How I am using wrongly label_date_short from scales package?
library(tidyverse)
library(scales)
date_taille <- tibble(
Taille = rep(c("taille_hiver", "taille_ete"), times = 2),
Date_taille = c("2016-08-01", "2016-02-01", "2018-08-01", "2018-02-01") %>% as.Date()
)
ggplot(date_taille) +
aes(x = Date_taille, y = Taille) +
geom_point() +
scale_x_date(date_breaks = "month", date_labels = label_date_short()) #or label_date()
#> Error in format(x, format = format, tz = tz): arguments inutilisés (format = format, tz = tz)
Created on 2022-05-12 by the reprex package (v2.0.1)
Session info
sessioninfo::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.1.3 (2022-03-10)
#> os Manjaro Linux
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate C
#> ctype fr_FR.UTF-8
#> tz Indian/Reunion
#> date 2022-05-12
#> pandoc 2.17.1.1 # /usr/bin/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.3)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
#> broom 0.8.0 2022-04-13 [1] CRAN (R 4.1.3)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.0.3)
#> cli 3.2.0 2022-02-14 [1] CRAN (R 4.1.2)
#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.1.2)
#> crayon 1.5.1 2022-03-26 [1] CRAN (R 4.1.3)
#> curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.0)
#> DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
#> dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.0.4)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
#> dplyr * 1.0.8 2022-02-08 [1] CRAN (R 4.1.2)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.0.5)
#> evaluate 0.15 2022-02-18 [1] CRAN (R 4.1.2)
#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.1.3)
#> farver 2.1.0 2021-02-28 [1] CRAN (R 4.0.4)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.0.3)
#> forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.0.3)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.2)
#> generics 0.1.2 2022-01-31 [1] CRAN (R 4.1.2)
#> ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.0)
#> glue * 1.6.2 2022-02-24 [1] CRAN (R 4.1.2)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 4.0.3)
#> haven 2.5.0 2022-04-15 [1] CRAN (R 4.1.3)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.0.5)
#> hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.1)
#> htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.1)
#> httr 1.4.2 2020-07-20 [1] CRAN (R 4.0.3)
#> jsonlite 1.8.0 2022-02-22 [1] CRAN (R 4.1.2)
#> knitr 1.38 2022-03-25 [1] CRAN (R 4.1.3)
#> lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.1)
#> lubridate * 1.8.0 2021-10-07 [1] CRAN (R 4.1.1)
#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.1.3)
#> mime 0.12 2021-09-28 [1] CRAN (R 4.1.1)
#> modelr 0.1.8 2020-05-19 [1] CRAN (R 4.0.3)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.0.3)
#> pillar 1.7.0 2022-02-01 [1] CRAN (R 4.1.2)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.0.3)
#> purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.0.3)
#> R.cache 0.15.0 2021-04-30 [1] CRAN (R 4.0.5)
#> R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.0.5)
#> R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.0.5)
#> R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.1.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.1)
#> readr * 2.1.2 2022-01-30 [1] CRAN (R 4.1.2)
#> readxl 1.4.0 2022-03-28 [1] CRAN (R 4.1.3)
#> reprex 2.0.1 2021-08-05 [1] CRAN (R 4.1.0)
#> rlang 1.0.2 2022-03-04 [1] CRAN (R 4.1.2)
#> rmarkdown 2.13 2022-03-10 [1] CRAN (R 4.1.3)
#> rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.0.3)
#> rvest 1.0.2 2021-10-16 [1] CRAN (R 4.1.1)
#> scales * 1.2.0 2022-04-13 [1] CRAN (R 4.1.3)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.2)
#> stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.2)
#> stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.0.3)
#> styler 1.7.0 2022-03-13 [1] CRAN (R 4.1.3)
#> tibble * 3.1.6 2021-11-07 [1] CRAN (R 4.1.1)
#> tidyr * 1.2.0 2022-02-01 [1] CRAN (R 4.1.2)
#> tidyselect 1.1.2 2022-02-21 [1] CRAN (R 4.1.2)
#> tidyverse * 1.3.1 2021-04-15 [1] CRAN (R 4.0.5)
#> tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.1.3)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.0)
#> vctrs 0.4.1 2022-04-13 [1] CRAN (R 4.1.3)
#> withr 2.5.0 2022-03-03 [1] CRAN (R 4.1.2)
#> xfun 0.30 2022-03-02 [1] CRAN (R 4.1.2)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.2)
#> yaml 2.3.5 2022-02-21 [1] CRAN (R 4.1.2)
#>
#> [1] /home/annadoizy/R/x86_64-pc-linux-gnu-library/4.1
#> [2] /usr/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
You are not using it wrongly, but you should use the labels argument instead of the date_labels one:
ggplot(date_taille) +
aes(x = Date_taille, y = Taille) +
geom_point() +
scale_x_date(date_breaks = "month", labels = label_date_short())
I am struggling to add the Kaliningrad Oblast to the EU NUTS-2 map, otherwise it looks like there is sea between Poland and Lithuania. I tried with different shp files, however each time I attempt to add the Russian dataset to the European one, I get a coordinate error.
Here my code:
I downloaded the EU NUTS-2 shp file from: https://ec.europa.eu/eurostat/web/gisco/geodata/reference-data/administrative-units-statistical-units/nuts (File format: GeoJSON; Geometry Type: Polygons (RG); Scale: 20M; CRS: 4326);
I downloaded the Russia shp file from: https://gadm.org/download_country.html (Shapefile)
library(sf)
library(tidyverse)
nuts2 <- read_sf("D:/NUTS_RG_20M_2021_4326.geojson")
russia<- read_sf("D:/gadm36_RUS_shp/gadm36_RUS_1.shp")
russia<-rename(russia, c("CNTR_CODE"="GID_0"), c("NUTS_ID"="GID_1"))
nuts_agg <- nuts2 %>%
filter(!CNTR_CODE %in% c( c( "TR"))) %>%
filter(!NUTS_ID %in% c( "ES70", "PT20", "PT30",
"FRY1", "FRY2","FRY3", "FRY4", "FRY5", "NO0B"))
euru<-st_join(nuts_agg, russia, BY=c("CNTR_CODE", "NUTS_ID", "geometry"))
I also tried with different shp files, but each time I got a different error. The main problem is that the geometry of Russia is not being recognized.
Thank you for any help.
I can see some things that would throw an error on your code:
rename(russia, c("CNTR_CODE"="GID_0"), c("NUTS_ID"="GID_1")) is not working as you may expect.
st_join is performing a spatial join, that would make a join based on the overlapping areas of the shapes, and what you want is really append the information.
I would use giscoR and GADMtools package, that are two API packages that extract the very same shapefiles that you use, in order to provide full reproducibility.
See a reprex here:
library(sf)
library(tidyverse)
# packages for downloading shapes
library(giscoR)
library(GADMTools)
# Same source than your example
nuts2 <- gisco_get_nuts(resolution = 20, year = 2021, epsg = 4326, nuts_level = 2)
names(nuts2)
#> [1] "MOUNT_TYPE" "NAME_LATN" "CNTR_CODE" "NUTS_NAME" "NUTS_ID"
#> [6] "LEVL_CODE" "URBN_TYPE" "COAST_TYPE" "FID" "geometry"
# Same source than your example
russia <- gadm_sf.loadCountries("RUS", level = 1)
# Extract the sf object for Kaliningrad and align CRS with NUTS2
kalin_sf <- russia$sf %>%
filter(NAME_1 == "Kaliningrad") %>%
st_transform(st_crs(st_crs(nuts2)))
#> old-style crs object detected; please recreate object with a recent sf::st_crs()
# Adapt columns and make join
names(kalin_sf)
#> [1] "ISO" "NAME_0" "NAME_1" "TYPE_1" "ENGTYPE_1" "geometry"
kalin_sf <- kalin_sf %>%
rename(
CNTR_CODE = NAME_1,
NUTS_ID = NAME_0
)
# Now we can bind rows (NO SPATIAL JOIN!!) and perform filters
euru <- nuts2 %>%
bind_rows(kalin_sf) %>%
filter(
CNTR_CODE != "TR",
!NUTS_ID %in% c(
"ES70", "PT20", "PT30",
"FRY1", "FRY2", "FRY3", "FRY4", "FRY5", "NO0B"
)
)
# Plot
ggplot(euru) +
geom_sf(aes(fill = TYPE_1)) +
# Represent on EPSG 3035, one of the official CRS of the European Union
coord_sf(crs = 3035) +
labs(title = "NUTS2 with Kaliningrad Oblast")
Created on 2022-02-18 by the reprex package (v2.0.1)
Session info
sessioninfo::session_info()
#> - Session info ---------------------------------------------------------------
#> setting value
#> version R version 4.1.2 (2021-11-01)
#> os Windows 10 x64 (build 22000)
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate Spanish_Spain.1252
#> ctype Spanish_Spain.1252
#> tz Europe/Paris
#> date 2022-02-18
#> pandoc 2.14.0.3 # C:/Program Files/RStudio/bin/pandoc/ (via rmarkdown)
#>
#> - Packages -------------------------------------------------------------------
#> package * version date (UTC) lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.1)
#> backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
#> bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.1)
#> broom 0.7.12 2022-01-28 [1] CRAN (R 4.1.2)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.1)
#> class 7.3-19 2021-05-03 [2] CRAN (R 4.1.2)
#> classInt * 0.4-3 2020-04-07 [1] CRAN (R 4.1.1)
#> cli 3.2.0 2022-02-14 [1] CRAN (R 4.1.2)
#> colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.1)
#> crayon 1.5.0 2022-02-14 [1] CRAN (R 4.1.2)
#> curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.1)
#> DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
#> dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.1)
#> digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
#> dplyr * 1.0.8 2022-02-08 [1] CRAN (R 4.1.2)
#> e1071 1.7-9 2021-09-16 [1] CRAN (R 4.1.1)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.1)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.1)
#> fansi 1.0.2 2022-01-14 [1] CRAN (R 4.1.2)
#> farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.1)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.1)
#> forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.1.1)
#> foreign 0.8-81 2020-12-22 [2] CRAN (R 4.1.2)
#> fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.2)
#> GADMTools * 3.9-1 2021-08-05 [1] CRAN (R 4.1.1)
#> generics 0.1.2 2022-01-31 [1] CRAN (R 4.1.2)
#> geojsonsf 2.0.1 2020-10-02 [1] CRAN (R 4.1.1)
#> ggmap 3.0.0 2019-02-04 [1] CRAN (R 4.1.1)
#> ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.2)
#> ggspatial 1.1.5.9000 2022-01-24 [1] Github (paleolimbot/ggspatial#20a8708)
#> giscoR * 0.3.1 2021-10-06 [1] CRAN (R 4.1.1)
#> glue 1.6.1 2022-01-22 [1] CRAN (R 4.1.2)
#> gridExtra 2.3 2017-09-09 [1] CRAN (R 4.1.1)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.1)
#> haven 2.4.3 2021-08-04 [1] CRAN (R 4.1.1)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.1.1)
#> hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.1)
#> htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.1)
#> httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.1)
#> jpeg 0.1-9 2021-07-24 [1] CRAN (R 4.1.1)
#> jsonlite 1.7.3 2022-01-17 [1] CRAN (R 4.1.2)
#> KernSmooth 2.23-20 2021-05-03 [2] CRAN (R 4.1.2)
#> knitr 1.37 2021-12-16 [1] CRAN (R 4.1.2)
#> lattice 0.20-45 2021-09-22 [2] CRAN (R 4.1.2)
#> lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.1)
#> lubridate 1.8.0 2021-10-07 [1] CRAN (R 4.1.1)
#> magrittr 2.0.2 2022-01-26 [1] CRAN (R 4.1.2)
#> maptools 1.1-2 2021-09-07 [1] CRAN (R 4.1.1)
#> mime 0.12 2021-09-28 [1] CRAN (R 4.1.1)
#> modelr 0.1.8 2020-05-19 [1] CRAN (R 4.1.1)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.1)
#> pillar 1.7.0 2022-02-01 [1] CRAN (R 4.1.2)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.1)
#> plyr 1.8.6 2020-03-03 [1] CRAN (R 4.1.1)
#> png 0.1-7 2013-12-03 [1] CRAN (R 4.1.1)
#> proxy 0.4-26 2021-06-07 [1] CRAN (R 4.1.1)
#> purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.1.1)
#> R.cache 0.15.0 2021-04-30 [1] CRAN (R 4.1.1)
#> R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.1.1)
#> R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.1.1)
#> R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.1.1)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.1)
#> Rcpp 1.0.8 2022-01-13 [1] CRAN (R 4.1.2)
#> readr * 2.1.2 2022-01-30 [1] CRAN (R 4.1.2)
#> readxl 1.3.1 2019-03-13 [1] CRAN (R 4.1.1)
#> reprex 2.0.1 2021-08-05 [1] CRAN (R 4.1.2)
#> rgdal * 1.5-28 2021-12-15 [1] CRAN (R 4.1.2)
#> rgeos 0.5-9 2021-12-15 [1] CRAN (R 4.1.2)
#> RgoogleMaps 1.4.5.3 2020-02-12 [1] CRAN (R 4.1.1)
#> rjson 0.2.21 2022-01-09 [1] CRAN (R 4.1.2)
#> rlang 1.0.1 2022-02-03 [1] CRAN (R 4.1.2)
#> rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.1)
#> rosm 0.2.5 2019-07-22 [1] CRAN (R 4.1.1)
#> rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.1)
#> rvest 1.0.2 2021-10-16 [1] CRAN (R 4.1.1)
#> s2 1.0.7 2021-09-28 [1] CRAN (R 4.1.1)
#> scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.1)
#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.2)
#> sf * 1.0-6 2022-02-04 [1] CRAN (R 4.1.2)
#> sp * 1.4-6 2021-11-14 [1] CRAN (R 4.1.2)
#> stringi 1.7.6 2021-11-29 [1] CRAN (R 4.1.2)
#> stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.1.1)
#> styler 1.6.2 2021-09-23 [1] CRAN (R 4.1.1)
#> tibble * 3.1.6 2021-11-07 [1] CRAN (R 4.1.2)
#> tidyr * 1.2.0 2022-02-01 [1] CRAN (R 4.1.2)
#> tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.1)
#> tidyverse * 1.3.1 2021-04-15 [1] CRAN (R 4.1.1)
#> tzdb 0.2.0 2021-10-27 [1] CRAN (R 4.1.1)
#> units 0.8-0 2022-02-05 [1] CRAN (R 4.1.2)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.1)
#> vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.1)
#> withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
#> wk 0.6.0 2022-01-03 [1] CRAN (R 4.1.2)
#> xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
#> xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.2)
#> yaml 2.2.2 2022-01-25 [1] CRAN (R 4.1.2)
#>
#> [1] C:/Users/diego/Documents/R/win-library/4.1
#> [2] C:/Program Files/R/R-4.1.2/library
#>
#> ------------------------------------------------------------------------------
I have downloaded Proteome Profiling data from the TCGA-LGG project with the Bioconductor package TCGAbiolinks.
Then I have the following error when running GDCprepare:
library("TCGAbiolinks")
query_lgg = GDCquery(
project = "TCGA-LGG",
data.category = "Proteome Profiling",
sample.type = "Primary Tumor",
legacy = FALSE)
#> --------------------------------------
#> o GDCquery: Searching in GDC database
#> --------------------------------------
#> Genome of reference: hg38
#> --------------------------------------------
#> oo Accessing GDC. This might take a while...
#> --------------------------------------------
#> ooo Project: TCGA-LGG
#> --------------------
#> oo Filtering results
#> --------------------
#> ooo By sample.type
#> ----------------
#> oo Checking data
#> ----------------
#> ooo Check if there are duplicated cases
#> ooo Check if there results for the query
#> -------------------
#> o Preparing output
#> -------------------
lgg_res <- getResults(query_lgg)
GDCdownload(query = query_lgg)
#> Downloading data for project TCGA-LGG
#> Of the 429 files for download 429 already exist.
#> All samples have been already downloaded
lgg_data <- GDCprepare(query_lgg)
#> Error in (function (classes, fdef, mtable) : unable to find an inherited method for function 'metadata<-' for signature '"function"'
Created on 2021-11-10 by the reprex package (v2.0.1)
Session info
sessioninfo::session_info()
#> ─ Session info ──────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.1.0 (2021-05-18)
#> os Ubuntu 20.04.2 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate it_IT.UTF-8
#> ctype it_IT.UTF-8
#> tz Europe/Rome
#> date 2021-11-10
#> pandoc 2.11.4 # /usr/lib/rstudio/bin/pandoc/ (via rmarkdown)
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date (UTC) lib source
#> AnnotationDbi 1.54.1 2021-06-08 [1] Bioconductor
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.0)
#> backports 1.3.0 2021-10-27 [1] CRAN (R 4.1.0)
#> Biobase 2.52.0 2021-05-19 [1] Bioconductor
#> BiocFileCache 2.0.0 2021-05-19 [1] Bioconductor
#> BiocGenerics 0.38.0 2021-05-19 [1] Bioconductor
#> biomaRt 2.48.3 2021-08-15 [1] Bioconductor
#> Biostrings 2.60.2 2021-08-05 [1] Bioconductor
#> bit 4.0.4 2020-08-04 [1] CRAN (R 4.1.0)
#> bit64 4.0.5 2020-08-30 [1] CRAN (R 4.1.0)
#> bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.0)
#> blob 1.2.2 2021-07-23 [1] CRAN (R 4.1.0)
#> cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.0)
#> cli 3.1.0 2021-10-27 [1] CRAN (R 4.1.0)
#> colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.0)
#> crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.0)
#> curl 4.3.2 2021-06-23 [1] CRAN (R 4.1.0)
#> data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.0)
#> DBI 1.1.1 2021-01-15 [1] CRAN (R 4.1.0)
#> dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.0)
#> DelayedArray 0.18.0 2021-05-19 [1] Bioconductor
#> digest 0.6.28 2021-09-23 [1] CRAN (R 4.1.0)
#> downloader 0.4 2015-07-09 [1] CRAN (R 4.1.0)
#> dplyr 1.0.7 2021-06-18 [1] CRAN (R 4.1.0)
#> ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.0)
#> fansi 0.5.0 2021-05-25 [1] CRAN (R 4.1.0)
#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.0)
#> filelock 1.0.2 2018-10-05 [1] CRAN (R 4.1.0)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.1.0)
#> generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.0)
#> GenomeInfoDb 1.28.4 2021-09-05 [1] Bioconductor
#> GenomeInfoDbData 1.2.6 2021-11-10 [1] Bioconductor
#> GenomicRanges 1.44.0 2021-05-19 [1] Bioconductor
#> ggplot2 3.3.5 2021-06-25 [1] CRAN (R 4.1.0)
#> glue 1.5.0 2021-11-07 [1] CRAN (R 4.1.0)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.0)
#> highr 0.9 2021-04-16 [1] CRAN (R 4.1.0)
#> hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.0)
#> htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.0)
#> httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.0)
#> IRanges 2.26.0 2021-05-19 [1] Bioconductor
#> jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.1.0)
#> KEGGREST 1.32.0 2021-05-19 [1] Bioconductor
#> knitr 1.36 2021-09-29 [1] CRAN (R 4.1.0)
#> lattice 0.20-44 2021-05-02 [4] CRAN (R 4.1.0)
#> lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.0)
#> magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.1.0)
#> Matrix 1.3-4 2021-06-01 [4] CRAN (R 4.1.0)
#> MatrixGenerics 1.4.3 2021-08-26 [1] Bioconductor
#> matrixStats 0.61.0 2021-09-17 [1] CRAN (R 4.1.0)
#> memoise 2.0.0 2021-01-26 [1] CRAN (R 4.1.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.0)
#> pillar 1.6.4 2021-10-18 [1] CRAN (R 4.1.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.0)
#> plyr 1.8.6 2020-03-03 [1] CRAN (R 4.1.0)
#> png 0.1-7 2013-12-03 [1] CRAN (R 4.1.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.1.0)
#> progress 1.2.2 2019-05-16 [1] CRAN (R 4.1.0)
#> purrr 0.3.4 2020-04-17 [1] CRAN (R 4.1.0)
#> R.cache 0.15.0 2021-04-30 [1] CRAN (R 4.1.0)
#> R.methodsS3 1.8.1 2020-08-26 [1] CRAN (R 4.1.0)
#> R.oo 1.24.0 2020-08-26 [1] CRAN (R 4.1.0)
#> R.utils 2.11.0 2021-09-26 [1] CRAN (R 4.1.0)
#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.0)
#> rappdirs 0.3.3 2021-01-31 [1] CRAN (R 4.1.0)
#> Rcpp 1.0.7 2021-07-07 [1] CRAN (R 4.1.0)
#> RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.0)
#> readr 2.0.2 2021-09-27 [1] CRAN (R 4.1.0)
#> reprex 2.0.1 2021-08-05 [1] CRAN (R 4.1.0)
#> rlang 0.4.12 2021-10-18 [1] CRAN (R 4.1.0)
#> rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.0)
#> RSQLite 2.2.8 2021-08-21 [1] CRAN (R 4.1.0)
#> rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.0)
#> rvest 1.0.2 2021-10-16 [1] CRAN (R 4.1.0)
#> S4Vectors 0.30.2 2021-10-03 [1] Bioconductor
#> scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.0)
#> sessioninfo 1.2.1 2021-11-02 [1] CRAN (R 4.1.0)
#> stringi 1.7.5 2021-10-04 [1] CRAN (R 4.1.0)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.1.0)
#> styler 1.6.2 2021-09-23 [1] CRAN (R 4.1.0)
#> SummarizedExperiment 1.22.0 2021-05-19 [1] Bioconductor
#> TCGAbiolinks * 2.20.1 2021-10-07 [1] Bioconductor
#> TCGAbiolinksGUI.data 1.12.0 2021-05-20 [1] Bioconductor
#> tibble 3.1.6 2021-11-07 [1] CRAN (R 4.1.0)
#> tidyr 1.1.4 2021-09-27 [1] CRAN (R 4.1.0)
#> tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.0)
#> tzdb 0.2.0 2021-10-27 [1] CRAN (R 4.1.0)
#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.0)
#> vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.0)
#> withr 2.4.2 2021-04-18 [1] CRAN (R 4.1.0)
#> xfun 0.28 2021-11-04 [1] CRAN (R 4.1.0)
#> XML 3.99-0.8 2021-09-17 [1] CRAN (R 4.1.0)
#> xml2 1.3.2 2020-04-23 [1] CRAN (R 4.1.0)
#> XVector 0.32.0 2021-05-19 [1] Bioconductor
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.1.0)
#> zlibbioc 1.38.0 2021-05-19 [1] Bioconductor
#>
#> [1] /home/matt/R/x86_64-pc-linux-gnu-library/4.1
#> [2] /usr/local/lib/R/site-library
#> [3] /usr/lib/R/site-library
#> [4] /usr/lib/R/library
#>
#> ──────────────────────────────────────────────────────────────────────────────
I tried to investigate the error and it lead me to Issue #198, but with no success.
Also, I understand that this error is related to S4 generic function being applied to an object with no defined S4 method, as discussed here.
Am I missing something? Can somebody please help me?
Thanks in advance!
Support for proteome profiling has been provided in the package. To obtain the newest version the package should be installed from Github with the following command BiocManager::install("BioinformaticsFMRP/TCGAbiolinks") (see here).
I am new to R and I have problems with setting my labels that their coordinates are bigger than their median. Here is my dataframe:
dat <- data.frame(
time = factor(c("Breakfast","Breakfast","Breakfast","Lunch","Lunch","Lunch","Dinner","Dinner","Dinner","Snack","Snack","Snack","Snack"), levels=c("Breakfast","Lunch","Dinner","Snack")),
total_bill_x = c(12.75,14.89,20.5,17.23,30.3,27.8,20.7,32.3,25.4,14.5,13.7,14.2,15.7), total_bill_y= c(20.75,15.29,18.52,19.23,27.3,23.6,19.75,27.3,21.48,13.66,15.59,17.3,14.78)
)
Here is my code:
library (dplyr)
library(ggplot2)
c<-dat %>%
group_by(time) %>%
summarise(
x = sum(total_bill_x),
y = sum(total_bill_y)
)
#visualiser
ggplot(c,aes(x,y))+
geom_point()+
geom_vline(linetype="dashed",color="red",xintercept = median(c$x))+
geom_hline(linetype="dashed",color="red",yintercept = median(c$y))+
geom_text(aes(label=time),hjust=1, vjust=1.2)
In this case, Label that I want to display are only Lunch and Dinner. Which condition should I add to achieve this?
Any help would be much appreciated.
Try this:
library (dplyr)
library(ggplot2)
dat <- data.frame(
time = factor(c("Breakfast","Breakfast","Breakfast","Lunch","Lunch","Lunch","Dinner","Dinner","Dinner","Snack","Snack","Snack","Snack"), levels=c("Breakfast","Lunch","Dinner","Snack")),
total_bill_x = c(12.75,14.89,20.5,17.23,30.3,27.8,20.7,32.3,25.4,14.5,13.7,14.2,15.7), total_bill_y= c(20.75,15.29,18.52,19.23,27.3,23.6,19.75,27.3,21.48,13.66,15.59,17.3,14.78)
)
c<-dat %>%
group_by(time) %>%
summarise(x = sum(total_bill_x),
y = sum(total_bill_y)) %>%
mutate(med_x = median(x),
med_y = median(y),
lab = case_when(x > med_x & y > med_y ~ as.character(time),
TRUE ~ NA_character_))
#visualiser
ggplot(c,aes(x,y))+
geom_point()+
geom_vline(linetype="dashed",color="red",xintercept = median(c$x))+
geom_hline(linetype="dashed",color="red",yintercept = median(c$y))+
geom_text(aes(label=lab),hjust=1, vjust=1.2)
Which gives you:
Maybe something like this will work
library(tidyverse)
dat <- data.frame(
time = factor(c("Breakfast","Breakfast","Breakfast","Lunch","Lunch","Lunch","Dinner","Dinner","Dinner","Snack","Snack","Snack","Snack"), levels=c("Breakfast","Lunch","Dinner","Snack")),
total_bill_x = c(12.75,14.89,20.5,17.23,30.3,27.8,20.7,32.3,25.4,14.5,13.7,14.2,15.7), total_bill_y= c(20.75,15.29,18.52,19.23,27.3,23.6,19.75,27.3,21.48,13.66,15.59,17.3,14.78)
)
c<-dat %>%
group_by(time) %>%
summarise(
x = sum(total_bill_x),
y = sum(total_bill_y),
) %>%
mutate(median_x = median(x),median_y = median(y)) %>%
filter(x > median_x,y > median_y)
ggplot(data = c,aes(x,y))+
geom_point()+
geom_vline(linetype="dashed",color="red",xintercept = c$median_x)+
geom_hline(linetype="dashed",color="red",yintercept = c$median_y)+
geom_text(aes(label=time),hjust=1, vjust=1.2)
Created on 2020-05-08 by the reprex package (v0.3.0)
devtools::session_info()
#> - Session info ---------------------------------------------------------------
#> setting value
#> version R version 3.6.3 (2020-02-29)
#> os Windows 10 x64
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate English_United Kingdom.1252
#> ctype English_United Kingdom.1252
#> tz America/Sao_Paulo
#> date 2020-05-08
#>
#> - Packages -------------------------------------------------------------------
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.3)
#> backports 1.1.6 2020-04-05 [1] CRAN (R 3.6.3)
#> broom 0.5.5 2020-02-29 [1] CRAN (R 3.6.3)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 3.6.3)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 3.6.3)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 3.6.3)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.1)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.3)
#> curl 4.3 2019-12-02 [1] CRAN (R 3.6.3)
#> DBI 1.1.0 2019-12-15 [1] CRAN (R 3.6.3)
#> dbplyr 1.4.2 2019-06-17 [1] CRAN (R 3.6.3)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.3)
#> devtools 2.3.0 2020-04-10 [1] CRAN (R 3.6.3)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 3.6.3)
#> dplyr * 0.8.5 2020-03-07 [1] CRAN (R 3.6.3)
#> ellipsis 0.3.0 2019-09-20 [1] CRAN (R 3.6.3)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.3)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 3.6.3)
#> farver 2.0.3 2020-01-16 [1] CRAN (R 3.6.3)
#> forcats * 0.5.0 2020-03-01 [1] CRAN (R 3.6.3)
#> fs 1.4.1 2020-04-04 [1] CRAN (R 3.6.3)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 3.6.3)
#> ggplot2 * 3.3.0 2020-03-05 [1] CRAN (R 3.6.3)
#> glue 1.4.0 2020-04-03 [1] CRAN (R 3.6.3)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.3)
#> haven 2.2.0 2019-11-08 [1] CRAN (R 3.6.3)
#> highr 0.8 2019-03-20 [1] CRAN (R 3.6.3)
#> hms 0.5.3 2020-01-08 [1] CRAN (R 3.6.3)
#> htmltools 0.4.0 2019-10-04 [1] CRAN (R 3.6.3)
#> httr 1.4.1 2019-08-05 [1] CRAN (R 3.6.3)
#> jsonlite 1.6.1 2020-02-02 [1] CRAN (R 3.6.3)
#> knitr 1.28 2020-02-06 [1] CRAN (R 3.6.3)
#> labeling 0.3 2014-08-23 [1] CRAN (R 3.6.0)
#> lattice 0.20-38 2018-11-04 [2] CRAN (R 3.6.3)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 3.6.3)
#> lubridate 1.7.8 2020-04-06 [1] CRAN (R 3.6.3)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.3)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.3)
#> mime 0.9 2020-02-04 [1] CRAN (R 3.6.2)
#> modelr 0.1.6 2020-02-22 [1] CRAN (R 3.6.3)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.3)
#> nlme 3.1-144 2020-02-06 [2] CRAN (R 3.6.3)
#> pillar 1.4.3 2019-12-20 [1] CRAN (R 3.6.3)
#> pkgbuild 1.0.6 2019-10-09 [1] CRAN (R 3.6.3)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.3)
#> pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.6.3)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.3)
#> processx 3.4.2 2020-02-09 [1] CRAN (R 3.6.3)
#> ps 1.3.2 2020-02-13 [1] CRAN (R 3.6.3)
#> purrr * 0.3.3 2019-10-18 [1] CRAN (R 3.6.3)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.3)
#> Rcpp 1.0.4.6 2020-04-09 [1] CRAN (R 3.6.3)
#> readr * 1.3.1 2018-12-21 [1] CRAN (R 3.6.3)
#> readxl 1.3.1 2019-03-13 [1] CRAN (R 3.6.3)
#> remotes 2.1.1 2020-02-15 [1] CRAN (R 3.6.3)
#> reprex 0.3.0 2019-05-16 [1] CRAN (R 3.6.3)
#> rlang 0.4.5 2020-03-01 [1] CRAN (R 3.6.3)
#> rmarkdown 2.1 2020-01-20 [1] CRAN (R 3.6.3)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.3)
#> rvest 0.3.5 2019-11-08 [1] CRAN (R 3.6.3)
#> scales 1.1.0 2019-11-18 [1] CRAN (R 3.6.3)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.3)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 3.6.2)
#> stringr * 1.4.0 2019-02-10 [1] CRAN (R 3.6.3)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 3.6.3)
#> tibble * 3.0.0 2020-03-30 [1] CRAN (R 3.6.3)
#> tidyr * 1.0.2 2020-01-24 [1] CRAN (R 3.6.3)
#> tidyselect 1.0.0 2020-01-27 [1] CRAN (R 3.6.3)
#> tidyverse * 1.3.0 2019-11-21 [1] CRAN (R 3.6.3)
#> usethis 1.6.0 2020-04-09 [1] CRAN (R 3.6.3)
#> vctrs 0.2.4 2020-03-10 [1] CRAN (R 3.6.3)
#> withr 2.1.2 2018-03-15 [1] CRAN (R 3.6.3)
#> xfun 0.13 2020-04-13 [1] CRAN (R 3.6.3)
#> xml2 1.3.1 2020-04-09 [1] CRAN (R 3.6.3)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 3.6.2)
#>
#> [1] C:/Users/brunotc1/Documents/R/win-library/3.6
#> [2] C:/Program Files/R/R-3.6.3/library