How to create a clickable histogram in Shiny? - r

I want to create a clickable histogram in shiny but I don't know if it is possible.
Some months ago I saw a clickable volcano plot which gives you a table of what you click.
Source: https://2-bitbio.com/2017/12/clickable-volcano-plots-in-shiny.html
The closest post that I found about creating clickable histograms is this one Click to get coordinates from multiple histogram in shiny
However, I don't want to get the coordinates. I want the rownames of the dataframe.
Having this dataframe, can I get the rownames everytime I click a bar from the histogram?
mtcars <- mtcars %>%
select("hp")
mtcars <- as.matrix(mtcars)
One example (but not clickable) in shiny:
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
),
mainPanel(
plotOutput("hist"),
)
)
)
mtcars <- mtcars %>%
select("hp")
mtcars <- as.matrix(mtcars)
server <- function(input, output) {
output$hist <- renderPlot({
pp <- qplot(mtcars, geom = "histogram", bins = 10, xlab="values",
ylab="Frequency", main="Histogram",
fill=I("red"), col=I("black"), alpha=I(0.4))
pp + scale_x_continuous(breaks=pretty(mtcars, n=10))
})
}
shinyApp(ui = ui, server = server)
Does anyone know how to do it?
Thanks very much in advance!
Regards

This is a great question, and what makes it challenging is that the qplot/ggplot charts are static images. The below app.r is an example of how I would do it. I'd love to see other approaches.
In essence:
Create a sequence of numbers that will be used both as the breaks in your histogram and as intervals in your dataframe. I based these on user inputs, but you could hardcode them.
Assign a "bin" value to each row in the dataframe based on the interval in which the value falls.
Record the x-coordinate from the user's click event and assign that a "bin" value based on the same set of intervals.
Subset your dataframe and retain only those records where the "bin" value of the data matches the "bin" value of the x-coordinate from the user's click event.
Otherwise, if you're willing to go the d3 route, you could explore something like this posted by R Views.
#Load libraries ----------------------------------------------------
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
# Prepare data -----------------------------------------------------
df <- mtcars
df <- cbind(model = rownames(df), data.frame(df, row.names = NULL)) # setting the rownames as the first column
dm <- df$hp %>% as.matrix()
# UI function ------------------------------------------------------
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
tags$h5("I added the below text output only to demonstrate shiny's way for tracking user interaction on static plots. You can click, double-click, or click & drag (i.e. brushing). These functions are AWESOME when exploring scatterplots."),
tags$h3("Chart click and brushing"),
verbatimTextOutput("info"),
tags$h5("Now I'm applying the below UI inputs to the `vec` and `breaks` arguments in `findInterval()` and `qplot()` respectively; I'm using `findInterval()` to bin the values in the dataframe AND to bin the x-value of the user's click event input on the chart. Then we can return the dataframe rows with the same bin values as the x-value of the click input."),
sliderInput("seq_from_to"
, label = h3("Sequence 'From' and 'To'")
, min = 0
, max = 500
, value = c(50, 350)
),
sliderInput("seq_by"
, label = h3("Sequence 'By'")
, min = 25
, max = 200
, value = 50
, step = 5)
),
mainPanel(
plotOutput("hist",
click = "plot_click",
dblclick = "plot_dblclick",
hover = "plot_hover",
brush = "plot_brush"),
dataTableOutput("table")
)
)
)
# Server function --------------------------------------------------
server <- function(input, output) {
# Render Histogram Plot
output$hist <- renderPlot({
# Using the same `qplot` function but inserting the user inputs to set the breaks values in the plot
pp <- qplot(dm
, geom = "histogram"
, breaks = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by)
, xlab = "values"
, ylab = "Frequency"
, main = "Histogram"
, fill = I("red")
, col = I("black")
, alpha = I(0.4)
)
# Also using the user inputs to set the breaks values for the x-axis
pp + scale_x_continuous(breaks = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by))
})
# This is purely explanatory to help show how shiny can read user interaction on qplot/ggplot objects
# It's taken from the Shiny docs here: https://shiny.rstudio.com/articles/plot-interaction.html
output$info <- renderText({
# Retain the x and y coords of the user click event data
xy_str <- function(e) {
if(is.null(e)) return("NULL\n")
paste0("x=", round(e$x, 1), " y=", round(e$y, 1), "\n")
}
# Retain the x and y range coords of click & drag (brush) data
xy_range_str <- function(e) {
if(is.null(e)) return("NULL\n")
paste0("xmin=", round(e$xmin, 1), " xmax=", round(e$xmax, 1),
" ymin=", round(e$ymin, 1), " ymax=", round(e$ymax, 1))
}
# Paste this together so we can read it in the UI function for demo purposes
paste0(
"click: ", xy_str(input$plot_click),
"dblclick: ", xy_str(input$plot_dblclick),
"hover: ", xy_str(input$plot_hover),
"brush: ", xy_range_str(input$plot_brush)
)
})
# Back to the story. Set a listener to trigger when one of the following is updated:
toListen <- reactive({list(
input$plot_click # user clicks on the plot
, input$seq_from_to # user updates the range slider
, input$seq_by # user updates the number input
)
})
# When one of those events are triggered, update the datatable output
observeEvent(toListen(), {
# Save the user click event data
click_data <- input$plot_click
print(click_data) # during your app preview, you can watch the R Console to see what click data is accessible
# Assign bin values to each row using the intervals that are set by the user input
df$bin <- findInterval(dm, vec = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by))
# Similarly assign a bin value to the click event based on what interval the x values falls within
click_data$x_bin <- findInterval(click_data$x, vec = seq(from = input$seq_from_to[1], to = input$seq_from_to[2], by = input$seq_by))
# Lastly, subset the df to only those records within the same interval as the click event x-value
df_results <- subset(df, bin == click_data$x_bin)
# Select what values to view in the table
df_results <- df_results %>% select(model, hp)
# And push these back out to the UI
output$table <- renderDataTable(df_results,
options = list(
pageLength = 5
)
)
})
}
shinyApp(ui = ui, server = server)

Well, someone answered. Since I took the time to put it together, here is another potential solution.
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
library(DescTools) # added for Closest()
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
),
mainPanel(
plotOutput("hist", click = 'plot_click'), # added plot_click
verbatimTextOutput("x_value"), # added queues for interactivity
verbatimTextOutput("selected_rows") # added table for bin values
)
)
)
# this can be a dataframe or matrix for qplot or ggplot
# (not sure if there was another reason you had this code?)
# mtcars <- mtcars %>%
# select("hp") # if you only want hp
# mtcars <- as.matrix(mtcars) # I suggest making row names a column
# to keep 2 columns
pp <- ggplot(mtcars) +
geom_histogram(aes(x = hp),
bins = 10,
fill = "red",
color = "black",
alpha = .4) +
labs(x = "values",
y = "Frequency",
title = "Histogram")
# extract data from plot to find where each value falls within the histogram bins
# I kept the pkg name, function in more than one library
bd <- ggplot_build(ggplot2::last_plot())$data[[1]]
# add the assigned bin number to the mtcars frame; used for filtering matches
mtcars$bins <- lapply(mtcars$hp,
function(y) {
which(bd$x == Closest(bd$x, y))
}) %>% unlist()
server <- function(input, output) {
output$hist <- renderPlot({
# moved the plot outside of server, so that global variables could be created
# pp <- qplot(mtcars[,"hp"], geom = "histogram", bins = 10, xlab="values",
# ylab = "Frequency", main = "Histogram",
# fill = I("red"), col = I("black"), alpha = I(0.4))
# scale_x_continuous(breaks=pretty(mtcars, n=10)) # can't use this
pp
})
# # Print the name of the x value # added all that's below with server()
output$x_value <- renderPrint({
if (is.null(input$plot_click$x)) return()
# find the closest bin center to show where the user clicked on the histogram
cBin <- which(bd$x == Closest(bd$x, input$plot_click$x))
paste0("You selected bin ", cBin) # print out selected value based on bin center
})
# Print the rows of the data frame which match the x value
output$selected_rows <- renderPrint({
if (is.null(input$plot_click$x)) return()
# find the closest bin center to show where the user clicked on the histogram
cBin <- which(bd$x == Closest(bd$x, input$plot_click$x))
mtcars %>% filter(bins == cBin)
# mtcars
})
}
shinyApp(ui = ui, server = server)

Just in case someone ends in this post looking a way to include brushedPoints... inspired on this post, I found a way to do it!
Code:
#Load libraries ----------------------------------------------------
library(shiny)
library(ggplot2)
library(scales)
library(dplyr)
# Prepare data -----------------------------------------------------
df <- mtcars
df <- cbind(model = rownames(df), data.frame(df, row.names = NULL)) # setting the rownames as the first column
breaks_data = pretty(mtcars$hp, n=10)
my_breaks = seq(min(breaks_data), to=max(breaks_data), by=30)
# UI function ------------------------------------------------------
ui <- fluidPage(
titlePanel("Histogram"),
sidebarLayout(
sidebarPanel(
actionButton("draw_plot", "Draw the plot")
),
mainPanel(
plotOutput("hist",
brush = brushOpts("plot_brush", resetOnNew = T, direction = "x")),
dataTableOutput("table"),
)
)
)
# Server function --------------------------------------------------
server <- function(input, output) {
observeEvent(input$plot_brush, {
info_plot <- brushedPoints(df, input$plot_brush)
output$table <- renderDataTable(info_plot)
})
# If the user didn't choose to see the plot, it won't appear.
output$hist <- renderPlot({
df %>% ggplot(aes(hp)) +
geom_histogram(alpha=I(0.4), col = I("black"), fill = I("red"), bins=10) +
labs(x = "values",
y = "Frequency",
title = "Histogram") +
scale_x_continuous(breaks = my_breaks)
})
}
shinyApp(ui = ui, server = server)

How to do a scatterplot with hover
library(shiny)
library(tidyverse)
ui <- fluidPage(
titlePanel("hover tooltips demo"),
mainPanel(
plotOutput("plot1", hover = hoverOpts(id = "plot_hover", delay = 100, delayType = "debounce")),
uiOutput("hover_info") # , style = "pointer-events: none")
)
)
server <- function(input, output) {
output$plot1 <- renderPlot({
mtcars %>%
ggplot(aes(mpg, hp)) +
geom_point()
})
output$hover_info <- renderUI({
hover <- input$plot_hover
point <- shiny::nearPoints(mtcars,
coordinfo = hover,
xvar = 'mpg',
yvar = 'hp',
threshold = 20,
maxpoints = 1,
addDist = TRUE)
if (nrow(point) == 0) return(NULL)
style <- paste0("position:absolute; z-index:100; background-color: #3c8dbc; color: #ffffff;",
"font-weight: normal; font-size: 11pt;",
"left:", hover$coords_css$x + 5, "px;",
"top:", hover$coords_css$y + 5, "px;")
wellPanel(
style = style,
p(HTML(paste0("Some info about car: <br/>MPG ", point$mpg, "<br/>HP ", point$hp)))
)
})
}
shinyApp(ui = ui, server = server)

Related

DT with editable cells error with observeEvent() editData() "Warning: Error in split.default: first argument must be a vector"

I am attempting to create a shiny app with editable cells where the underlying data frame updates depending on user input. I asked a similar question earlier and was pointed to this link.
My app:
library(shiny)
library(tidyverse)
library(DT)
ui <- fluidPage(
# Application title
titlePanel("blah"),
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30)
),
# Show a plot of the generated distribution
mainPanel(
DT::DTOutput('ex_table'),
)
)
)
server <- function(input, output,session) {
example_data <- data.frame(x = rnorm(10, 0, 1) %>% round) %>% mutate(y = x + 1)
output$ex_table <- DT::renderDT(example_data, selection = 'none', editable = TRUE)
# from https://yihui.shinyapps.io/DT-edit/
observeEvent(input$ex_table_cell_edit, {
example_data <<- editData(example_data, input$ex_table, 'ex_table', rownames = FALSE)
})
}
# Run the application
shinyApp(ui = ui, server = server)
This app loads when you press run in rstudio. But when trying to edit a cell in column x, the app crashes with error message 'Warning: Error in split.default: first argument must be a vector'.
This is the problem code block:
# from https://yihui.shinyapps.io/DT-edit/
observeEvent(input$ex_table_cell_edit, {
example_data <<- editData(example_data, input$ex_table, 'ex_table', rownames = FALSE)
})
Screens:
The app loads up fine. Y is always x + 1 due to the data frame definition:
example_data <- data.frame(x = rnorm(10, 0, 1) %>% round) %>% mutate(y = x + 1)
When a user edits the x column, I wouldlike the y column to update to be whatever x is plus one:
When I press enter, desired behavior is to have y = 101.
Per the link suggested, https://yihui.shinyapps.io/DT-edit/, I'd prefer to use editData() as opposed to what was provided in my previous post, because editData() approach looks simpler and more readable.
But when I try it my shiny app always crashes?
Your existing program works fine if you put rownames=FALSE in output$ex_table. However, it only allows you to edit table cells. If you still want to maintain the dependency y=x+1, you need to define like #Waldi did in his answer earlier. Also, once you modify, you need to feed it back to the output via replaceData() of Proxy or define a reactiveValues object as shown below.
ui <- fluidPage(
# Application title
titlePanel("blah"),
sidebarLayout(
sidebarPanel(
sliderInput("bins",
"Number of bins:",
min = 1,
max = 50,
value = 30)
),
# Show a plot of the generated distribution
mainPanel(
DTOutput('ex_table'),
)
)
)
server <- function(input, output,session) {
DF1 <- reactiveValues(data=NULL)
example_data <- data.frame(x = rnorm(10, 0, 1) %>% round) %>% mutate(y = x + 1)
DF1$data <- example_data
output$ex_table <- renderDT(DF1$data, selection = 'none', editable = TRUE, rownames = FALSE)
observeEvent(input$ex_table_cell_edit, {
info = input$ex_table_cell_edit
str(info)
i = info$row
j = info$col + 1 ## offset by 1
example_data <<- editData(example_data, input$ex_table_cell_edit, 'ex_table', rownames = FALSE)
if(j==1){example_data[i,j+1]<<-as.numeric(example_data[i,j])+1} ### y = x + 1 dependency
DF1$data <- example_data
})
}
# Run the application
shinyApp(ui = ui, server = server)

R/Shiny: Change plot ONLY after action button has been clicked

I am setting up a small shiny app where I do not want the plot to change unless the action button is clicked. In the example below, when I first run the app, there is no plot until I click the action button. However, if I then change my menu option in the drop-down from Histogram to Scatter, the scatter plot is automatically displayed even though the value for input$show_plot has not changed because the action button has not been clicked.
Is there a way that I can change my menu selection from Histogram to Scatter, but NOT have the plot change until I click the action button? I've read through several different posts and articles and can't seem to get this worked out.
Thanks for any input!
ui.R
library(shiny)
fluidPage(
tabsetPanel(
tabPanel("Main",
headerPanel(""),
sidebarPanel(
selectInput('plot_type', 'Select plot type', c('Histogram','Scatter'), width = "250px"),
actionButton('show_plot',"Plot", width = "125px"),
width = 2
),
mainPanel(
conditionalPanel(
"input.plot_type == 'Histogram'",
plotOutput('plot_histogram')
),
conditionalPanel(
"input.plot_type == 'Scatter'",
plotOutput('plot_scatter')
)
))
)
)
server.R
library(shiny)
library(ggplot2)
set.seed(10)
function(input, output, session) {
### GENERATE SOME DATA ###
source_data <- reactive({
mydata1 = as.data.frame(rnorm(n = 100))
mydata2 = as.data.frame(rnorm(n = 100))
mydata = cbind(mydata1, mydata2)
colnames(mydata) <- c("value1","value2")
return(mydata)
})
# get a subset of the data for the histogram
hist_data <- reactive({
data_sub = as.data.frame(source_data()[sample(1:nrow(source_data()), 75), "value1"])
colnames(data_sub) <- "value1"
return(data_sub)
})
# get a subset of the data for the scatter plot
scatter_data <- reactive({
data_sub = as.data.frame(source_data()[sample(1:nrow(source_data()), 75),])
return(data_sub)
})
### MAKE SOME PLOTS ###
observeEvent(input$show_plot,{
output$plot_histogram <- renderPlot({
isolate({
plot_data = hist_data()
print(head(plot_data))
p = ggplot(plot_data, aes(x = value1, y = ..count..)) + geom_histogram()
return(p)
})
})
})
observeEvent(input$show_plot,{
output$plot_scatter <- renderPlot({
isolate({
plot_data = scatter_data()
print(head(plot_data))
p = ggplot(plot_data, aes(x = value1, y = value2)) + geom_point()
return(p)
})
})
})
}
Based on your desired behavior I don't see a need for actionButton() at all. If you want to change plots based on user input then the combo of selectinput() and conditionPanel() already does that for you.
On another note, it is not good practice to have output bindings inside any reactives. Here's an improved version of your server code. I think you are good enough to see notice the changes but comment if you have any questions. -
function(input, output, session) {
### GENERATE SOME DATA ###
source_data <- data.frame(value1 = rnorm(n = 100), value2 = rnorm(n = 100))
# get a subset of the data for the histogram
hist_data <- reactive({
# reactive is not needed if no user input is used for creating this data
source_data[sample(1:nrow(source_data), 75), "value1", drop = F]
})
# get a subset of the data for the histogram
scatter_data <- reactive({
# reactive is not needed if no user input is used for creating this data
source_data[sample(1:nrow(source_data), 75), , drop = F]
})
### MAKE SOME PLOTS ###
output$plot_histogram <- renderPlot({
req(hist_data())
print(head(hist_data()))
p = ggplot(hist_data(), aes(x = value1, y = ..count..)) + geom_histogram()
return(p)
})
output$plot_scatter <- renderPlot({
req(scatter_data())
print(head(scatter_data()))
p = ggplot(scatter_data(), aes(x = value1, y = value2)) + geom_point()
return(p)
})
}

How do I animate my R Shiny plot's output based on the increments of slider input value?

I've looked through R Shiny tutorials and stackoverflow for answers related to my query. I usually wait for 3-4 days to solve a coding problem before I attempt to post.
I have an animated slider in my UI that loops through time interval in a column (column a) . I'm trying to produce an animated line plot that plots y values of another column (column b), corresponding to the nrow() of that time interval. The slider works perfectly, but I haven't been able to plot the output.
I mightve missed some concepts related to reactivity in Shiny app. Appreciate any guidance I can get related to my query. I'll be happy to post more info if needed.
a <- c(0,1,2,3,4,5,6)
b <- c(50,100,40,30,20,80)
mydata <- cbind(a,b)
mydata <- as.data.frame(mydata())
ui <- fluidPage (
headerPanel("basic app"),
sidebarPanel(
sliderInput("slider",
label = "Time elapsed",
min = 0,
max = nrow(mydata()),
value = 1, step = 1,
animate =
animationOptions(interval = 200, loop = TRUE))
),
mainPanel(
plotlyOutput("plot")
)
)
server <- function(input, output) {
sliderValues <- reactive({
data.frame(
Name = "slider",
Value = input$slider)
})
output$plot <- renderPlot({
x<- as.numeric(input$slider)
y <- as.numeric(b[x])
ggplot(mydata,aes_string(x,y))+ geom_line()
})
}
Just as a demo, I wanted the animated plot to come out like this, but in correspondance to UI slider values :
library(gganimate)
library(ggplot2)
fake <- c(1,10)
goods <- c(11,20)
fakegoods <- cbind(fake,goods)
fakegoods <- data.frame(fakegoods)
ggplot(fakegoods, aes(fake, goods)) + geom_line() + transition_reveal(1, fake)
Does this accomplish what you are looking for? Note that I removed the first element, 0, from vector a as your original example had more elements in a than b, and in order for them to be cbind together they must be the same length.
library(ggplot2)
library(shiny)
a <- c(1,2,3,4,5,6)
b <- c(50,100,40,30,20,80)
mydata <- cbind(a,b)
mydata <- as.data.frame(mydata)
ui <- fluidPage (
headerPanel("basic app"),
sidebarPanel(
sliderInput("slider",
label = "Time elapsed",
min = min(mydata$a),
max = max(mydata$a),
value = min(mydata$a), step = 1,
animate =
animationOptions(interval = 200, loop = TRUE))
),
mainPanel(
plotOutput("plot")
)
)
server <- function(input, output) {
output$plot <- renderPlot({
plotdata <- mydata[1:which(input$slider==mydata$a),]
p <- ggplot(plotdata,aes(x = a,y = b))
if(nrow(plotdata)==1) {
p + geom_point()
} else {
p + geom_line()
}
})
}

Plotly click event does not work due to range of values of in a single bar of a histogram

I have the dataframe below:
col1<-sample(500, size = 500, replace = TRUE)
col2<-sample(500, size = 500, replace = TRUE)
d<-data.frame(col1,col2)
And I create a histogram of this data frame that has click-event activated. When the user clicks on a bar the rows of the dataframe that have the relative value are displayed in a datatable. The problem is that the app works fine with a few values. If for example my dataframe had 5 rows instead of 500 with :
col1<-sample(5, size = 5, replace = TRUE)
col2<-sample(5, size = 5, replace = TRUE)
d<-data.frame(col1,col2)
But with more values the app does not work since the plotly gives a range of values in every single bar instead of a unique value.
library(plotly)
library(shiny)
library(DT)
ui <- fluidPage(
mainPanel(
plotlyOutput("heat")
),
DT::dataTableOutput('tbl4')
)
server <- function(input, output, session) {
output$heat <- renderPlotly({
render_value(d) # You need function otherwise data.frame NN is not visible
p <- plot_ly(x = d$col2, type = "histogram",source="subset") # set source so
# that you can get values from source using click_event
})
render_value=function(NN){
output$tbl4 <- renderDataTable({
s <- event_data("plotly_click",source = "subset")
print(s)
return(DT::datatable(d[d$col2==s$y,]))
})
}
}
shinyApp(ui, server)
You can try this (added code to capture the count). You need to plot a histogram of count and then you can able to get your original data based on click event.
library(plotly)
library(shiny)
library(DT)
library(dplyr)
ui <- fluidPage(
mainPanel(
plotlyOutput("heat")
),
DT::dataTableOutput('tbl4')
)
server <- function(input, output, session) {
output$heat <- renderPlotly({
col1<-sample(500, size = 500, replace = TRUE)
col2<-sample(500, size = 500, replace = TRUE)
d<-data.frame(col1,col2)
d=d %>%
group_by(col2) %>%
mutate(count = n()) # You can programatically add count for each row
render_value(d) # You need function otherwise data.frame NN is not visible
p <- plot_ly(x = d$count, type = "histogram",source="subset")
# You should histogram of count
# set source so that you can get values from source using click_event
})
render_value=function(d){
output$tbl4 <- renderDataTable({
s <- event_data("plotly_click",source = "subset")
print(s)
return(DT::datatable(d[d$count==s$x,]))
})
}
}
shinyApp(ui, server)
Screenshot from the working prototype:

bars missing when using shiny to create ggplot bar chart

I used shiny and created a app.R file to hope to build a bar chart with ggplot. I also used checkboxGroupInput to create a 2 check boxes to control the condition. While the total number of bars should be 28 after all boxes are checked, but the maximum seemed to allow only 17 bars for some reason. So some bars (row of data) are missing. The missing bars don't seems to have a pattern. Can someone please help ?
dataset:https://drive.google.com/open?id=1fUQk_vMJWPwWnIMbXvyd5ro_HBk-DBfc
my code:
midterm <- read.csv('midterm-results.csv')
library(dplyr)
library(tidyr)
# get column number for response time
k <- c(33:88)
v <- c()
for (i in k){
if (i%%2 == 1){
v <- c(v,i)
}
}
#average response time by question
time <- midterm[ , v]
new.col.name <- gsub('_.*', "", colnames(time))
colnames(time) <- new.col.name
avg.time <- data.frame(apply(time, 2, mean))
avg.time$question <- rownames(avg.time)
colnames(avg.time) <- c('response_time', 'question')
rownames(avg.time) <- NULL
avg.time$question <- factor(avg.time$question,
levels = c('Q1','Q2','Q3','Q4','Q5','Q6','Q7','Q8.9',
'Q10','Q11','Q12.13','Q14','Q15','Q16','Q17',
'Q18','Q19','Q20','Q21','Q22','Q23','Q24','Q25',
'Q26','Q27','Q28','Q29','Q30'))
avg.time$question_type <- c(1,0,1,0,1,0,1,1,1,1,1,0,1,1,1,1,0,1,1,1,0,0,0,0,1,1,0,0)
# I did this manually because the there when data was imported into the midterm.csv,
# q8 & 9, q12 &13 were accidentally merged (28 v.s 30 question)
avg.time$question_type <- ifelse(avg.time$question_type == 1,
'googleable', 'not googleable')
avg.time$question_type <- factor(avg.time$question_type,
levels = c('googleable', 'not googleable'))
library(shiny)
library(ggplot2)
ui <- fluidPage(
checkboxGroupInput(inputId = "type",
label = "select question type",
choices = levels(avg.time$question_type),
selected = TRUE),
plotOutput('bar')
)
server <- function(input, output) {
output$bar <- renderPlot({
ggplot(avg.time[avg.time$question_type==input$type, ],
aes(x=question, response_time)) +
geom_bar(aes(fill = question_type), stat='identity', width = 0.5)
}, height =500, width = 1000)
}
shinyApp(ui = ui, server = server)
library(shiny)
library(ggplot2)
ui <- fluidPage(
checkboxGroupInput(inputId = "type", label = "select question type",
choices = levels(avg.time$question_type), selected = TRUE),
plotOutput('bar')
)
server <- function(input, output) {
data <- reactive(avg.time[avg.time$question_type %in% input$type, ])
output$bar <- renderPlot({
ggplot(data(),
aes(x=question, response_time)) + geom_bar(stat='identity', width = 0.5,
aes(fill = question_type))
}, height =500, width = 1000)
}
shinyApp(ui = ui, server = server)
of course you can use avg.time[avg.time$question_type %in% input$type, ] inside ggplot2 but reactivity is better.

Resources