability h to equal 1
i <- with(X, 0 < y & x^2 + y^2 < 1)
X <- X[i, ]
X$h <- X$h / sum(X$h)
plot(X[, 1:2], asp=1, pch='.')
# measure probability for points with log(y) > sin(x)
ii <- with(X, log(y) > sin(x))
points(X[ii, 1:2], pch='.', col="red")
p <- sum(X[ii, "h"])
p

Related

Understanding "levels" in r contour function of bivariate distribution

I have trouble understanding how to set the levels in the plot of a bivariate distribution in r. The documentation states that I can choose the levels by setting a
numeric vector of levels at which to draw contour lines
Now I would like the contour to show the limit containing 95% of the density or mass. But if, in the example below (adapted from here) I set the vector as a <- c(.95,.90) the code runs without error but the plot is not displayed. If instead, I set the vector as a <- c(.01,.05) the plot is displayed. But I am not sure I understand what the labels "0.01" and "0.05" mean with respect to the density.
library(mnormt)
x <- seq(-5, 5, 0.25)
y <- seq(-5, 5, 0.25)
mu1 <- c(0, 0)
sigma1 <- matrix(c(2, -1, -1, 2), nrow = 2)
f <- function(x, y) dmnorm(cbind(x, y), mu1, sigma1)
z <- outer(x, y, f)
a <- c(.01,.05)
contour(x, y, z, levels = a)
But I am not sure I understand what the labels "0.01" and "0.05" mean with respect to the density.
It means the points where the density is equal 0.01 and 0.05. From help("contour"):
numeric vector of levels at which to draw contour lines.
So it is the function values at which to draw the lines (contours) where the function is equal to those levels (in this case the density). Take a simple example which may help is x + y:
y <- x <- seq(0, 1, length.out = 50)
z <- outer(x, y, `+`)
par(mar = c(5, 5, 1, 1))
contour(x, y, z, levels = c(0.5, 1, 1.5))
Now I would like the contour to show the limit containing 95% of the density or mass.
In your example, you can follow my answer here and draw the exact points:
# input
mu1 <- c(0, 0)
sigma1 <- matrix(c(2, -1, -1, 2), nrow = 2)
# we start from points on the unit circle
n_points <- 100
xy <- cbind(sin(seq(0, 2 * pi, length.out = n_points)),
cos(seq(0, 2 * pi, length.out = n_points)))
# then we scale the dimensions
ev <- eigen(sigma1)
xy[, 1] <- xy[, 1] * 1
xy[, 2] <- xy[, 2] * sqrt(min(ev$values) / max(ev$values))
# then rotate
phi <- atan(ev$vectors[2, 1] / ev$vectors[1, 1])
R <- matrix(c(cos(phi), sin(phi), -sin(phi), cos(phi)), 2)
xy <- tcrossprod(R, xy)
# find the right length. You can change .95 to which ever
# quantile you want
chi_vals <- qchisq(.95, df = 2) * max(ev$values)
s <- sqrt(chi_vals)
par(mar = c(5, 5, 1, 1))
plot(s * xy[1, ] + mu1[1], s * xy[2, ] + mu1[2], lty = 1,
type = "l", xlab = "x", ylab = "y")
The levels indicates where the lines are drawn, with respect to the specific 'z' value of the bivariate normal density. Since max(z) is
0.09188815, levels of a <- c(.95,.90) can't be drawn.
To draw the line delimiting 95% of the mass I used the ellipse() function as suggested in this post (second answer from the top).
library(mixtools)
library(mnormt)
x <- seq(-5, 5, 0.25)
y <- seq(-5, 5, 0.25)
mu1 <- c(0, 0)
sigma1 <- matrix(c(2, -1, -1, 2), nrow = 2)
f <- function(x, y) dmnorm(cbind(x, y), mu1, sigma1)
z <- outer(x, y, f)
a <- c(.01,.05)
contour(x, y, z, levels = a)
ellipse(mu=mu1, sigma=sigma1, alpha = .05, npoints = 250, col="red")
I also found another solution in the book "Applied Multivariate Statistics with R" by Daniel Zelterman.
# Figure 6.5: Bivariate confidence ellipse
library(datasets)
library(MASS)
library(MVA)
#> Loading required package: HSAUR2
#> Loading required package: tools
biv <- swiss[, 2 : 3] # Extract bivariate data
bivCI <- function(s, xbar, n, alpha, m)
# returns m (x,y) coordinates of 1-alpha joint confidence ellipse of mean
{
x <- sin( 2* pi * (0 : (m - 1) )/ (m - 1)) # m points on a unit circle
y <- cos( 2* pi * (0 : (m - 1)) / (m - 1))
cv <- qchisq(1 - alpha, 2) # chisquared critical value
cv <- cv / n # value of quadratic form
for (i in 1 : m)
{
pair <- c(x[i], y[i]) # ith (x,y) pair
q <- pair %*% solve(s, pair) # quadratic form
x[i] <- x[i] * sqrt(cv / q) + xbar[1]
y[i] <- y[i] * sqrt(cv / q) + xbar[2]
}
return(cbind(x, y))
}
### pdf(file = "bivSwiss.pdf")
plot(biv, col = "red", pch = 16, cex.lab = 1.5)
lines(bivCI(var(biv), colMeans(biv), dim(biv)[1], .01, 1000), type = "l",
col = "blue")
lines(bivCI(var(biv), colMeans(biv), dim(biv)[1], .05, 1000),
type = "l", col = "green", lwd = 1)
lines(colMeans(biv)[1], colMeans(biv)[2], pch = 3, cex = .8, type = "p",
lwd = 1)
Created on 2021-03-15 by the reprex package (v0.3.0)

Performing residual bootstrap using kernel regression in R

Kernel regression is a non-parametric technique that wants to estimate the conditional expectation of a random variable. It uses local averaging of the response value, Y, in order to find some non-linear relationship between X and Y.
I am have used bootstrap for kernel density estimation and now want to use it for kernel regression as well. I have been told to use residual bootstrapping for kernel regression and have read a couple of papers on this. I am however unsure how to perform this. Programming has been done in R using the FKSUM package. I have made an attempt to use standard resampling on kernel regression:
library(FKSUM)
set.seed(1)
n <- 5000
sample.size <- 500
B.replications <- 200
x <- rbeta(n, 2, 2) * 10
y <- 3 * sin(2 * x) + 10 * (x > 5) * (x - 5)
y <- y + rnorm(n) + (rgamma(n, 2, 2) - 1) * (abs(x - 5) + 3)
#taking x.y to be the population
x.y <- data.frame(x, y)
xs <- seq(min(x), max(x), length = 1000)
ftrue <- 3 * sin(2 * xs) + 10 * (xs > 5) * (xs - 5)
#Sample from the population
seqx<-seq(1,5000,by=1)
sample.ind <- sample(seqx, size = sample.size, replace = FALSE)
sample.reg<-x.y[sample.ind,]
x_s <- sample.reg$x
y_s <- sample.reg$y
fhat_loc_lin.pop <- fk_regression(x, y)
fhat_loc_lin.sample <- fk_regression(x = x_s, y = y_s)
plot(x, y, col = rgb(.7, .7, .7, .3), pch = 16, xlab = 'x',
ylab = 'x', main = 'Local linear estimator with amise bandwidth')
lines(xs, ftrue, col = 2, lwd = 3)
lines(fhat_loc_lin, lty = 2, lwd = 2)
#Bootstrap
n.B.sample = sample.size # sample bootstrap size
boot.reg.mat.X <- matrix(0,ncol=B.replications, nrow=n.B.sample)
boot.reg.mat.Y <- matrix(0,ncol=B.replications, nrow=n.B.sample)
fhat_loc_lin.boot <- matrix(0,ncol = B.replications, nrow=100)
Temp.reg.y <- matrix(0,ncol = B.replications,nrow = 1000)
for(i in 1:B.replications){
sequence.x.boot <- seq(from=1,to=n.B.sample,by=1)
sample.ind.boot <- sample(sequence.x.boot, size = sample.size, replace = TRUE)
boot.reg.mat <- sample.reg[sample.ind.boot,]
boot.reg.mat.X <- boot.reg.mat$x
boot.reg.mat.Y <- boot.reg.mat$y
fhat_loc_lin.boot <- fk_regression(x = boot.reg.mat.X ,
y = boot.reg.mat.Y,
h = fhat_loc_lin.sample$h)
lines(y=fhat_loc_lin.boot$y,x= fhat_loc_lin.sample$x, col =c(i) )
Temp.reg.y[,i] <- fhat_loc_lin.boot$y
}
quan.reg.l <- vector()
quan.reg.u <- vector()
for(i in 1:length(xs)){
quan.reg.l[i] <- quantile(x = Temp.reg.y[i,],probs = 0.025)
quan.reg.u[i] <- quantile(x = Temp.reg.y[i,],probs = 0.975)
}
# Lower Bound
Temp.reg.2 <- quan.reg.l
lines(y=Temp.reg.2,x=fhat_loc_lin.boot$x ,col="red",lwd=4,lty=1)
# Upper Bound
Temp.reg.3 <- quan.reg.u
lines(y=Temp.reg.3,x=fhat_loc_lin.boot$x ,col="navy",lwd=4,lty=1)
Asking the question on here now since I haven't received any response on CV. Any help would be greatly appreciated!

Is it possible to specify lower bound in response variable during smooth with gam?

I am trying to fit a smoothed surface of z against x and y using formula z ~ s(x, y) with gam function
in mgcv package. My goal is to predict response z based on new values of x and y.
In my real situation, z should be a positive number negative z would be meaningless. However, the predicted zs
are sometimes negative. It seems that for some region, there is not enough points in the training data to estimate z
accurately.
My question is: Is there a way to specifiy a lower bound of z during smooth in gam so that later I won't get negative zs with predict?
Below is a minimal example that reproduces this issue.
library(mgcv)
x <- seq(0.1, 1, by = 0.01)
y <- seq(0.1, 1, by = 0.01)
dtt <- expand.grid(x = x, y = y)
set.seed(123)
dtt$xp <- dtt$x + rnorm(nrow(dtt)) / 100
dtt$yp <- dtt$y + rnorm(nrow(dtt)) / 100
dtt$z <- 1 / (dtt$xp^2 + dtt$yp^2)
m <- sample.int(nrow(dtt), 3000)
dtt.train <- dtt[m, ]
dtt.test <- dtt[!(1:nrow(dtt) %in% m), ]
fit <- gam(z ~ s(x, y), data = dtt.train)
p <- predict(fit, newdata = dtt.test)
plot(dtt.test$z, p, xlab = 'Real', ylab = 'Predicted', pch = 19, col = 1 + (p < 0))
abline(h = 0, v = 0)
As you can see, for the red points. the real values are positive but the predicted values are negative.

loop linear regression over samples that contain multiple observations

I have a linear regression model y = 50 + 10x + e, where e is normally distributed.
Every time I fit the model, I'm required to use 20 pairs of x and y values, where x is seq(from = 0.5, to = 10, by = 0.5).
My first task is to fit the model 100 times. In other words, generate 100 samples, where each sample consists of 10 pairs of x and y values.
My second task is to save the intercept and slope of each of the 100 instances of model-fitting.
My un-successful code is below:
linear_model <- c()
intercept <- c()
slope <- c()
for (i in 1:100) {
e <- rnorm(n = 20, mean = 0, sd = 4)
x <- seq(from = 0.5, to = 10, by = 0.5)
y <- 50 + 10 * x + e
linear_model[i] <- lm(formula = y ~ x)
intercept[i] <- summary(object = linear_model[i])$coefficients[1, 1]
slope[i] <- summary(object = linear_model[i])$coefficients[2, 1]
}
You've generated 10 random variables for error but 20 x values so that the dimensions don't match. Either 20 random variables or 10 x values should work.
Below is my trial - note that loops are made only twice (times = 2) while it is 100 in your example.
errs <- lapply(rep(x=20, times=2), rnorm, mean=0, sd=4)
x <- seq(0.5, 10, 0.5)
y <- lapply(errs, function(err) 50 * x + err)
myLM <- function(res) {
mod <- lm(formula = res ~ x)
out <- list(intercept = mod$coefficients[1],
slope = mod$coefficients[2])
out
}
fit <- sapply(y, myLM)
fit
[,1] [,2]
intercept 0.005351345 -2.362931
slope 50.13638 50.60856

Visual Comparison of Regression & PCA

I'm trying to perfect a method for comparing regression and PCA, inspired by the blog Cerebral Mastication which has also has been discussed from a different angle on SO. Before I forget, many thanks to JD Long and Josh Ulrich for much of the core of this. I'm going to use this in a course next semester. Sorry this is long!
UPDATE: I found a different approach which almost works (please fix it if you can!). I posted it at the bottom. A much smarter and shorter approach than I was able to come up with!
I basically followed the previous schemes up to a point: Generate random data, figure out the line of best fit, draw the residuals. This is shown in the second code chunk below. But I also dug around and wrote some functions to draw lines normal to a line through a random point (the data points in this case). I think these work fine, and they are shown in First Code Chunk along with proof they work.
Now, the Second Code Chunk shows the whole thing in action using the same flow as #JDLong and I'm adding an image of the resulting plot. Data in black, red is the regression with residuals pink, blue is the 1st PC and the light blue should be the normals, but obviously they are not. The functions in First Code Chunk that draw these normals seem fine, but something is not right with the demonstration: I think I must be misunderstanding something or passing the wrong values. My normals come in horizontal, which seems like a useful clue (but so far, not to me). Can anyone see what's wrong here?
Thanks, this has been vexing me for a while...
First Code Chunk (Functions to Draw Normals and Proof They Work):
##### The functions below are based very loosely on the citation at the end
pointOnLineNearPoint <- function(Px, Py, slope, intercept) {
# Px, Py is the point to test, can be a vector.
# slope, intercept is the line to check distance.
Ax <- Px-10*diff(range(Px))
Bx <- Px+10*diff(range(Px))
Ay <- Ax * slope + intercept
By <- Bx * slope + intercept
pointOnLine(Px, Py, Ax, Ay, Bx, By)
}
pointOnLine <- function(Px, Py, Ax, Ay, Bx, By) {
# This approach based upon comingstorm's answer on
# stackoverflow.com/questions/3120357/get-closest-point-to-a-line
# Vectorized by Bryan
PB <- data.frame(x = Px - Bx, y = Py - By)
AB <- data.frame(x = Ax - Bx, y = Ay - By)
PB <- as.matrix(PB)
AB <- as.matrix(AB)
k_raw <- k <- c()
for (n in 1:nrow(PB)) {
k_raw[n] <- (PB[n,] %*% AB[n,])/(AB[n,] %*% AB[n,])
if (k_raw[n] < 0) { k[n] <- 0
} else { if (k_raw[n] > 1) k[n] <- 1
else k[n] <- k_raw[n] }
}
x = (k * Ax + (1 - k)* Bx)
y = (k * Ay + (1 - k)* By)
ans <- data.frame(x, y)
ans
}
# The following proves that pointOnLineNearPoint
# and pointOnLine work properly and accept vectors
par(mar = c(4, 4, 4, 4)) # otherwise the plot is slightly distorted
# and right angles don't appear as right angles
m <- runif(1, -5, 5)
b <- runif(1, -20, 20)
plot(-20:20, -20:20, type = "n", xlab = "x values", ylab = "y values")
abline(b, m )
Px <- rnorm(10, 0, 4)
Py <- rnorm(10, 0, 4)
res <- pointOnLineNearPoint(Px, Py, m, b)
points(Px, Py, col = "red")
segments(Px, Py, res[,1], res[,2], col = "blue")
##========================================================
##
## Credits:
## Theory by Paul Bourke http://local.wasp.uwa.edu.au/~pbourke/geometry/pointline/
## Based in part on C code by Damian Coventry Tuesday, 16 July 2002
## Based on VBA code by Brandon Crosby 9-6-05 (2 dimensions)
## With grateful thanks for answering our needs!
## This is an R (http://www.r-project.org) implementation by Gregoire Thomas 7/11/08
##
##========================================================
Second Code Chunk (Plots the Demonstration):
set.seed(55)
np <- 10 # number of data points
x <- 1:np
e <- rnorm(np, 0, 60)
y <- 12 + 5 * x + e
par(mar = c(4, 4, 4, 4)) # otherwise the plot is slightly distorted
plot(x, y, main = "Regression minimizes the y-residuals & PCA the normals")
yx.lm <- lm(y ~ x)
lines(x, predict(yx.lm), col = "red", lwd = 2)
segments(x, y, x, fitted(yx.lm), col = "pink")
# pca "by hand"
xyNorm <- cbind(x = x - mean(x), y = y - mean(y)) # mean centers
xyCov <- cov(xyNorm)
eigenValues <- eigen(xyCov)$values
eigenVectors <- eigen(xyCov)$vectors
# Add the first PC by denormalizing back to original coords:
new.y <- (eigenVectors[2,1]/eigenVectors[1,1] * xyNorm[x]) + mean(y)
lines(x, new.y, col = "blue", lwd = 2)
# Now add the normals
yx2.lm <- lm(new.y ~ x) # zero residuals: already a line
res <- pointOnLineNearPoint(x, y, yx2.lm$coef[2], yx2.lm$coef[1])
points(res[,1], res[,2], col = "blue", pch = 20) # segments should end here
segments(x, y, res[,1], res[,2], col = "lightblue1") # the normals
############ UPDATE
Over at Vincent Zoonekynd's Page I found almost exactly what I wanted. But, it doesn't quite work (obviously used to work). Here is a code excerpt from that site which plots normals to the first PC reflected through a vertical axis:
set.seed(1)
x <- rnorm(20)
y <- x + rnorm(20)
plot(y~x, asp = 1)
r <- lm(y~x)
abline(r, col='red')
r <- princomp(cbind(x,y))
b <- r$loadings[2,1] / r$loadings[1,1]
a <- r$center[2] - b * r$center[1]
abline(a, b, col = "blue")
title(main='Appears to use the reflection of PC1')
u <- r$loadings
# Projection onto the first axis
p <- matrix( c(1,0,0,0), nrow=2 )
X <- rbind(x,y)
X <- r$center + solve(u, p %*% u %*% (X - r$center))
segments( x, y, X[1,], X[2,] , col = "lightblue1")
And here is the result:
Alright, I'll have to answer my own question! After further reading and comparison of methods that people have put on the internet, I have solved the problem. I'm not sure I can clearly state what I "fixed" because I went through quite a few iterations. Anyway, here is the plot and the code (MWE). The helper functions are at the end for clarity.
# Comparison of Linear Regression & PCA
# Generate sample data
set.seed(39) # gives a decent-looking example
np <- 10 # number of data points
x <- -np:np
e <- rnorm(length(x), 0, 10)
y <- rnorm(1, 0, 2) * x + 3*rnorm(1, 0, 2) + e
# Plot the main data & residuals
plot(x, y, main = "Regression minimizes the y-residuals & PCA the normals", asp = 1)
yx.lm <- lm(y ~ x)
lines(x, predict(yx.lm), col = "red", lwd = 2)
segments(x, y, x, fitted(yx.lm), col = "pink")
# Now the PCA using built-in functions
# rotation = loadings = eigenvectors
r <- prcomp(cbind(x,y), retx = TRUE)
b <- r$rotation[2,1] / r$rotation[1,1] # gets slope of loading/eigenvector 1
a <- r$center[2] - b * r$center[1]
abline(a, b, col = "blue") # Plot 1st PC
# Plot normals to 1st PC
X <- pointOnLineNearPoint(x, y, b, a)
segments( x, y, X[,1], X[,2], col = "lightblue1")
###### Needed Functions
pointOnLineNearPoint <- function(Px, Py, slope, intercept) {
# Px, Py is the point to test, can be a vector.
# slope, intercept is the line to check distance.
Ax <- Px-10*diff(range(Px))
Bx <- Px+10*diff(range(Px))
Ay <- Ax * slope + intercept
By <- Bx * slope + intercept
pointOnLine(Px, Py, Ax, Ay, Bx, By)
}
pointOnLine <- function(Px, Py, Ax, Ay, Bx, By) {
# This approach based upon comingstorm's answer on
# stackoverflow.com/questions/3120357/get-closest-point-to-a-line
# Vectorized by Bryan
PB <- data.frame(x = Px - Bx, y = Py - By)
AB <- data.frame(x = Ax - Bx, y = Ay - By)
PB <- as.matrix(PB)
AB <- as.matrix(AB)
k_raw <- k <- c()
for (n in 1:nrow(PB)) {
k_raw[n] <- (PB[n,] %*% AB[n,])/(AB[n,] %*% AB[n,])
if (k_raw[n] < 0) { k[n] <- 0
} else { if (k_raw[n] > 1) k[n] <- 1
else k[n] <- k_raw[n] }
}
x = (k * Ax + (1 - k)* Bx)
y = (k * Ay + (1 - k)* By)
ans <- data.frame(x, y)
ans
}
Try changing this line of your code:
res <- pointOnLineNearPoint(x, y, yx2.lm$coef[2], yx2.lm$coef[1])
to
res <- pointOnLineNearPoint(x, new.y, yx2.lm$coef[2], yx2.lm$coef[1])
So you're calling the correct y values.
In Vincent Zoonekynd's code, change the line u <- r$loadings to u <- solve(r$loadings). In the second instance of solve(), the predicted component scores along the first principal axis (i.e., the matrix of predicted scores with the second predicted components scores set to zero) need to be multiplied by the inverse of the loadings/eigenvectors. Multiplying data by the loadings gives predicted scores; dividing predicted scores by the loadings give data. Hope that helps.

Resources