How do I make x and y axes thicker with Plots (Julia)? - plot

How can I make the lines for the x- and y-axes thicker in Julia Plots?
Is there a simple way to achieve this?
MWE:
using Plots
Nx, Ny = 101,101
x = LinRange(0, 100, Nx)
y = LinRange(0, 100, Ny)
foo(x,y; x0=50, y0=50, sigma =1) = exp(- ((x-x0)^2 + (y-y0)^2)/(2*sigma^2) )
NA = [CartesianIndex()] # for "newaxis"
Z = foo.(x[:,NA], y[NA,:], sigma=10);
hm = heatmap(x, y, Z, xlabel="x", ylabel="y", c=cgrad(:Blues_9), clim=(0,1))
plot(hm, tickfontsize=10, labelfontsize=14)
Leads to:
The posts I found so far suggested that this was not possible:
https://discourse.julialang.org/t/plots-jl-modify-frame-thickness/24258/4
https://github.com/JuliaPlots/Plots.jl/issues/1099
It this still so?
The actual code for my plot is much longer.
I would not like to rewrite all of it in a different plot library.

Currently, there does not seem to be an attribute for axes thickness in Plots.jl.
As a workaround, you may use the attribute thickness_scaling, which will scale the thickness of everything: lines, grid lines, axes lines, etc. Since you only want to change the thickness of axes, you need to scale down the others. Here is your example code doing that using pyplot backend.
using Plots
pyplot() # use pyplot backend
Nx, Ny = 101,101
x = LinRange(0, 100, Nx)
y = LinRange(0, 100, Ny)
foo(x,y; x0=50, y0=50, sigma =1) = exp(- ((x-x0)^2 + (y-y0)^2)/(2*sigma^2) )
NA = [CartesianIndex()] # for "newaxis"
Z = foo.(x[:,NA], y[NA,:], sigma=10);
hm = heatmap(x, y, Z, xlabel="x", ylabel="y", c=cgrad(:Blues_9), clim=(0,1))
plot(hm, tickfontsize=10, labelfontsize=14) # your previous plot
# here is the plot code that shows the same plot with thicker axes on a new window
# note that GR backend does not support `colorbar_tickfontsize` attribute
plot(hm, thickness_scaling=2, tickfontsize=10/2, labelfontsize=14/2, colorbar_tickfontsize=8/2, reuse=false)
See Julia Plots Documentation for more about plot attributes.

A simple workaround where you do not need to add attributes for all the fonts is to add verticle and horizontal lines at the limits for x and y of the plots. For example, if I have a figure fig with 4 subplots, each with the same bounds, I can use this to get a thicker box frame:
for i ∈ 1:4
vline!(fig[i], [xlim_lb, xlim_ub],
linewidth=3,
color=:black,
label=false)
hline!(fig[i], [ylim_lb, ylim_ub],
linewidth=3,
color=:black,
label=false)
end
or for the original example here, add this to the end:
frame_thickness = 5
vline!([x[1], x[end]], color=:black, linewidth=frame_thickness, label=false)
hline!([y[1], y[end]], color=:black, linewidth=frame_thickness, label=false)

Related

Stack Heatmaps in one plot

In Julia, I want to stack heatmaps in one plot, just how it was done with Matlab in this stackoverflow post:
I need a function to display matrices stacked
Preferably with the same color bar for all heatmaps, and with the ability to specify the position of each plane (i.e. along the third dimension).
I know how to stack surface plots by adding an offset to each surface (see this page: https://plotly.com/julia/3d-surface-plots/), but this is not what I want to achieve as a surface plot is not flat, but, as the name suggests, a surface. My workaround currently is to use an offset large enough that each surface appears to be flat, but as the third axis relates to the real world height of my measurements, I am not happy with this fix.
What I would prefer is a parameter positions_z = [z1, z2, z3, ...] that specifies the location of all heatmaps along the third axis, but I am also happy with workarounds.
Does anyone know a solution?
Here's how you can do it in Makie.jl:
using GLMakie
xs = range(-1, 1, length=10)
heights = 1:5
data = reshape(heights, 1, 1, :) .* (xs .^2 .+ xs' .^2);
fig = Figure()
ax = Axis3(fig[1, 1], aspect=(1, 1, 1), elevation=π/16)
cr = (minimum(data), maximum(data)) # color range to use for all heatmaps
for i in 1:size(data, 3)
hm = heatmap!(ax, xs, xs, data[:, :, i], colorrange=cr)
translate!(hm, 0, 0, heights[i])
i == 1 && Colorbar(fig[1, 2], hm) # add the colorbar once
end
zlims!(ax, minimum(heights), maximum(heights))
fig
Here is the solution using PlotlyJS.jl. A plane is a surface, hence you can plot the heatmaps as surfaces:
using PlotlyJS
f(x,y,z) = cos(x)+cos(y)+cos(z)
n=200
xl = range(-2,2, length=n)
yl = range(-2,2, length=n)
y = yl .* ones(n)'
x = ones(n) * xl'
h = -2:1
fig = Plot()
for hp in h
z= hp*ones(size(x))
surfcolor = f.(x,y,z)
addtraces!(fig, surface(x=x, y=y, z=z, coloraxis="coloraxis", surfacecolor=surfcolor));
end
relayout!(fig, font_family="Open Sherif", font_size=11, width=400, height=400,
margin=attr(t=10, r=10, b=10, l=4),
coloraxis=attr(colorscale=colors.viridis,
colorbar_len=0.65,
colorbar_thickness=24),
scene_camera_eye=attr(x=1.8, y=1.8, z=1))
display(fig)
To save your figure as a png file you should use the following settings for savefig:
savefig(fig, "parallelheatmaps.png", width=400, height=400, scale=1)
But for publication perhaps you need a pdf file with dpi=300. In this case save as:
savefig(fig, "parallelheatmaps.pdf", width=300*3, height=300*3, scale=1)
where 3 is the width and height in inches.

Stacking of several Surface plots in 3D-View

Lets consider that I have five 2D-Matrices which describe the magnetic field at different z-Layers. A nice, smoothed version of a 2D-Surface plot can be obtained as follows:
data2_I<-matrix(c(1.0,1.0,0.6,0.6,0.7,0.9,0.9,0.5,0.5,0.5,0.7,0.9,0.9,0.6,0.3,0.4,0.7,0.9,0.9,0.7,0.5,0.5,0.6,0.9,0.9,0.7,0.6,0.6,1.0,1.0), nrow=5)
Z = as.vector(data2_I)
length(Z)
XY=data.frame(x=as.numeric(gl(5,1,30)),y=as.numeric(gl(5,6,30)))
t=Tps(XY,Z)
surface(t)
Now it would be great if I could get a 3D-plot where at different z-Positions these surfaces are plotted. Is there a possibility to do that?
I found an alternative approach: With the package rgl I and the function surface 3D I can stack several 3D-Surface plots within one open3d-window. Lets look at a small example:
library("rgl")
data2_I<-matrix(c(1.0,1.0,0.6,0.6,0.7,0.9,0.9,0.5,0.5,0.5,0.7,0.9,0.9,0.6,0.3,0.4,0.7,0.9,0.9,0.7,0.5,0.5,0.6,0.9,0.9,0.7,0.6,0.6,1.0,1.0), nrow=5)
data0_I<-matrix(c(1.0,1.0,0.6,0.6,0.7,0.9,0.9,0.5,0.5,0.5,0.7,0.9,0.9,0.6,0.3,0.4,0.7,0.9,0.9,0.7,0.5,0.5,0.6,0.9,0.9,0.7,0.6,0.6,1.0,1.0), nrow=5)
data1_I<-2*data0_I
data2_I<-1/data1_I
elv=0
offs=5*elv+1
z0 <- scale*data0_I
z1 <- scale*data1_I
z2 <- scale*data2_I
x <- 1:nrow(z0)
y <- 1:ncol(z0)
palette <- colorRampPalette(c("blue","green","yellow", "red"))
col.table <- palette(256)
open3d(windowRect=c(50,50,800,800))
surface3d(x, y, elv*z0, color = col.table[cut(z0, 256)], back = "lines")
surface3d(x, y, elv*z1+1*offs, color = col.table[cut(z1, 256)], back = "lines")
surface3d(x, y, elv*z2+2*offs, color = col.table[cut(z2, 256)], back = "lines")
axes3d()
aspect3d(1,1,2)
The variables offsand elv are included for cosmetic purposes: offs controls the space between two surface plots and elevation how the z-axes of the surface3d-plots should scale. As I wanted to have a 2D surface plot without any elevation I set it to zero.

R: Filling enclosed areas in contour

Im drawing a knn-classification plot in R using plot to plot the samples and contour to plot the lines that classify the plane.
Here is my code:
k<-1
datax<-rbind(matrix(rnorm(30,-1,5.25),15,2),matrix(rnorm(36,1,5.25),18,2))
datay<-rbind(matrix(1,15,1),matrix(0,18,1))
plot(datax[,1], datax[,2],pch = datay+1,axes=FALSE,ann=FALSE)
box()
n <- 1000
xp <- seq(length=n, from = min(datax[,1]), to = max(datax[,1]))
yp <- seq(length=n,from = min(datax[,2]) ,to = max(datax[,2]))
gr <- expand.grid(xp, yp)
library(class)
z <- as.numeric(knn(datax, gr, datay,k))-1
zM <- matrix(z, n, n, byrow = FALSE)
contour(xp, yp, zM, xlab="x",ylab="",nlevels = 1 ,lwd=2, add=TRUE, drawlabels =FALSE)
My question is: How can i color the enclosed areas in the plot? I tried filled.contour but there is no add parameter. I simply want the area where the classifier is = 0 white and where it classifies = 1 in blue. How should i do this?
thanks
Instead of contour, you can use contourLines to keep the coordinates of the edges of the contour lines and plot them with polygon.
plot(datax[,1], datax[,2],axes=FALSE,ann=FALSE, type="n")
box()
cL <- contourLines(xp, yp, zM,nlevels = 1)
lapply(cL,function(x)polygon(x$x,x$y,col="red"))
points(datax[,1], datax[,2],pch = datay+1)
However it is not perfect with contour lines that reach the edges of the plot (see the left lower corner of the second plot), so it will need some hand-made tuning:
Edit: In the case of nested contour lines, I don't think there is an easy way to deal with it but here is one way:
library(splancs)
ord <- sapply(lapply(cL,function(x)datay[inout(datax,cbind(x$x,x$y))]),
median) #Check what values are present in the polygon and
#take the most common one
plot(datax[,1], datax[,2],axes=FALSE,ann=FALSE, type="n")
box()
lapply(cL[ord==1],function(x)polygon(x$x,x$y,col="blue"))
lapply(cL[ord==0],function(x)polygon(x$x,x$y,col="white"))
points(datax[,1], datax[,2],pch = datay+1)
2nd Edit: There is of course also the possibility of using function image in your case:
image(xp, yp, zM, col=c("transparent","blue"))
points(datax[,1], datax[,2],pch = datay+1)

Easiest way to plot inequalities with hatched fill?

Refer to the above plot. I have drawn the equations in excel and then shaded by hand. You can see it is not very neat. You can see there are six zones, each bounded by two or more equations. What is the easiest way to draw inequalities and shade the regions using hatched patterns ?
To build up on #agstudy's answer, here's a quick-and-dirty way to represent inequalities in R:
plot(NA,xlim=c(0,1),ylim=c(0,1), xaxs="i",yaxs="i") # Empty plot
a <- curve(x^2, add = TRUE) # First curve
b <- curve(2*x^2-0.2, add = TRUE) # Second curve
names(a) <- c('xA','yA')
names(b) <- c('xB','yB')
with(as.list(c(b,a)),{
id <- yB<=yA
# b<a area
polygon(x = c(xB[id], rev(xA[id])),
y = c(yB[id], rev(yA[id])),
density=10, angle=0, border=NULL)
# a>b area
polygon(x = c(xB[!id], rev(xA[!id])),
y = c(yB[!id], rev(yA[!id])),
density=10, angle=90, border=NULL)
})
If the area in question is surrounded by more than 2 equations, just add more conditions:
plot(NA,xlim=c(0,1),ylim=c(0,1), xaxs="i",yaxs="i") # Empty plot
a <- curve(x^2, add = TRUE) # First curve
b <- curve(2*x^2-0.2, add = TRUE) # Second curve
d <- curve(0.5*x^2+0.2, add = TRUE) # Third curve
names(a) <- c('xA','yA')
names(b) <- c('xB','yB')
names(d) <- c('xD','yD')
with(as.list(c(a,b,d)),{
# Basically you have three conditions:
# curve a is below curve b, curve b is below curve d and curve d is above curve a
# assign to each curve coordinates the two conditions that concerns it.
idA <- yA<=yD & yA<=yB
idB <- yB>=yA & yB<=yD
idD <- yD<=yB & yD>=yA
polygon(x = c(xB[idB], xD[idD], rev(xA[idA])),
y = c(yB[idB], yD[idD], rev(yA[idA])),
density=10, angle=0, border=NULL)
})
In R, there is only limited support for fill patterns and they can only be
applied to rectangles and polygons.This is and only within the traditional graphics, no ggplot2 or lattice.
It is possible to fill a rectangle or polygon with a set of lines drawn
at a certain angle, with a specific separation between the lines. A density
argument controls the separation between the lines (in terms of lines per inch)
and an angle argument controls the angle of the lines.
here an example from the help:
plot(c(1, 9), 1:2, type = "n")
polygon(1:9, c(2,1,2,1,NA,2,1,2,1),
density = c(10, 20), angle = c(-45, 45))
EDIT
Another option is to use alpha blending to differentiate between regions. Here using #plannapus example and gridBase package to superpose polygons, you can do something like this :
library(gridBase)
vps <- baseViewports()
pushViewport(vps$figure,vps$plot)
with(as.list(c(a,b,d)),{
grid.polygon(x = xA, y = yA,gp =gpar(fill='red',lty=1,alpha=0.2))
grid.polygon(x = xB, y = yB,gp =gpar(fill='green',lty=2,alpha=0.2))
grid.polygon(x = xD, y = yD,gp =gpar(fill='blue',lty=3,alpha=0.2))
}
)
upViewport(2)
There are several submissions on the MATLAB Central File Exchange that will produce hatched plots in various ways for you.
I think a tool that will come handy for you here is gnuplot.
Take a look at the following demos:
feelbetween
statistics
some tricks

Bubble chart for integer variables where the largest bubble has a diameter of 1 (on the x or y axis scale)?

I want to achieve the following outcomes:
Rescale the size of the bubbles such that the largest bubble has a
diameter of 1 (on whichever has the more compressed scale of the x
and y axes).
Rescale the size of the bubbles such that the smallest bubble has a diameter of 1 mm
Have a legend with the first and last points the minimum non-zero
frequency and the maximum frequency.
The best I have been able to do is as follows, but I need a more general solution where the value of maxSize is computed rather than hard-coded. If I was doing it in the traditional R plots I would use par("pin") to work out the size of plot area and work backwards, but I cannot figure out how to access this information with ggplot2. Any suggestions?
library(ggplot2)
agData = data.frame(
class=rep(1:7,3),
drv = rep(1:3,rep(7,3)),
freq = as.numeric(xtabs(~class+drv,data = mpg))
)
agData = agData[agData$freq != 0,]
rng = range(agData$freq)
mn = rng[1]
mx = rng[2]
minimumArea = mx - mn
maxSize = 20
minSize = max(1,maxSize * sqrt(mn/mx))
qplot(class,drv,data = agData, size = freq) + theme_bw() +
scale_area(range = c(minSize,maxSize),
breaks = seq(mn,mx,minimumArea/4), limits = rng)
Here is what it looks like so far:
When no ggplot, lattice or other highlevel package seems to do the job without hours of fine tuning I always revert to the base graphics. The following code gets you what you want, and after it I have another example based on how I would have plotted it.
Note however that I have set the maximum radius to 1 cm, but just divide size.range/2 to get diameter instead. I just thought radius gave me nicer plots, and you'll probably want to adjust things anyways.
size.range <- c(.1, 1) # Min and max radius of circles, in cm
# Calculate the relative radius of each circle
radii <- sqrt(agData$freq)
radii <- diff(size.range)*(radii - min(radii))/diff(range(radii)) + size.range[1]
# Plot in two panels
mar0 <- par("mar")
layout(t(1:2), widths=c(4,1))
# Panel 1: The circles
par(mar=c(mar0[1:3],.5))
symbols(agData$class, agData$drv, radii, inches=size.range[2]/cm(1), bg="black")
# Panel 2: The legend
par(mar=c(mar0[1],.5,mar0[3:4]))
symbols(c(0,0), 1:2, size.range, xlim=c(-4, 4), ylim=c(-2,4),
inches=1/cm(1), bg="black", axes=FALSE, xlab="", ylab="")
text(0, 3, "Freq")
text(c(2,0), 1:2, range(agData$freq), col=c("black", "white"))
# Reset par settings
par(mar=mar0)
Now follows my suggestion. The largest circle has a radius of 1 cm and area of the circles are proportional to agData$freq, without forcing a size of the smallest circle. Personally I think this is easier to read (both code and figure) and looks nicer.
with(agData, symbols(class, drv, sqrt(freq),
inches=size.range[2]/cm(1), bg="black"))
with(agData, text(class, drv, freq, col="white"))

Resources