R: Using relative importance (relaimpo package) to build a linear model for prediction? - r

I have a huge dataset and I'm trying to build a good predictive linear model using the relaimpo package.
Using the calc.relimp function with type="lmg, i get an output of variables which are of relative importance. Although the proportion of variance explained by the model is only at 52%, I want to go and build a linear model using these variables.
Is there a way to build a lm model using these variables and somehow take into account the relative importance values into the model?
I'm not too familiar with this and was thinking maybe something along the lines of weighting each variable based on its relative importance value...?

I'm not a statistician, so I won't give you any Greek symbols, but I think you are confusing a few things.
As you correctly say, the relative importances based on the LMG method are more or less some sort of variance decomposition in case of correlated predictor variables, i.e. it tells you how much of your variance in the model is explained by which predictor.
However, this doesn't have to do anything with the lm function and its estimation itself. In fact, the R² of your lm model is exactly the same as you'll get by summing up the relative importances from calc.relimp.
There is no way to tell the lm function to pay more attention to a certain predictor during prediction/estimation.
What you probably want to do is an elastic net (which is a combination of LASSO and RIDGE regression), which basically does what you want, i.e. it shrinks the impact of "unimportant"/small predictors and emphasizes the impact of important/large predictors: https://en.wikipedia.org/wiki/Elastic_net_regularization (Lasso and Ridge regression are linked in the Wikipedia article).
I think this one here is the original package from Jerome Friedman, Trevor Hastie, Rob Tibshirani, et al.: https://cran.r-project.org/web/packages/glmnet/index.html

Related

can we get probabilities the same way that we get them in logistic regression through random forest?

I have a data structure with binary 0-1 variable (click & Purchase; click & not-purchase) against a vector of the attributes. I used logistic regression to get the probabilities of the purchase. How can I use Random Forest to get the same probabilities? Is it by using Random Forest regression? or is it Random Forest classification with type='prob' in R which gives the probability of categorical variable?
It won't give you the same result since the structure of the two method are different. Logistic regression is given by a definitive linear specification, where RF is a collective vote from multiple independent/random trees. If specification and input feature are properly tuned for both, they can produce comparable results. Here is the major difference between the two:
RF will give more robust fit against noise, outliers, overfitting or multicollinearity etc which are common pitfalls in regression type of solution. Basically if you don't know or don't want to know much about whats going in with the input data, RF is a good start.
logistic regression will be good if you know expertly about the data and how to properly specify the equation. Or somehow want to engineer how the fit/prediction works. The explicit form of GLM specification will allow you to do that.

Quantifying importance of variables in Canonical Correspondence Analysis using R? (x-post from researchgate)

I currently have species abundance data for multiple lakes along with measurements of some environmental variables of those lakes. I decided to do Canonical Correspondence Analysis of the data in R, as demonstrated by ter Braak and Verdenschot (1995), see link: http://link.springer.com/article/10.1007%2FBF00877430 (section: "Ranking environmental variables in importance")
I am not very good with R yet, and I do not have access to the software specified in the article (CANOCO). My problem is, in order to do stepwise ranking of importance of environmental variables, I have to obtain the Lambda (Is this the same as Wilk's Lambda?) and perform a Monte Carlo permutation test on each CCA constrained axis. 
Does anybody know how I can do this in R? I would love to be able to use this analysis.
You want the anova() method that vegan provides for cca(), the function that does CCA in the package, if you want to test effects in a current model. See ?anova.cca for details and perhaps the by = "margin" option to test marginal terms.
To do stepwise selection you have two options
Use the standard step() function that works with an AIC-like statistic for CCA, or
For the sort of selection done in that paper and implemented in CANOCO you want ordistep(). This does forward selection & backward elimination testing changes to models via permutation tests.
Lambda is often used to indicate Eigenvalues and is not Wilk's Lambda. The pseudo-F statistic will be mentioned in the paper and it is this that is computed in the test and for which permutations give the sampling distribution under the null hypothesis, which ultimately determines significance of terms in the model or whether a term enters or leaves the model.
See ?ordistep for more details.

Comparing nonlinear regression models

I want to compare the curve fits of three models by r-squared values. I ran models using the nls and drc packages. It appears, though, that neither of those packages calculate r-squared values; they give "residual std error" and "residual sum of squares" though.
Can these two be used to compare model fits?
This is really a statistics question, rather than a coding question: consider posting on stats.stackexchange.com; you're likely to get a better answer.
RSQ is not really meaningful for non-linear regression. This is why summary.nls(...) does not provide it. See this post for an explanation.
There is a common, and understandable, tendency to hope for a single statistic that allows one to assess which of a set of models better fits a dataset. Unfortunately, it doesn't work that way. Here are some things to consider.
Generally, the best model is the one that has a mechanistic underpinning. Do your models reflect some physical process, or are you just trying a bunch of mathematical equations and hoping for the best? The former approach almost always leads to better models.
You should consider how the models will be used. Will you be interpolating (e.g. estimating y|x within the range of your dataset), or will you be extrapolating (estimating y|x outside the range of your data)? Some models yield a fit that provides relatively accurate estimates slightly outside the dataset range, and others completely fall apart.
Sometimes the appropriate modeling technique is suggested by the type of data you have. For example, if you have data that counts something, then y is likely to be poisson distributed and a generalized linear model (glm) in the poisson family is indicated. If your data is binary (e.g. only two possible outcomes, success or failure), then a binomial glm is indicated (so-called logistic regression).
The key underlying assumption of least squares techniques is that the error in y is normally distributed with mean 0 and constant variance. We can test this after doing the fit by looking at a plot of standardized residuals vs. y, and by looking at a Normal Q-Q plot of the residuals. If the residuals plot shows scatter increasing or decreasing with y then the model in not a good one. If the Normal Q-Q plot is not close to a straight line, then the residuals are not normally distributed and probably a different model is indicated.
Sometimes certain data points have high leverage with a given model, meaning that the fit is unduly influenced by those points. If this is a problem you will see it in a leverage plot. This indicates a weak model.
For a given model, it may be the case that not all of the parameters are significantly different from 0 (e.g., p-value of the coefficient > 0.05). If this is the case, you need to explore the model without those parameters. With nls, this often implies a completely different model.
Assuming that your model passes the tests above, it is reasonable to look at the F-statistic for the fit. This is essentially the ratio of SSR/SSE corrected for the dof in the regression (R) and the residuals (E). A model with more parameters will generally have smaller residual SS, but that does not make it a better model. The F-statistic accounts for this in that models with more parameters will have larger regression dof and smaller residual dof, making the F-statistic smaller.
Finally, having considered the items above, you can consider the residual standard error. Generally, all other things being equal, smaller residual standard error is better. Trouble is, all other things are never equal. This is why I would recommend looking at RSE last.

is there a way to only include factors that are significant at P<0.05 in a backward elimination in logistic regression

When doing a backward elimination using the step(), is it possible to only include those factors that are significant, for example, at P<0.05?
I am using this line at the moment
step(FulMod3,direction="backward",trace=FALSE)
to get my final model.
Answers to these questions give starting points
Logistic Regression in R (SAS-like output)
Stepwise Regression using P-Values to drop variables with nonsignificant p-values
In particular they point you towards fastbw in the rms package, which can be used in conjunction with rms::lrm (logistic regression). They also explain why stepwise regression via p values is often a really, really, really, BAD idea: see also http://www.stata.com/support/faqs/stat/stepwise.html . There are a few contexts where it is appropriate (otherwise Frank Harrell, the author of the rms package and crusader against foolish uses of stepwise regression, wouldn't have written fastbw), but they are relatively rare, usually dominated by (e.g.) penalized regression approaches or by stepwise approaches via AIC (as implemented in step): see e.g. https://stats.stackexchange.com/questions/13686/what-are-modern-easily-used-alternatives-to-stepwise-regression and https://stats.stackexchange.com/questions/20836/algorithms-for-automatic-model-selection

Goodness of fit functions in R

What functions do you use in R to fit a curve to your data and test how well that curve fits? What results are considered good?
Just the first part of that question can fill entire books. Just some quick choices:
lm() for standard linear models
glm() for generalised linear models (eg for logistic regression)
rlm() from package MASS for robust linear models
lmrob() from package robustbase for robust linear models
loess() for non-linear / non-parametric models
Then there are domain-specific models as e.g. time series, micro-econometrics, mixed-effects and much more. Several of the Task Views as e.g. Econometrics discuss this in more detail. As for goodness of fit, that is also something one can spend easily an entire book discussing.
The workhorses of canonical curve fitting in R are lm(), glm() and nls(). To me, goodness-of-fit is a subproblem in the larger problem of model selection. Infact, using goodness-of-fit incorrectly (e.g., via stepwise regression) can give rise to seriously misspecified model (see Harrell's book on "Regression Modeling Strategies"). Rather than discussing the issue from scratch, I recommend Harrell's book for lm and glm. Venables and Ripley's bible is terse, but still worth a reading. "Extending the Linear Model with R" by Faraway is comprehensive and readable. nls is not covered in these sources, but "Nonlinear Regression with R" by Ritz & Streibig fills the gap and is very hands-on.
The nls() function (http://sekhon.berkeley.edu/stats/html/nls.html) is pretty standard for nonlinear least-squares curve fitting. Chi squared (the sum of the squared residuals) is the metric that is optimized in that case, but it is not normalized so you can't readily use it to determine how good the fit is. The main thing you should ensure is that your residuals are normally distributed. Unfortunately I'm not sure of an automated way to do that.
The Quick R site has a reasonable good summary of basic functions used for fitting models and testing the fits, along with sample R code:
http://www.statmethods.net/stats/regression.html
The main thing you should ensure is
that your residuals are normally
distributed. Unfortunately I'm not
sure of an automated way to do that.
qqnorm() could probably be modified to find the correlation between the sample quantiles and the theoretical quantiles. Essentially, this would just be a numerical interpretation of the normal quantile plot. Perhaps providing several values of the correlation coefficient for different ranges of quantiles could be useful. For example, if the correlation coefficient is close to 1 for the middle 97% of the data and much lower at the tails, this tells us the distribution of residuals is approximately normal, with some funniness going on in the tails.
Best to keep simple, and see if linear methods work "well enuff". You can judge your goodness of fit GENERALLY by looking at the R squared AND F statistic, together, never separate. Adding variables to your model that have no bearing on your dependant variable can increase R2, so you must also consider F statistic.
You should also compare your model to other nested, or more simpler, models. Do this using log liklihood ratio test, so long as dependant variables are the same.
Jarque–Bera test is good for testing the normality of the residual distribution.

Resources