ERROR: unused argument (output.results = TRUE) - r

This is how my data looks like:
> dput(head(GDP_NUTS2,5))
structure(list(Regiao = c("T", "N", "Ag", "C", "AML"), t2000 = c(12529.42964,
10054.60679, 13045.59069, 10621.51789, 18104.36306), t2001 = c(13142.7713,
10652.46712, 13920.41552, 11101.08412, 18865.55149), t2002 = c(13714.17406,
11001.34917, 14612.37052, 11507.36163, 19812.29293), t2003 = c(13985.02689,
11031.7278, 15137.89461, 11884.96687, 20165.68892), t2004 = c(14537.15966,
11354.02317, 15479.68985, 12364.05053, 21068.05117), t2005 = c(15107.92333,
11875.44359, 16237.49791, 12754.40299, 21829.31373), t2006 = c(15816.27567,
12439.6426, 17046.29326, 13378.47797, 22714.25829), t2007 = c(16660.99538,
13229.02402, 17981.40383, 14044.39707, 23847.44923), t2008 = c(16971.19746,
13579.51144, 18226.74178, 14091.85326, 24347.83971), t2009 = c(16606.6617,
13243.19054, 17038.45595, 13974.46502, 23794.44899), t2010 = c(16986.91604,
13677.38358, 16976.83391, 14284.14565, 24119.66719), t2011 = c(16655.71238,
13491.68626, 16347.69468, 14011.54637, 23503.1765), t2012 = c(15963.69251,
13111.6173, 16059.51047, 13623.68635, 22118.01701), t2013 = c(16257.04222,
13473.68717, 16301.87448, 13919.18355, 22337.24739), t2014 = c(16596.21219,
13935.07757, 16974.57715, 14220.1043, 22491.62875), t2015 = c(17322.0514,
14570.33755, 17851.78088, 14983.95312, 23101.89351), t2016 = c(18033.44444,
15283.33044, 19251.57661, 15620.77307, 23800.20038), t2017 = c(19006.33518,
16083.53849, 20893.19975, 16410.11278, 24938.22636), t2018 = c(19938.15583,
17031.94867, 22131.96942, 17242.70015, 25974.24055), t2019 = c(20755.955,
17712.44223, 23145.30242, 18045.54697, 26970.71178)), row.names = c(NA,
-5L), class = c("tbl_df", "tbl", "data.frame"))
I'm using the "REAT" package to test the absolute beta convergence comparing years 2000 (t2000) and 2019 (t2019) with OLS (Ordinary Least Squares) estimation using function betaconv.ols().
I've used this code: betaconv.ols(GDP_NUTS2$t2000, 2000, GDP_NUTS2$t2019, 2019, output.results = TRUE) I tried other version of the code but my major problem is the output.results=TRUE because I get always this error: Error in betaconv.ols(GDP_NUTS2$t2000, 2000, GDP_NUTS2$t2019, 2019, output.results = TRUE) : unused argument (output.results = TRUE)
I've been searching for alternatives of output.results but no success.
Any help will be much appreciated.

The argument is print.results based on the args of the function
> args(betaconv.ols)
function (gdp1, time1, gdp2, time2, conditions = NULL, beta.plot = FALSE,
beta.plotPSize = 1, beta.plotPCol = "black", beta.plotLine = FALSE,
beta.plotLineCol = "red", beta.plotX = "Ln (initial)", beta.plotY = "Ln (growth)",
beta.plotTitle = "Beta convergence", beta.bgCol = "gray95",
beta.bgrid = TRUE, beta.bgridCol = "white", beta.bgridSize = 2,
beta.bgridType = "solid", print.results = FALSE)
NULL
betaconv.ols(GDP_NUTS2$t2000, 2000, GDP_NUTS2$t2019, 2019, print.results = TRUE)
-output
Absolute Beta Convergence
Model coefficients (Estimation method: OLS)
Estimate Std. Error t value Pr (>|t|)
Alpha 1.537689e-01 0.048509886 3.169847 0.05048663
Beta -1.341938e-02 0.005137275 -2.612158 0.07953682
Lambda 7.110647e-04 NA NA NA
Halflife 9.748018e+02 NA NA NA
Model summary
Estimate F value df 1 df 2 Pr (>F)
R-Squared 0.6946059 6.823372 1 3 0.07953682

Related

uwot is throwing an error running the Monocle3 R package's "find_gene_module()" function, likely as an issue with how my data is formatted

I am trying to run the Monocle3 function find_gene_modules() on a cell_data_set (cds) but am getting a variety of errors in this. I have not had any other issues before this. I am working with an imported Seurat object. My first error came back stating that the number of rows were not the same between my cds and cds#preprocess_aux$gene_loadings values. I took a look and it seems my gene loadings were a list under cds#preprocess_aux#listData$gene_loadings. I then ran the following code to make a dataframe version of the gene loadings:
test <- seurat#assays$RNA#counts#Dimnames[[1]]
test <- as.data.frame(test)
cds#preprocess_aux$gene_loadings <- test
rownames(cds#preprocess_aux$gene_loadings) <- cds#preprocess_aux$gene_loadings[,1]
Which created a cds#preprocess_aux$gene_loadings dataframe with the same number of rows and row names as my cds. This resolved my original error but now led to a new error being thrown from uwot as:
15:34:02 UMAP embedding parameters a = 1.577 b = 0.8951
Error in uwot(X = X, n_neighbors = n_neighbors, n_components = n_components, :
No numeric columns found
Running traceback() produces the following information.
> traceback()
4: stop("No numeric columns found")
3: uwot(X = X, n_neighbors = n_neighbors, n_components = n_components,
metric = metric, n_epochs = n_epochs, alpha = learning_rate,
scale = scale, init = init, init_sdev = init_sdev, spread = spread,
min_dist = min_dist, set_op_mix_ratio = set_op_mix_ratio,
local_connectivity = local_connectivity, bandwidth = bandwidth,
gamma = repulsion_strength, negative_sample_rate = negative_sample_rate,
a = a, b = b, nn_method = nn_method, n_trees = n_trees, search_k = search_k,
method = "umap", approx_pow = approx_pow, n_threads = n_threads,
n_sgd_threads = n_sgd_threads, grain_size = grain_size, y = y,
target_n_neighbors = target_n_neighbors, target_weight = target_weight,
target_metric = target_metric, pca = pca, pca_center = pca_center,
pca_method = pca_method, pcg_rand = pcg_rand, fast_sgd = fast_sgd,
ret_model = ret_model || "model" %in% ret_extra, ret_nn = ret_nn ||
"nn" %in% ret_extra, ret_fgraph = "fgraph" %in% ret_extra,
batch = batch, opt_args = opt_args, epoch_callback = epoch_callback,
tmpdir = tempdir(), verbose = verbose)
2: uwot::umap(as.matrix(preprocess_mat), n_components = max_components,
metric = umap.metric, min_dist = umap.min_dist, n_neighbors = umap.n_neighbors,
fast_sgd = umap.fast_sgd, n_threads = cores, verbose = verbose,
nn_method = umap.nn_method, ...)
1: find_gene_modules(cds[pr_deg_ids, ], reduction_method = "UMAP",
max_components = 2, umap.metric = "cosine", umap.min_dist = 0.1,
umap.n_neighbors = 15L, umap.fast_sgd = FALSE, umap.nn_method = "annoy",
k = 20, leiden_iter = 1, partition_qval = 0.05, weight = FALSE,
resolution = 0.001, random_seed = 0L, cores = 1, verbose = T)
I really have no idea what I am doing wrong or how to proceed from here. Does anyone with experience with uwot know where my error is coming from? Really appreciate the help!

How to solve this cluster analysis?

I am calculating optimum number of clusters. I used NbClust function to comput, but how it is showing too many missing value but i don't know, there are no missing values in my data.
it is showing that
"Error in NbClust(data = df, distance = "euclidean", min.nc = 2, max.nc = 20, :
The TSS matrix is indefinite. There must be too many missing values. The index cannot be calculated."
Data i am using
dput(read.csv("cluster.csv"))
df = structure(list(St = c("PE", "SU", "PA", "OC", "PE",
"AC", "PP", "RA"), NDDZ91 = c(0.253576604, 0.0551232,
-0.53169303, -0.533246481, -0.533634844, -0.529751216, -0.529751216,
2.349376982), NDDZ92 = c(0.4633855, 0.952926247, -0.905688982,
-0.908031282, 0.815565566, -0.904127448, -0.904127448, 1.390097848
), NDDZ94 = c(0.971257769, 0.602251213, -0.82539626, -0.831562179,
0.018490857, -0.826819164, -0.826819164, 1.718596929), NDDZ95 = c(2.428086592,
-0.050766856, -0.502772844, -0.503557157, -0.289546405, -0.502953839,
-0.502953839, -0.075535652), NDDZ96 = c(0.073650972, 0.482511184,
-0.669130113, -0.675742407, -0.675742407, -0.664721917, -0.09563249,
2.224807178), NDDZ97 = c(2.108725851, 0.193018074, -0.616096838,
-0.618190279, 0.782927149, -0.616096838, -0.616096838, -0.618190279
), NDDZ98 = c(0.422792635, 0.224274925, -0.66324044, -0.674453783,
-0.191577267, -0.670300693, -0.670300693, 2.222805316), NDDZ99 = c(-0.045504148,
0.621635607, -1.030110408, -1.033331082, 0.370677267, 0.370677267,
-1.028730119, 1.774685616), NDDZ103 = c(0.543822029, 1.4294128,
-0.862935822, -0.865183039, 0.206064797, -0.865183039, -0.863310358,
1.277312632), NDDZ105 = c(-0.242116717, -0.327002284, -0.599905416,
-0.602682046, 0.790140631, -0.602682046, -0.598715431, 2.18296331
), NDDZ106 = c(-0.394116657, 1.166937427, -1.070650174, -1.078708713,
0.81841561, -1.078708713, 0.81841561, 0.81841561), NDDZ107 = c(1.493844177,
0.766047601, -1.041282102, -1.04295136, 0.956552995, -0.043914579,
-1.044382153, -0.043914579), NDDZ112 = c(2.137032432, 0.085031825,
-0.601376567, -0.601897927, -0.601897927, -0.601153126, 0.785414418,
-0.601153126), NDDZ113 = c(-0.102481763, -0.288855624, -0.41345193,
-0.41414606, -0.414377436, -0.413220553, 2.45975392, -0.413220553
), NDDZ114 = c(0.100876842, 0.716344963, -0.756031568, -0.758896113,
0.173403417, -0.756850009, -0.756850009, 2.038002477), NDDZ115 = c(-0.058558995,
0.221455542, -0.509307832, -0.505965142, -0.510336352, -0.507765052,
-0.507765052, 2.378242882), NDDZ116 = c(1.377841856, 1.640112838,
-0.676090962, -0.676661736, -0.676947124, -0.67409325, -0.67409325,
0.359931628), NDDZ117 = c(2.177231217, 0.849368214, -0.539426784,
-0.539639833, -0.479549446, -0.53892967, -0.509594639, -0.41945906
), NDDZ119 = c(2.215308855, 0.141088501, -0.679450372, -0.680029439,
-0.106916185, -0.678099214, -0.678099214, 0.466197068), NDDZ122 = c(1.743810041,
0.768581504, -0.772598602, -0.773098804, -0.348192016, -0.772598602,
-0.772598602, 0.926695082), NDDZ123 = c(0.634144889, 1.11554263,
-0.833927192, -0.834643558, -0.021473135, -0.832255672, -0.832255672,
1.60486771)), class = "data.frame", row.names = c(NA, -8L))
Code work i have done so so far
rownames(df) = c(df$St)
df = df[,-1]
library(NbClust)
nbclust_out <- NbClust(
data = df,
distance = "euclidean",
min.nc = 2,
max.nc = 20,
method = "ward.D",
)
but this the error showed like this "Error in NbClust(data = df, distance = "euclidean", min.nc = 2, max.nc = 20, :
The TSS matrix is indefinite. There must be too many missing values. The index cannot be calculated."
max.nc is higher then the rows in your dataset, which might lead to your issue. Using other packages:
#remove factor column
df$St <- NULL
#scale df
df.scaled <- scale(df)
#scree plot
scree <- fviz_nbclust(df.scaled, FUNcluster = kmeans, method = "wss", k.max = 7)
#parallel analysis
paral <- fa.parallel(df.scaled, fa = "pc")
Based on the plots below I would suggest 3 clusters. But the parallel analysis gives the error that you have a ultra-heywood case in your dataset, and to examine your results carefully.

HeatMap: how to cluster only the rows and keep order of the heatmap's column labels as same as in the df?

I wanna plot a heatmap and cluster only the rows (i.e. genes in this tydf1).
Also, wanna keep order of the heatmap's column labels as same as in the df (i.e. tydf1)?
Sample data
df1 <- structure(list(Gene = c("AA", "PQ", "XY", "UBQ"), X_T0_R1 = c(1.46559502, 0.220140568, 0.304127515, 1.098842127), X_T0_R2 = c(1.087642983, 0.237500819, 0.319844338, 1.256624804), X_T0_R3 = c(1.424945196, 0.21066267, 0.256496284, 1.467120048), X_T1_R1 = c(1.289943948, 0.207778662, 0.277942721, 1.238400358), X_T1_R2 = c(1.376535013, 0.488774258, 0.362562315, 0.671502431), X_T1_R3 = c(1.833390311, 0.182798731, 0.332856558, 1.448757569), X_T2_R1 = c(1.450753714, 0.247576125, 0.274415259, 1.035410946), X_T2_R2 = c(1.3094609, 0.390028842, 0.352460646, 0.946426593), X_T2_R3 = c(0.5953716, 1.007079177, 1.912258811, 0.827119776), X_T3_R1 = c(0.7906009, 0.730242116, 1.235644748, 0.832287694), X_T3_R2 = c(1.215333041, 1.012914813, 1.086362205, 1.00918082), X_T3_R3 = c(1.069312467, 0.780421013, 1.002313082, 1.031761442), Y_T0_R1 = c(0.053317766, 3.316414959, 3.617213894, 0.788193798), Y_T0_R2 = c(0.506623748, 3.599442788, 1.734075583, 1.179462912), Y_T0_R3 = c(0.713670106, 2.516735845, 1.236204882, 1.075393433), Y_T1_R1 = c(0.740998252, 1.444496448, 1.077023349, 0.869258744), Y_T1_R2 = c(0.648231834, 0.097957459, 0.791438659, 0.428805547), Y_T1_R3 = c(0.780499252, 0.187840968, 0.820430227, 0.51636582), Y_T2_R1 = c(0.35344654, 1.190274584, 0.401845911, 1.223534348), Y_T2_R2 = c(0.220223951, 1.367784148, 0.362815405, 1.102117612), Y_T2_R3 = c(0.432856978, 1.403057729, 0.10802472, 1.304233845), Y_T3_R1 = c(0.234963735, 1.232129062, 0.072433381, 1.203096462), Y_T3_R2 = c(0.353770497, 0.885122768, 0.011662112, 1.188149743), Y_T3_R3 = c(0.396091395, 1.333921747, 0.192594116, 1.838029829), Z_T0_R1 = c(0.398000559, 1.286528398, 0.129147097, 1.452769794), Z_T0_R2 = c(0.384759325, 1.122251177, 0.119475721, 1.385513609), Z_T0_R3 = c(1.582230097, 0.697419716, 2.406671502, 0.477415567), Z_T1_R1 = c(1.136843842, 0.804552001, 2.13213228, 0.989075996), Z_T1_R2 = c(1.275683837, 1.227821594, 0.31900326, 0.835941568), Z_T1_R3 = c(0.963349308, 0.968589683, 1.706670339, 0.807060135), Z_T2_R1 = c(3.765036263, 0.477443352, 1.712841882, 0.469173869), Z_T2_R2 = c(1.901023385, 0.832736132, 2.223429427, 0.593558769), Z_T2_R3 = c(1.407713024, 0.911920317, 2.011259223, 0.692553388), Z_T3_R1 = c(0.988333629, 1.095130142, 1.648598854, 0.629915612), Z_T3_R2 = c(0.618606729, 0.497458337, 0.549147265, 1.249492088), Z_T3_R3 = c(0.429823986, 0.471389536, 0.977124788, 1.136635484)), row.names = c(NA, -4L ), class = c("data.table", "data.frame"))
Scripts used
library(dplyr)
library(stringr)
library(tidyr)
gdf1 <- gather(df1, "group", "Expression", -Gene)
gdf1$tgroup <- apply(str_split_fixed(gdf1$group, "_", 3)[, c(1, 2)],
1, paste, collapse ="_")
library(dplyr)
tydf1 <- gdf1 %>%
group_by(Gene, tgroup) %>%
summarize(expression_mean = mean(Expression)) %>%
spread(., tgroup, expression_mean)
#1 heatmap script is being used
library(tidyverse)
tydf1 <- tydf1 %>%
as.data.frame() %>%
column_to_rownames(var=colnames(tydf1)[1])
library(gplots)
library(vegan)
randup.m <- as.matrix(tydf1)
scaleRYG <- colorRampPalette(c("red","yellow","darkgreen"),
space = "rgb")(30)
data.dist <- vegdist(randup.m, method = "euclidean")
row.clus <- hclust(data.dist, "aver")
heatmap.2(randup.m, Rowv = as.dendrogram(row.clus),
dendrogram = "row", col = scaleRYG, margins = c(7,10),
density.info = "none", trace = "none", lhei = c(2,6),
colsep = 1:3, sepcolor = "black", sepwidth = c(0.001,0.0001),
xlab = "Identifier", ylab = "Rows")
#2 heatmap script is being used
df2 <- as.matrix(tydf1[, -1])
heatmap(df2)
Also, I want to add a color key.
It is still unclear to me, what the desired output is. There are some notes:
You don't need to use vegdist() to calculate distance matrix for your hclust() call. Because if you check all(vegdist(randup.m, method = "euclidian") == dist(randup.m)) it returns TRUE;
Specifying Colv = F in your heatmap.2() call will prevent reordering of the columns (default is TRUE);
Maybe it is better to scale your data by row (see the uncommented row);
Your call of heatmap.2() returns the heatmap with color key.
So summing it up - in your first script you just miss the Colv = F argument, and after a little adjustment it looks like this:
heatmap.2(randup.m,
Rowv = as.dendrogram(row.clus),
Colv = F,
dendrogram = "row",
#scale = "row",
col = scaleRYG,
density.info = "none",
trace = "none",
srtCol = -45,
adjCol = c(.1, .5),
xlab = "Identifier",
ylab = "Rows"
)
However I am still not sure - is it what you need?

Error when using neural networks (CARET package)

Code:
library(nnet)
library(caret)
#K-folds resampling method for fitting model
ctrl <- trainControl(method = "repeatedcv", number = 10, repeats = 10,
allowParallel = TRUE) #10 separate 10-fold cross-validations
nnetGrid <- expand.grid(decay = seq(0.0002, .0008, length = 4),
size = seq(6, 10, by = 2),
bag = FALSE)
set.seed(100)
nnetFitcv <- train(R ~ .,
data = trainSet,
method = "avNNet",
tuneGrid = nnetGrid,
trControl = ctrl,
preProc = c("center", "scale"),
linout = TRUE,
## Reduce the amount of printed output
trace = FALSE,
## Expand the number of iterations to find
## parameter estimates..
maxit = 2000,
## and the number of parameters used by the model
MaxNWts = 5 * (34 + 1) + 5 + 1)
Error:
Error in train.default(x, y, weights = w, ...) :
final tuning parameters could not be determined
In addition: Warning messages:
1: In nominalTrainWorkflow(x = x, y = y, wts = weights, info = trainInfo, :
There were missing values in resampled performance measures.
2: In train.default(x, y, weights = w, ...) :
missing values found in aggregated results
data:
dput(head(trainSet))
structure(list(fy = c(317.913756282, 365.006253069, 392.548100067,
305.350697829, 404.999341917, 326.558279739), fu = c(538.962896683,
484.423120589, 607.974981919, 566.461909098, 580.287855801, 454.178316794
), E = c(194617.707566, 181322.455065, 206661.286272, 182492.029532,
189867.929239, 181991.379749), eu = c(0.153782620813, 0.208857408687,
0.29933255604, 0.277013319499, 0.251278125174, 0.20012525805),
imp_local = c(1555.3450957, 1595.41614044, 763.56392418,
1716.78277731, 1045.72429616, 802.742305814), imp_global = c(594.038972858,
1359.48216529, 1018.89209367, 850.887850177, 1381.3557372,
1714.66351462), teta1c = c(0.033375064111, 0.021482368218,
0.020905367537, 0.006956337817, 0.034913536977, 0.03009770223
), k1c = c(4000921.55552, 4499908.41979, 9764999.26902, 9273400.46159,
6163057.88855, 12338543.5703), k2_2L = c(98633499.5682, 53562216.5496,
51597126.6866, 79496746.0098, 54060378.6334, 88854286.5457
), k2_3L = c(53752551.0262, 125020222.794, 124021434.482,
125817803.431, 75021821.6702, 35160224.288), k2_4L = c(56725106.5978,
126865701.893, 145764489.664, 64837586.8755, 49128911.0832,
70088564.0166), bmaxc = c(3481281.32908, 4393584.00639, 2614830.02391,
3128593.72039, 3179348.29527, 4274637.35956), dfactorc = c(2.5474729895,
2.94296926288, 2.79505551368, 2.47882735165, 2.46407943564,
1.41121223341), amaxc = c(73832.9746763, 99150.5068997, 77165.4338508,
128546.996471, 53819.0447533, 54870.9707106), teta1s = c(0.015467320192,
0.013675755546, 0.031668366149, 0.028898297322, 0.019211801086,
0.013349768955), k1s = c(5049506.54552, 11250622.6842, 13852560.5089,
18813117.5726, 18362782.7372, 14720875.0829), k2_ab1s = c(276542468.441,
275768806.723, 211613299.608, 264475187.749, 162043062.526,
252936228.465), k2_ab2s = c(108971516.033, 114017918.32,
248886114.151, 213529935.615, 236891513.077, 142986118.909
), k2_ab3s = c(33306211.9166, 28220338.4744, 40462423.2281,
23450400.4429, 46044346.1128, 23695405.2598), bmaxab1 = c(4763935.86742,
4297372.01966, 3752983.00638, 4861240.46459, 4269771.8481,
4162098.23435), bmaxab2 = c(1864128.647, 1789714.6047, 2838412.50704,
2122535.96812, 2512362.60884, 1176995.61871), ab1 = c(66.4926766666,
42.7771212442, 45.4212664748, 50.3764074404, 35.4792060556,
34.1116517971), ab2 = c(21.0285105309, 23.5869838719, 18.8524808986,
10.1121885612, 10.9695055644, 12.1154127169), dfactors = c(2.47803921947,
0.874644748155, 0.749837099991, 1.96711589185, 2.5407774352,
1.28554379333), teta1f = c(0.037308451805, 0.035718600749,
0.012495093438, 0.000815957999, 0.002155991091, 0.02579104469
), k1f = c(14790480.9871, 17223538.1853, 19930679.8931, 3524230.46974,
15721827.0137, 13599317.0371), k2f = c(55614283.976, 54695745.7762,
86690362.7036, 99857853.7312, 63119072.711, 37510791.5472
), bmaxf = c(2094770.19484, 3633133.51482, 1361188.05421,
2001027.51219, 2534273.6726, 3765850.14143), dfactorf = c(0.745459795314,
2.04869176933, 0.853221909609, 1.76652410119, 0.523675021418,
1.0808768613), k2b = c(1956.92858062, 1400.78738327, 1771.23607857,
1104.05501369, 1756.6767193, 1509.9294956), amaxb = c(38588.0915097,
35158.1672213, 25711.062782, 21103.1603387, 27230.6973685,
43720.3558889999), dfactorb = c(0.822346959126, 2.34421354848,
0.79990635332, 2.99070447299, 1.76373031599, 1.38640223249
), roti = c(16.1560390049, 12.7223971386, 6.43238062144,
15.882552267, 16.0836252663, 18.2734832893), rotmaxbp = c(0.235615453341,
0.343204895932, 0.370304533553, 0.488746319999, 0.176135112774,
0.46921999001), R = c(0.022186087, 0.023768855, 0.023911029,
0.023935705, 0.023655335, 0.022402726)), .Names = c("fy",
"fu", "E", "eu", "imp_local", "imp_global", "teta1c", "k1c",
"k2_2L", "k2_3L", "k2_4L", "bmaxc", "dfactorc", "amaxc", "teta1s",
"k1s", "k2_ab1s", "k2_ab2s", "k2_ab3s", "bmaxab1", "bmaxab2",
"ab1", "ab2", "dfactors", "teta1f", "k1f", "k2f", "bmaxf", "dfactorf",
"k2b", "amaxb", "dfactorb", "roti", "rotmaxbp", "R"), row.names = c(7L,
8L, 20L, 23L, 28L, 29L), class = "data.frame")
data has no equal rows or zero values or NaNs. Any help is appreciated.
I guess the problem is caused by MaxNWts, which is The maximum allowable number of weights. The value you gave is less than the weights for networks with size larger than 5 units. It should be at least:
MaxNWts = max(nnetGrid$size)*(ncol(trainSet) + output_neron)
+ max(nnetGrid$size) + output_neron
So, in your case, it should be at least MaxNWts = 10 * (34 + 1) + 10 + 1

Putting series summary of ugarchboot into a dataframe

I am looking at the ugarchboot function in rugarch but I am having trouble getting the Series (summary) into a dataframe.
library(rugarch)
data(dji30ret)
spec = ugarchspec(variance.model=list(model="gjrGARCH", garchOrder=c(1,1)),
mean.model=list(armaOrder=c(1,1), arfima=FALSE, include.mean=TRUE,
archm = FALSE, archpow = 1), distribution.model="std")
ctrl = list(tol = 1e-7, delta = 1e-9)
fit = ugarchfit(data=dji30ret[, "BA", drop = FALSE], out.sample = 0,
spec = spec, solver = "solnp", solver.control = ctrl,
fit.control = list(scale = 1))
bootpred = ugarchboot(fit, method = "Partial", n.ahead = 120, n.bootpred = 2000)
bootpred
as.data.frame(bootpred, which = "sigma", type = "q", qtile = c(0.01, 0.05))
##I am tring to get this into a dataframe:
Series (summary):
min q.25 mean q.75 max forecast
t+1 -0.24531 -0.016272 0.000143 0.018591 0.16263 0.000743
t+2 -0.24608 -0.018006 -0.000290 0.017816 0.16160 0.000232
t+3 -0.24333 -0.017131 0.001007 0.017884 0.31861 0.000413
t+4 -0.26126 -0.018643 -0.000618 0.017320 0.34078 0.000349
t+5 -0.19406 -0.018545 -0.000453 0.016690 0.33356 0.000372
t+6 -0.23864 -0.017268 -0.000113 0.016001 0.18233 0.000364
t+7 -0.27024 -0.018031 -0.000514 0.017852 0.18436 0.000367
t+8 -0.13926 -0.016676 0.000539 0.017904 0.16271 0.000366
t+9 -0.32941 -0.017221 -0.000194 0.016718 0.13894 0.000366
t+10 -0.19013 -0.015845 0.001095 0.017064 0.14498 0.000366
Thank you for your help.

Resources