I'm having some issues with the following problem:
I want to maximize the function U with respect to the constraint B using solnp()
I've defined the U function as:
U = function(x){
#P is a vector of parameters
#X is a vector of variables
-P[1]*(x[1]^P[2])*(x[2]^P[3])
}
And the function B as follows:
B = function(x){
#M is a vector of parameters
#X is a vector of variables
#The constant M[3] is an argument of CCM
-M[1]*x[1]-M[2]*x[2]
}
Then I've defined the optimizer function this way as a cover of solnp():
CCM = function(P,M){
solnp(c(0,0), #starting values (random - obviously need to be positive and sum to 15)
U, #function to optimise
eqfun=B, #equality function
eqB=-M[3], #the equality constraint
LB=c(0,0), #lower bound for parameters i.e. greater than zero
UB=c(10000,10000)) #upper bound for parameters (I just chose 10000 randomly)
}
I've written a optimize function to be able to choose different parameters for this problem.
The issue here is that when I run the CCM function is does not seem to be maximizing (gives me (0,0) as solution), solnp() minimizes by default, so I've changed the sign of U and B due to that.
By the way, I'm trying to program a Consumer Choice model.
Edit:
Test run with the values in the OP's comment.
P <- c(2,0.1,0.9)
M <- c(1,2,15)
CCM(P, M)
#
#solnp-->The linearized problem has no feasible
#solnp-->solution. The problem may not be feasible.
#
#Iter: 1 fn: 0 Pars: 0 0
#solnp--> Solution not reliable....Problem Inverting Hessian.
#$pars
#[1] 0 0
#
#$convergence
#[1] 2
#
#$values
#[1] 0 0
#
#$lagrange
#[1] 0
#
#$hessian
# [,1] [,2]
#[1,] 1 0
#[2,] 0 1
#
#$ineqx0
#NULL
#
#$nfuneval
#[1] 7
#
#$outer.iter
#[1] 1
#
#$elapsed
#Time difference of 0.6487024 secs
#
#$vscale
#[1] 1.0e-08 1.5e+01 1.0e+00 1.0e+00
#
CCM(P, M)$convergence
#
#solnp-->The linearized problem has no feasible
#solnp-->solution. The problem may not be feasible.
#
#Iter: 1 fn: 0 Pars: 0 0
#solnp--> Solution not reliable....Problem Inverting Hessian.
#[1] 2
You can consider the following approach :
U <- function(val_x, val_P)
{
val_P[1] * (val_x[1] ^ val_P[2]) * (val_x[2] ^ val_P[3])
}
B <- function(val_x, val_M)
{
val_M[1] * val_x[1] - val_M[2] * val_x[2]
}
fn_Opt <- function(val_x, val_P, val_M)
{
val <- (B(val_x, val_M) - M[3]) ^ 2 + U(val_x, val_P)
if(is.na(val) | is.nan(val) | is.infinite(val))
{
return(10 ^ 30)
}else
{
return(val)
}
}
library(DEoptim)
P <- c(2, 0.1, 0.9)
M <- c(1, 2, 15)
obj_DEoptim <- DEoptim(fn = fn_Opt, lower = c(0,0), upper = c(10000,10000),
control = list(itermax = 1000), val_P = P, val_M = M)
obj_DEoptim$optim$bestmem
par1 par2
1.500000e+01 5.661556e-134
B(obj_DEoptim$optim$bestmem, M)
par1
15
U(obj_DEoptim$optim$bestmem, P)
par1
3.135316e-120
Related
Suppose I have a function with a kink. I want to derive a kink point, which in this case is 0.314. I tried optim but it does not work.
Here is an example. In general, I want to derive c. Of course, I could use brute force, but it is slow.
# function with a kink
f <- function(x, c){
(x >= 0 & x < c) * 0 + (x >= c & x <=1) * (sin(3*(x-c))) +
(x < 0 | x > 1) * 100
}
# plot
x_vec <- seq(0, 1, .01)
plot(x_vec, f(x_vec, c = pi/10), "l")
# does not work
optim(.4, f, c = pi/10)
This function has no unique minimum.
Here, a trick is to transform this function a little bit, so that its kink becomes a unique minimum.
g <- function (x, c) f(x, c) - x
x_vec <- seq(0, 1, 0.01)
plot(x_vec, g(x_vec, c = pi/10), type = "l")
# now works
optim(0.4, g, c = pi/10, method = "BFGS")
#$par
#[1] 0.3140978
#
#$value
#[1] -0.3140978
#
#$counts
#function gradient
# 34 5
#
#$convergence
#[1] 0
#
#$message
#NULL
Note:
In mathematics, if we want to find something, we have to first define it precisely. So what is a "kink" exactly? In this example, you refer to the parameter c = pi / 10. But what is it in general? Without a clear definition, there is no algorithm/function to get it.
I'm given a question in R language to find the 30th term of the recurrence relation x(n) = 2*x(n-1) - x(n-2), where x(1) = 0 and x(2) = 1. I know the answer is 29 from mathematical deduction. But as a newbie to R, I'm slightly confused by how to make things work here. The following is my code:
loop <- function(n){
a <- 0
b <- 1
for (i in 1:30){
a <- b
b <- 2*b - a
}
return(a)
}
loop(30)
I'm returned 1 as a result, which is way off.
In case you're wondering why this looks Python-ish, I've mostly only been exposed to Python programming thus far (I'm new to programming in general). I've tried to check out all the syntax in R, but I suppose my logic is quite fixed by Python. Can someone help me out in this case? In addition, does R have any resources like PythonTutor to help visualise the code execution logic?
Thank you!
I guess what you need might be something like below
loop <- function(n){
if (n<=2) return(n-1)
a <- 0
b <- 1
for (i in 3:n){
a_new <- b
b <- 2*b - a
a <- a_new
}
return(b)
}
then
> loop(30)
[1] 29
If you need a recursion version, below is one realization
loop <- function(n) {
if (n<=2) return(n-1)
2*loop(n-1)-loop(n-2)
}
which also gives
> loop(30)
[1] 29
You can solve it another couple of ways.
Solve the linear homogeneous recurrence relation, let
x(n) = r^n
plugging into the recurrence relation, you get the quadratic
r^n-2*r^(n-1)+r^(n-2) = 0
, i.e.,
r^2-2*r+1=0
, i.e.,
r = 1, 1
leading to general solution
x(n) = c1 * 1^n + c2 * n * 1^n = c1 + n * c2
and with x(1) = 0 and x(2) = 1, you get c2 = 1, c1 = -1, s.t.,
x(n) = n - 1
=> x(30) = 29
Hence, R code to compute x(n) as a function of n is trivial, as shown below:
x <- function(n) {
return (n-1)
}
x(30)
#29
Use matrix powers (first find the following matrix A from the recurrence relation):
(The matrix A has algebraic / geometric multiplicity, its corresponding eigenvectors matrix is singular, otherwise you could use spectral decomposition yourself for fast computation of matrix powers, here we shall use the library expm as shown below)
library(expm)
A <- matrix(c(2,1,-1,0), nrow=2)
A %^% 29 %*% c(1,0) # [x(31) x(30)]T = A^29.[x(2) x(1)]T
# [,1]
# [1,] 30 # x(31)
# [2,] 29 # x(30)
# compute x(n)
x <- function(n) {
(A %^% (n-1) %*% c(1,0))[2]
}
x(30)
# 29
You're not using the variable you're iterating on in the loop, so nothing is updating.
loop <- function(n){
a <- 0
b <- 1
for (i in 1:30){
a <- b
b <- 2*i - a
}
return(a)
}
You could define a recursive function.
f <- function(x, n) {
n <- 1:n
r <- function(n) {
if (length(n) == 2) x[2]
else r({
x <<- c(x[2], 2*x[2] - x[1])
n[-1]
})
}
r(n)
}
x <- c(0, 1)
f(x, 30)
# [1] 29
I have a vector with variable elements in it, and I want to check whether it's last two element are in the same digit order.
For example, if the last two vectors are 0.0194 and 0.0198 return TRUE. because their digit order after zero is the same (0.01 order 10^-2). ! for other example the number could be 0.00014 and 0.00012 so their precision is still around the same the function should return also TRUE.
How can we build a logical statement or function to check this.
x<- c(0.817104, 0.241665, 0.040581, 0.022903, 0.019478, 0.019846)
I may be over-thinking this, but you can test that the order of magnitude and first non-zero digit are identical for each.
x <- c(0.817104, 0.241665, 0.040581, 0.022903, 0.019478, 0.019846)
oom <- function(x, base = 10) as.integer(ifelse(x == 0, 0, floor(log(abs(x), base))))
oom(x)
# [1] -1 -1 -2 -2 -2 -2
(tr <- trunc(x / 10 ** oom(x, 10)))
# [1] 8 2 4 2 1 1
So for the last two, the order of magnitude for both is -2 and the first non-zero digit is 1 for both.
Put into a function:
f <- function(x) {
oom <- function(x, base = 10) as.integer(ifelse(x == 0, 0, floor(log(abs(x), base))))
x <- tail(x, 2)
oo <- oom(x)
tr <- trunc(x / 10 ** oo)
(oo[1] == oo[2]) & (tr[1] == tr[2])
}
## more test cases
x1 <- c(0.019, 0.011)
x2 <- c(0.01, 0.001)
f(x) ## TRUE
f(x1) ## TRUE
f(x2) ## FALSE
Here is a more general function than the above for checking the last n instead of 2
g <- function(x, n = 2) {
oom <- function(x, base = 10) as.integer(ifelse(x == 0, 0, floor(log(abs(x), base))))
x <- tail(x, n)
oo <- oom(x)
tr <- trunc(x / 10 ** oo)
Reduce(`==`, oo) & Reduce(`==`, tr)
}
g(c(.24, .15, .14), 2) ## TRUE
g(c(.24, .15, .14), 3) ## FALSE
#rawr worries about over-thinking. I guess I should as well. This is what I came up with and do note that this handles the fact that print representations of floating point numbers are sometimes deceiving.
orddig <- function(x) which( sapply( 0:16, function(n){ isTRUE(all.equal(x*10^n ,
round(x*10^n,0)))}))[1]
> sapply( c(0.00014 , 0.00012 ), orddig)
[1] 6 6
My original efforts were with the signif function but that's a different numerical thought trajectory, since 0.01 and 0.001 have the same number of significant digits. Also notice that:
> sapply( 10^5*c(0.00014 , 0.00012 ), trunc, 4)
[1] 13 12
Which was why we need the isTRUE(all.equal(... , ...))
I am trying to generate n random numbers whose sum is less than 1.
So I can't just run runif(3). But I can condition each iteration on the sum of all values generated up to that point.
The idea is to start an empty vector, v, and set up a loop such that for each iteration, i, a runif() is generated, but before it is accepted as an element of v, i.e. v[i] <- runif(), the test sum(v) < 1 is carried out, and while FALSE the last entry v[i] is finally accepted, BUT if TRUE, that is the sum is greater than 1, v[i] is tossed out of the vector, and the iteration i is repeated.
I am far from implementing this idea, but I would like to resolve it along the lines of something similar to what follows. It's not so much a practical problem, but more of an exercise to understand the syntax of loops in general:
n <- 4
v <- 0
for (i in 1:n){
rdom <- runif(1)
if((sum(v) + rdom) < 1) v[i] <- rdom
}
# keep trying before moving on to iteration i + 1???? i <- stays i?????
}
I have looked into while (actually I incorporated the while function in the title); however, I need the vector to have n elements, so I get stuck if I try something that basically tells R to add random uniform realizations as elements of the vector v while sum(v) < 1, because I can end up with less than n elements in v.
Here's a possible solution. It doesn't use while but the more generic repeat. I edited it to use a while and save a couple of lines.
set.seed(0)
n <- 4
v <- numeric(n)
i <- 0
while (i < n) {
ith <- runif(1)
if (sum(c(v, ith)) < 1) {
i <- i+1
v[i] <- ith
}
}
v
# [1] 0.89669720 0.06178627 0.01339033 0.02333120
Using a repeat block, you must check for the condition anyways, but, removing the growing problem, it would look very similar:
set.seed(0)
n <- 4
v <- numeric(n)
i <- 0
repeat {
ith <- runif(1)
if (sum(c(v, ith)) < 1) {
i <- i+1
v[i] <- ith
}
if (i == 4) break
}
If you really want to keep exactly the same procedure that you have posted (aka iteratively sample the n values one at a time from the standard uniform distribution, rejecting any samples that cause your sum to exceed 1), then the following code is mathematically equivalent, shorter, and more efficient:
samp <- function(n) {
v <- rep(0, n)
for (i in 1:n) {
v[i] <- runif(1, 0, 1-sum(v))
}
v
}
Basically, this code uses the mathematical fact that if the sum of the vector is currently sum(v), then sampling from the standard uniform distribution until you get a value no greater than 1-sum(v) is exactly equivalent to sampling in the uniform distribution from 0 to 1-sum(v). The advantage of using the latter approach is that it's much more efficient -- we don't need to keep rejecting samples and trying again, and can instead just sample once for each element.
To get a sense of the runtime differences, consider sampling 100 observations with n=10, comparing to a working implementation of the code from your post (copied from my other answer to this question):
OP <- function(n) {
v <- rep(0, n)
for (i in 1:n){
rdom <- runif(1)
while (sum(v) + rdom > 1) rdom <- runif(1)
v[i] <- rdom
}
v
}
set.seed(144)
system.time(samples.OP <- replicate(100, OP(10)))
# user system elapsed
# 261.937 1.641 265.805
system.time(samples.josliber <- replicate(100, samp(10)))
# user system elapsed
# 0.004 0.001 0.004
In this case, the new approach is approaching 100,000 times faster.
It sounds like you're trying to uniformly sample from a space of n variables where the following constraints hold:
x_1 + x_2 + ... + x_n <= 1
x_1 >= 0
x_2 >= 0
...
x_n >= 0
The "hit and run" algorithm is the mathematical machinery that enables you to do exactly this. In 2-dimensional space, the algorithm will sample uniformly from the following triangle, with each location in the shaded area being equally likely to be selected:
The algorithm is provided in R through the hitandrun package, which requires you to specify the linear inequalities that define the space through a constraint matrix, direction vector, and right-hand side vector:
library(hitandrun)
n <- 3
constr <- list(constr = rbind(rep(1, n), -diag(n)),
dir = c(rep("<=", n+1)),
rhs = c(1, rep(0, n)))
set.seed(144)
samples <- hitandrun(constr, n.samples=1000)
head(samples, 10)
# [,1] [,2] [,3]
# [1,] 0.28914690 0.01620488 0.42663224
# [2,] 0.65489979 0.28455231 0.00199671
# [3,] 0.23215115 0.00661661 0.63597912
# [4,] 0.29644234 0.06398131 0.60707269
# [5,] 0.58335047 0.13891392 0.06151205
# [6,] 0.09442808 0.30287832 0.55118290
# [7,] 0.51462261 0.44094683 0.02641638
# [8,] 0.38847794 0.15501252 0.31572793
# [9,] 0.52155055 0.09921046 0.13304728
# [10,] 0.70503030 0.03770875 0.14299089
Breaking down this code a bit, we generated the following constraint matrix:
constr
# $constr
# [,1] [,2] [,3]
# [1,] 1 1 1
# [2,] -1 0 0
# [3,] 0 -1 0
# [4,] 0 0 -1
#
# $dir
# [1] "<=" "<=" "<=" "<="
#
# $rhs
# [1] 1 0 0 0
Reading across the first line of constr$constr we have 1, 1, 1 which indicates "1*x1 + 1*x2 + 1*x3". The first element of constr$dir is <=, and the first element of constr$rhs is 1; putting it together we have x1 + x2 + x3 <= 1. From the second row of constr$constr we read -1, 0, 0 which indicates "-1*x1 + 0*x2 + 0*x3". The second element of constr$dir is <= and the second element of constr$rhs is 0; putting it together we have -x1 <= 0 which is the same as saying x1 >= 0. The similar non-negativity constraints follow in the remaining rows.
Note that the hit and run algorithm has the nice property of having the exact same distribution for each of the variables:
hist(samples[,1])
hist(samples[,2])
hist(samples[,3])
Meanwhile, the distribution of the samples from your procedure will be highly uneven, and as n increases this problem will get worse and worse.
OP <- function(n) {
v <- rep(0, n)
for (i in 1:n){
rdom <- runif(1)
while (sum(v) + rdom > 1) rdom <- runif(1)
v[i] <- rdom
}
v
}
samples.OP <- t(replicate(1000, OP(3)))
hist(samples.OP[,1])
hist(samples.OP[,2])
hist(samples.OP[,3])
An added advantage is that the hit-and-run algorithm appears faster -- I generated these 1000 replicates in 0.006 seconds on my computer with hit-and-run and it took 0.3 seconds using the modified code from the OP.
Here's how I would do it, without any loop, if or while:
set.seed(123)
x <- runif(1) # start with the sum that you want to obtain
n <- 4 # number of generated random numbers, can be chosen arbitrarily
y <- sort(runif(n-1,0,x)) # choose n-1 random points to cut the range [0:x]
z <- c(y[1],diff(y),x-y[n-1]) # result: determine the length of the segments
#> z
#[1] 0.11761257 0.10908627 0.02723712 0.03364156
#> sum(z)
#[1] 0.2875775
#> all.equal(sum(z),x)
#[1] TRUE
The advantage here is that you can determine exactly which sum you want to obtain and how many numbers n you want to generate for this. If you set, e.g., x <- 1 in the second line, the n random numbers stored in the vector z will add up to one.
a) Create a vector X of length 20, with the kth element in X = 2k, for k=1…20. Print out the values of X.
b) Create a vector Y of length 20, with all elements in Y equal to 0. Print out the values of Y.
c) Using a for loop, reassigns the value of the k-th element in Y, for k = 1…20. When k < 12, the kth element of Y is reassigned as the cosine of k. When the k ≥ 12, the kth element of Y is reassigned as the value of integral sqrt(t)dt from 0 to K.
for the first two questions, it is simple.
> x1 <- seq(1,20,by=2)
> x <- 2 * x1
> x
[1] 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
> y <- rep(0,20)
> y
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i got stuck on the last one,
t <- function(i) sqrt(i)
for (i in 1:20) {
if (i < 12) {
y[i] <- cos(i)
}
else if (i >= 12) {
y[i] <- integral(t, lower= 0, Upper = 20)
}
}
y // print new y
Any suggestions? thanks.
What may help is that the command to calculate a one-dimensional integral is integrate not integral.
You have successfully completed the first two, so I'll demonstrate a different way of getting those vectors:
x <- 2 * seq_len(20)
y <- double(length = 20)
As for your function, you have the right idea, but you need to clean up your syntax a bit. For example, you may need to double-check your braces (using a set style like Hadley Wickham's will help you prevent syntax errors and make the code more readable), you don't need the "if" in the else, you need to read up on integrate and see what its inputs, and importantly its outputs are (and which of them you need and how to extract it), and lastly, you need to return a value from your function. Hopefully, that's enough to help you work it out on your own. Good Luck!
Update
Slightly different function to demonstrate coding style and some best practices with loops
Given a working answer has been posted, this is what I did when looking at your question. I think it is worth posting, as as I think that it is a good habit to 1) pre-allocate answers 2) prevent confusion about scope by not re-using the input variable name as an output and 3) use the seq_len and seq_along constructions for for loops, per R Inferno(pdf) which is required reading, in my opinion:
tf <- function(y){
z <- double(length = length(y))
for (k in seq_along(y)) {
if (k < 12) {
z[k] <- cos(k)
} else {
z[k] <- integrate(f = sqrt, lower = 0, upper = k)$value
}
}
return(z)
}
Which returns:
> tf(y)
[1] 0.540302306 -0.416146837 -0.989992497 -0.653643621 0.283662185 0.960170287 0.753902254
[8] -0.145500034 -0.911130262 -0.839071529 0.004425698 27.712816032 31.248114562 34.922139530
[15] 38.729837810 42.666671456 46.728535669 50.911693960 55.212726149 59.628486093
To be honest you almost have it ready and it is good that you have showed some code here:
y <- rep(0,20) #y vector from question 2
for ( k in 1:20) { #start the loop
if (k < 12) { #if k less than 12
y[k] <- cos(k) #calculate cosine
} else if( k >= 12) { #else if k greater or equal to 12
y[k] <- integrate( sqrt, lower=0, upper=k)$value #see below for explanation
}
}
print(y) #prints y
> print(y)
[1] 0.540302306 -0.416146837 -0.989992497 -0.653643621 0.283662185 0.960170287 0.753902254 -0.145500034 -0.911130262 -0.839071529 0.004425698
[12] 27.712816032 31.248114562 34.922139530 38.729837810 42.666671456 46.728535669 50.911693960 55.212726149 59.628486093
First of all stats::integrate is the function you need to calculate the integral
integrate( sqrt, lower=0, upper=2)$value
The first argument is a function which in your case is sqrt. sqrt is defined already in R so there is no need to define it yourself explicitly as t <- function(i) sqrt(i)
The other two arguments as you correctly set in your code are lower and upper.
The function integrate( sqrt, lower=0, upper=2) will return:
1.885618 with absolute error < 0.00022
and that is why you need integrate( sqrt, lower=0, upper=2)$value to only extract the value.
Type ?integrate in your console to see the documentation which will help you a lot I think.