possible to implement two sequential flyTo in leaflet R - r

I would like to create a Leaflet Map which renders at a default location, at a zoom level of 4, and then when the user clicks the go button, pans from location to another, both of which have been selected from a dropdown.
I've tried using the following code, the data for which can be found # https://github.com/eoefelein/COVID_Business_Recovery_and_Social_Capital/tree/master/socialCapitalEmployment/data
library(sf)
library(tigris)
library(shiny)
library(shinydashboard)
library(tidyverse)
library(leaflet)
# data loading and processing
USA <- st_read(dsn = 'data/cb_2018_us_county_5m.shp')
counties_sf <- st_as_sf(USA)
counties_reproject_sf <- st_transform(counties_sf, 4326) %>% filter(COUNTYFP < 60010)
emp_rate <- read_csv('data/synthetic_emp_rate_pred.csv')
emp_rate$countyfips <- sprintf("%05d", emp_rate$countyfips)
states_sf_coef <- geo_join(counties_reproject_sf, emp_rate, "GEOID", "countyfips", how='inner')
ui <- fluidPage(
dashboardPage(
dashboardHeader(title="Employee Rate Data"),
dashboardSidebar(
sidebarMenu(
menuItem(
"Maps",
tabName = "maps",
icon=icon("globe")
)
)
),
dashboardBody(
tabItems(
tabItem(
tabName = "maps",
tags$style(type="text/css","#all_airports {height:calc(100vh - 80px) !important;}"),
fluidRow(column(4),
column(8,
selectInput(inputId = "FromCounty",
label="from",
choices=c(unique(emp_rate$countyname)),
selected = 'Travis County, Texas'
),
selectInput(inputId = "ToCounty",
label = "to",
choices=c(unique(emp_rate$countyname))
))),
actionButton("zoomer","go"),
leafletOutput("map")
)
)
)
)
)
server <- function(input, output, session) {
# map
output$map <- renderLeaflet({
mypal <- colorNumeric(palette="viridis", domain=states_sf_coef$rand_pred, na.color="transparent")
# mypalette(c(45,43))
leaflet() %>%
addProviderTiles("OpenStreetMap.Mapnik") %>%
setView(lat = 38.2393,
lng = -96.3795,
zoom = 4) %>%
addPolygons(
data = states_sf_coef,
fillColor = ~mypal(rand_pred),
# fillColor = ~ mypal(data$value),
stroke = FALSE,
smoothFactor = 0.2,
fillOpacity = 0.3,
popup = paste(
"Region: ",
states_sf_coef$countyname,
"<br>",
"Social Index: ",
states_sf_coef$rand_pred,
"<br>"
)
)
# %>%
# addLayersControl(
# baseGroups = c("Employment Prediction Data (default)", "To-From"),
# options = layersControlOptions(collapsed = FALSE)
# )
})
map_proxy <- leafletProxy("map")
observeEvent(input$zoomer, { # add Smith, county, kansas and default to zoom = 1?
# fromCounty
fromCountyInput <- reactive({
states_sf_coef %>% dplyr::filter(countyname == input$FromCounty)
})
fromData <- fromCountyInput()
fromCoords <- st_coordinates(st_centroid(fromData$geometry))
# toCounty
toCountyInput <- reactive({
states_sf_coef %>% dplyr::filter(countyname == input$ToCounty)
})
toData <- toCountyInput()
toCoords <- st_coordinates(st_centroid(toData$geometry))
map_proxy %>%
flyTo(lng = fromCoords[1], lat = fromCoords[2], zoom = 10)
flyTo(lng = toCoords[1], lat = toCoords[2], zoom = 10)
})
}
# Run the application
shinyApp(ui = ui, server = server)
Right now I'm getting the following error:
Warning: Error in dispatch: argument "map" is missing, with no default. Any guidance would be much appreciated!

I can't access your data to check that this works but I found a solution my (similar) problem by using shinyjs::delay(). This requires that you include the useShinyjs() in the ui as I have done below.
library(sf)
library(tigris)
library(shiny)
library(shinydashboard)
library(tidyverse)
library(leaflet)
library(shinyjs)
# data loading and processing
USA <- st_read(dsn = 'data/cb_2018_us_county_5m.shp')
counties_sf <- st_as_sf(USA)
counties_reproject_sf <- st_transform(counties_sf, 4326) %>% filter(COUNTYFP < 60010)
emp_rate <- read_csv('data/synthetic_emp_rate_pred.csv')
emp_rate$countyfips <- sprintf("%05d", emp_rate$countyfips)
states_sf_coef <- geo_join(counties_reproject_sf, emp_rate, "GEOID", "countyfips", how='inner')
ui <- fluidPage(
dashboardPage(
useShinyjs(),
dashboardHeader(title="Employee Rate Data"),
dashboardSidebar(
sidebarMenu(
menuItem(
"Maps",
tabName = "maps",
icon=icon("globe")
)
)
),
dashboardBody(
tabItems(
tabItem(
tabName = "maps",
tags$style(type="text/css","#all_airports {height:calc(100vh - 80px) !important;}"),
fluidRow(column(4),
column(8,
selectInput(inputId = "FromCounty",
label="from",
choices=c(unique(emp_rate$countyname)),
selected = 'Travis County, Texas'
),
selectInput(inputId = "ToCounty",
label = "to",
choices=c(unique(emp_rate$countyname))
))),
actionButton("zoomer","go"),
leafletOutput("map")
)
)
)
)
)
server <- function(input, output, session) {
# map
output$map <- renderLeaflet({
mypal <- colorNumeric(palette="viridis", domain=states_sf_coef$rand_pred, na.color="transparent")
# mypalette(c(45,43))
leaflet() %>%
addProviderTiles("OpenStreetMap.Mapnik") %>%
setView(lat = 38.2393,
lng = -96.3795,
zoom = 4) %>%
addPolygons(
data = states_sf_coef,
fillColor = ~mypal(rand_pred),
# fillColor = ~ mypal(data$value),
stroke = FALSE,
smoothFactor = 0.2,
fillOpacity = 0.3,
popup = paste(
"Region: ",
states_sf_coef$countyname,
"<br>",
"Social Index: ",
states_sf_coef$rand_pred,
"<br>"
)
)
# %>%
# addLayersControl(
# baseGroups = c("Employment Prediction Data (default)", "To-From"),
# options = layersControlOptions(collapsed = FALSE)
# )
})
map_proxy <- leafletProxy("map")
observeEvent(input$zoomer, { # add Smith, county, kansas and default to zoom = 1?
# fromCounty
fromCountyInput <- reactive({
states_sf_coef %>% dplyr::filter(countyname == input$FromCounty)
})
fromData <- fromCountyInput()
fromCoords <- st_coordinates(st_centroid(fromData$geometry))
# toCounty
toCountyInput <- reactive({
states_sf_coef %>% dplyr::filter(countyname == input$ToCounty)
})
toData <- toCountyInput()
toCoords <- st_coordinates(st_centroid(toData$geometry))
map_proxy %>%
flyTo(lng = fromCoords[1], lat = fromCoords[2], zoom = 10)
delay(5000, {map_proxy %>% flyTo(lng = toCoords[1], lat = toCoords[2], zoom = 10)})
})
}
# Run the application
shinyApp(ui = ui, server = server)

Related

Gauge chart from GoogleVis displaying in browser but on shiny app I get the error $ operator is invalid for atomic vectors

I am trying to make a shiny app where I can select a location on the map and display a gauge chart for each corresponding location.
I have been able to make the app reactive but the googlevis gauge display appears on the browser instead of in the app. In the app I get the error $ operator is invalid for atomic vectors. I tried converting the data into a dataframe but I am still getting this error.
the code is as follows
library(shiny)
library(leaflet)
library(shinydashboard)
library(dplyr)
library(googleVis)
#Making the Dataframe
locations<-c("A","B","C")
x<-c(36.05617,36.05626,36.05634)
y<-c(-2.1007,-2.05553,-2.01035)
yield<-c(5.86,3.06,1.07)
df<-data.frame(locations,x,y,yield)
################## Defining UI for application ############################
ui <- shinyUI(dashboardPage(title = "Yield Lookup",
dashboardHeader(title = "Crop Yield (Tonnes per Hectare)",titleWidth = 350),
dashboardSidebar(
sidebarMenu(
menuItem("Map Dashboard", tabName = "datavis", icon = icon("map", verify_fa = FALSE)),
menuItem("Select by Location Name", icon = icon("leaf"),
selectizeInput("locations", "Click on Location", choices = levels(factor(df$locations)))
)
)
),
dashboardBody(
tabItems(
tabItem(tabName = "datavis",
h4("Map and Plot"),
fluidRow(box(width= 8, leafletOutput("map", height = 800)),
box("Gauge for crop yield by area",width = 4, htmlOutput("myplot")))
)
)
)
)
)
################## Defining Server for application ############################
server<- shinyServer(function(input,output, session){
## Sub data
lo<-reactive({
})
locat_data <- reactive({
df[df$locations %in% input$locations,]
})
output[["myplot"]] <- renderGvis({
newdf<-locat_data()%>%select(locations, yield)
newdf<-as.data.frame(newdf)
Gauge <- gvisGauge(as.data.frame(newdf),
options=list(min=0, max=6, greenFrom=4,
greenTo=6, yellowFrom=2, yellowTo=4,
redFrom=0, redTo=2, width=400, height=300))
plot(Gauge)
})
output$map <- renderLeaflet({
leaflet(df) %>%
addTiles() %>%
addCircleMarkers(lng = ~x, lat = ~y, layerId = ~locations, color = "blue", radius = 3) %>%
addCircles(lng = ~x, lat = ~y, weight = 1,
radius = 1, label = ~locations
)
})
observeEvent(input$locations,{
updateSelectInput(session, "locations", "Click on Locations",
choices = levels(factor(df$locations)),
selected = c(input$locations))
})
observeEvent(input$map_marker_click, {
click <- input$map_marker_click
location <- df[which(df$y == click$lat & df$x == click$lng), ]$locations
updateSelectInput(session, "locations", "Click on Location",
choices = levels(factor(df$locations)),
selected = c(input$locations, location))
})
})
shinyApp(ui=ui, server = server)
I am not sure where I am going wrong. Please help.
You were very close.
Just drop the plot() and leave Gauge in the server section. (Alternatively drop the Gauge <- and Gauge on the next line and just leave gvisGauge())
library(shiny)
library(leaflet)
library(shinydashboard)
library(dplyr)
library(googleVis)
#Making the Dataframe
locations<-c("A","B","C")
x<-c(36.05617,36.05626,36.05634)
y<-c(-2.1007,-2.05553,-2.01035)
yield<-c(5.86,3.06,1.07)
df<-data.frame(locations,x,y,yield)
################## Defining UI for application ############################
ui <- shinyUI(dashboardPage(title = "Yield Lookup",
dashboardHeader(title = "Crop Yield (Tonnes per Hectare)",titleWidth = 350),
dashboardSidebar(
sidebarMenu(
menuItem("Map Dashboard", tabName = "datavis", icon = icon("map", verify_fa = FALSE)),
menuItem("Select by Location Name", icon = icon("leaf"),
selectizeInput("locations", "Click on Location", choices = levels(factor(df$locations)))
)
)
),
dashboardBody(
tabItems(
tabItem(tabName = "datavis",
h4("Map and Plot"),
fluidRow(box(width= 8, leafletOutput("map", height = 800)),
box("Gauge for crop yield by area",width = 4, htmlOutput("myplot")))
)
)
)
)
)
################## Defining Server for application ############################
server<- shinyServer(function(input,output, session){
## Sub data
lo<-reactive({
})
locat_data <- reactive({
df[df$locations %in% input$locations,]
})
output[["myplot"]] <- renderGvis({
newdf<-locat_data()%>%select(locations, yield)
newdf<-as.data.frame(newdf)
Gauge <- gvisGauge(as.data.frame(newdf),
options=list(min=0, max=6, greenFrom=4,
greenTo=6, yellowFrom=2, yellowTo=4,
redFrom=0, redTo=2, width=400, height=300))
Gauge
})
output$map <- renderLeaflet({
leaflet(df) %>%
addTiles() %>%
addCircleMarkers(lng = ~x, lat = ~y, layerId = ~locations, color = "blue", radius = 3) %>%
addCircles(lng = ~x, lat = ~y, weight = 1,
radius = 1, label = ~locations
)
})
observeEvent(input$locations,{
updateSelectInput(session, "locations", "Click on Locations",
choices = levels(factor(df$locations)),
selected = c(input$locations))
})
observeEvent(input$map_marker_click, {
click <- input$map_marker_click
location <- df[which(df$y == click$lat & df$x == click$lng), ]$locations
updateSelectInput(session, "locations", "Click on Location",
choices = levels(factor(df$locations)),
selected = c(input$locations, location))
})
})
shinyApp(ui=ui, server = server)

Dynamic labels on leaflet map (shiny r)

So I've been trying to add a functionality on my leaflet map in Shiny dashboard where the user would be able to choose what the popup label would show through an input checkbox statement (in this case, they would choose whether they would want to see Area of Land or Area of Water or both - default is set to both). In other words, I would like to have a list of column options that I can choose from to show on the popup label when I hover over the map.
The code I have so far is below
library(dplyr)
library(readxl)
library(shinydashboard)
library(rgdal)
library(leaflet)
library(htmltools)
download.file('https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_county_5m.zip',
'cb_2018_us_county_5m.zip')
unzip('cb_2018_us_county_5m.zip',exdir='cb_2018_us_county_5m')
download.file('https://www2.census.gov/programs-surveys/popest/geographies/2019/all-geocodes-v2019.xlsx',
'all-geocodes-v2019.xlsx')
shapes <- rgdal::readOGR("cb_2018_us_county_5m","cb_2018_us_county_5m")
df_geo <- read_excel('all-geocodes-v2019.xlsx',skip=4) %>% # the table starts from row 5
filter(`Summary Level`=='040') %>%
select(`State Code (FIPS)`, `Area Name (including legal/statistical area description)`)
colnames(df_geo) <- c('STATEFP','STATENAME')
shapes#data <- shapes#data %>%
left_join(df_geo) %>%
mutate(ALAND = as.numeric(as.character(ALAND)),
AWATER = as.numeric(as.character(AWATER)),
content = paste0('<b>',NAME,' (',STATENAME,')</b>',
'<br>Area of Land: ', ALAND,
'<br>Area of Water: ', AWATER),
NAME = as.character(NAME))
shapes <- shapes[!is.na(shapes#data$STATENAME),] # remove shapes that are not in a state (e.g., Guam)
names_state <- sort(df_geo$STATENAME)
#### UI ####
header <- dashboardHeader(
title = "Leaflet - Layer Specific Legend",
titleWidth = 300
)
body <- dashboardBody(
fluidRow(
column(width=2,
selectInput("select_state", label='Select State:',
choices = names_state,
selected= 'New York'),
style='margin-left:20px;z-index:100000'
)
),
fluidRow(
column(width = 12,
box(width = NULL, height = 620,
leafletOutput("map",height=595),
status='warning')
)
)
)
ui <- dashboardPage(
title = "Leaflet - Layer Specific Legend",
skin = 'yellow',
header,
dashboardSidebar(disable = TRUE),
body
)
#### Server ####
server <- function(input, output, session) {
#### initialize reactive values ####
rvs <- reactiveValues(poly_state=shapes[shapes#data$STATENAME == 'New York',])
#### output ####
## output: leaflet map
output$map <- renderLeaflet({
rvs$map <- rvs$poly_state %>%
leaflet() %>%
addTiles('http://{s}.tile.openstreetmap.de/tiles/osmde/{z}/{x}/{y}.png') %>%
addPolygons(data = rvs$poly_state,
group = 'Area of Land',
weight=1, opacity = 1.0,color = 'white',
fillOpacity = 0.9, smoothFactor = 0.5,
fillColor = ~colorBin('OrRd',ALAND)(ALAND),
label = lapply(rvs$poly_state$content,HTML)) %>%
addPolygons(data = rvs$poly_state,
group = 'Area of Water',
weight=1, opacity = 1.0,color = 'grey',
fillOpacity = 0.9, smoothFactor = 0.5,
fillColor = ~colorBin('YlGnBu',AWATER)(AWATER),
label = lapply(rvs$poly_state$content,HTML)) %>%
addLayersControl(
position = "bottomright",
baseGroups = c('Area of Land','Area of Water'),
options = layersControlOptions(collapsed = TRUE)) %>%
addLegend(
"topright",
pal = colorBin('OrRd', rvs$poly_state$ALAND),
values = rvs$poly_state$ALAND
) %>%
hideGroup(c('Area of Land','Area of Water')) %>%
showGroup('Area of Land')
})
#### observe mouse events ####
## update rv when the selected state changes
observeEvent(input$select_state, {
rvs$poly_state <- shapes[shapes#data$STATENAME == input$select_state,]
})
## update legend when the selected layer group changes
observeEvent(input$map_groups, {
my_map <- leafletProxy("map") %>% clearControls()
if (input$map_groups == 'Area of Land'){
my_map <- my_map %>%
addLegend(
"topright",
pal = colorBin('OrRd', rvs$poly_state$ALAND),
values = rvs$poly_state$ALAND)
}else{
my_map <- my_map %>%
addLegend(
"topright",
pal = colorBin('YlGnBu', rvs$poly_state$AWATER),
values = rvs$poly_state$AWATER)
}
})
}
#### Run App ####
shinyApp(ui = ui, server = server)
First, you can create a data frame from your spatial data and edit your table. Here I delete the column "content".
shapes_df <- as.data.frame(shapes[,c(1:10)])
Then you create a reactive value that interacts with your input.
popup <- reactive({
return(shapes_df %>% select(input$select_column))
})
Here is a working code for you. I made some changes and commented some lines out.
library(dplyr)
library(readxl)
library(shinydashboard)
library(rgdal)
library(leaflet)
library(htmltools)
download.file('https://www2.census.gov/geo/tiger/GENZ2018/shp/cb_2018_us_county_5m.zip',
'cb_2018_us_county_5m.zip')
unzip('cb_2018_us_county_5m.zip',exdir='cb_2018_us_county_5m')
download.file('https://www2.census.gov/programs-surveys/popest/geographies/2019/all-geocodes-v2019.xlsx',
'all-geocodes-v2019.xlsx')
shapes <- rgdal::readOGR("cb_2018_us_county_5m","cb_2018_us_county_5m")
df_geo <- read_excel('all-geocodes-v2019.xlsx',skip=4) %>% # the table starts from row 5
filter(`Summary Level`=='040') %>%
select(`State Code (FIPS)`, `Area Name (including legal/statistical area description)`)
colnames(df_geo) <- c('STATEFP','STATENAME')
shapes#data <- shapes#data %>%
left_join(df_geo) %>%
mutate(ALAND = as.numeric(as.character(ALAND)),
AWATER = as.numeric(as.character(AWATER)),
content = paste0('<b>',NAME,' (',STATENAME,')</b>',
'<br>Area of Land: ', ALAND,
'<br>Area of Water: ', AWATER),
NAME = as.character(NAME))
shapes <- shapes[!is.na(shapes#data$STATENAME),] # remove shapes that are not in a state (e.g., Guam)
names_state <- sort(df_geo$STATENAME)
# here you can select which columns you want to add to your popup
shapes_df <- as.data.frame(shapes[,c(1:10)])
#### UI ####
header <- dashboardHeader(
title = "Leaflet - Layer Specific Legend",
titleWidth = 300
)
body <- dashboardBody(
fluidRow(
column(width=2,
selectInput("select_state", label='Select State:',
choices = names_state,
selected= 'New York'),
selectInput("select_column", label='Select the column you want to see in pop-up:',
choices = c(colnames(shapes#data))
),
verbatimTextOutput("output"),
style='margin-left:20px;z-index:100000'
)
),
fluidRow(
column(width = 12,
box(width = NULL, height = 620,
leafletOutput("map",height=595),
status='warning')
)
)
)
ui <- dashboardPage(
title = "Leaflet - Layer Specific Legend",
skin = 'yellow',
header,
dashboardSidebar(disable = TRUE),
body
)
#### Server ####
server <- function(input, output, session) {
rvs <- reactive({
shapes[shapes#data$STATENAME %in% input$select_state, ]
})
# we create a reactive value for popup which interacts with the input
popup <- reactive({
return(shapes_df %>% select(input$select_column))
})
#### initialize reactive values ####
#### output ####
## output: leaflet map
output$map <- renderLeaflet({
leaflet() %>%
addTiles('http://{s}.tile.openstreetmap.de/tiles/osmde/{z}/{x}/{y}.png') %>%
addPolygons(data = rvs(),
group = 'Area of Land',
weight=1, opacity = 1.0,color = 'white',
fillOpacity = 0.9, smoothFactor = 0.5,
fillColor = ~colorBin('OrRd',rvs()#data$ALAND)(rvs()#data$ALAND),
label = paste(
colnames(popup()),": ", popup()[,1]
)
)%>%
addPolygons(data = rvs(),
group = 'Area of Water',
weight=1, opacity = 1.0,color = 'grey',
fillOpacity = 0.9, smoothFactor = 0.5,
fillColor = ~colorBin('YlGnBu',rvs()#data$AWATER)(rvs()#data$AWATER),
label = paste(
colnames(popup()),": ", popup()[,1]
)
) %>%
addLayersControl(
position = "bottomright",
baseGroups = c('Area of Land','Area of Water'),
options = layersControlOptions(collapsed = TRUE)) %>%
addLegend(
"topright",
pal = colorBin('OrRd', rvs()#data$ALAND),
values =rvs()#data$ALAND
) %>%
hideGroup(c('Area of Land','Area of Water')) %>%
showGroup('Area of Land')
})
#### observe mouse events ####
## update rv when the selected state changes
# observeEvent(input$select_state, {
# rvs()#data <- shapes[shapes#data$STATENAME == input$select_state,]
# })
## update legend when the selected layer group changes
observeEvent(input$map_groups, {
my_map <- leafletProxy("map") %>% clearControls()
if (input$map_groups == 'Area of Land'){
my_map <- my_map %>%
addLegend(
"topright",
pal = colorBin('OrRd', rvs()#data$ALAND),
values = rvs()#data$ALAND)
}else{
my_map <- my_map %>%
addLegend(
"topright",
pal = colorBin('YlGnBu', rvs()#data$AWATER),
values = rvs()#data$AWATER)
}
})
}
#### Run App ####
shinyApp(ui = ui, server = server)

How to render Data Table in R Shiny using Dropdown input to filter Dataframe?

In continuation to my previous post where this was applied on map, I am trying to filter a table in R Shiny using Dropdown input: How to build dynamic Leaflet Map in RShiny?
Code:
library(shiny)
library(shinydashboard)
library(tidyverse)
library(leaflet)
library(readxl)
library(RCurl)
library(DT)
URL <- "https://www.mohfw.gov.in/pdf/PMJAYPRIVATEHOSPITALSCONSOLIDATED.xlsx"
download.file(URL, destfile = "../../timesnow_PMJAYPRIVATEHOSPITALSCONSOLIDATED.xlsx",method = "curl")
# Data
ind_vaccination_center <- readxl::read_xlsx(path = "../../timesnow_PMJAYPRIVATEHOSPITALSCONSOLIDATED.xlsx",
sheet = 1)
ind_vaccination_leaflet <- ind_vaccination_center %>%
mutate(label_display = paste(
"<h2>", ind_vaccination_center$`Name of the Vaccination Site*`, "</h2>",
"<h4>",ind_vaccination_center$`District*`,",", ind_vaccination_center$`State*`, "</h4>",
"<p>", "Address: ", ind_vaccination_center$Address,",", ind_vaccination_center$`PinCode*`, "</p>",
"<p>", "Mobile: ", ind_vaccination_center$`Mobile Number`, "</p>",
"<p>", "Contact Person: ", ind_vaccination_center$`Contact Person`, "</p>"
)
)
# Define UI for application
ui <- fluidPage(
# Application title
titlePanel("Covid19 Vaccination Centers in India"),
# Sidebar with a Dropdown
sidebarLayout(
sidebarPanel(
selectInput(inputId = "state_selection",
label = "Select State",
choices = ind_vaccination_center$`State*`),
h3("List of Vaccination Centers is plotted on Map & also listed in searchable table."),
"source of list:",
a("https://www.timesnownews.com/india/article/covid-19-vaccination-in-uttar-pradesh-check-complete-list-of-govt-and-private-hospitals-for-jab/726412"),
br(),
br(),
a("https://www.oneindia.com/india/full-list-of-private-hospitals-where-the-covid-19-vaccine-will-be-administered-3223706.html"),
br(),
br(),
"P.S - There might be more center's added to this list, kindly recheck from other sources as well like:",
br(),
a("https://www.cowin.gov.in/home")
),
# Show Map & table
mainPanel(
tabsetPanel(type = "tabs",
tabPanel("Map", leafletOutput("map",height = 800, width = "100%")),
tabPanel("Data Table", tableOutput("mytable"))
)
)
)
)
# Define server logic
server <- function(input, output) {
# solution from: https://stackoverflow.com/questions/66732758/how-to-build-dynamic-leaflet-map-in-rshiny/66733086#66733086
output$map <- renderLeaflet({
req(input$state_selection)
data <- ind_vaccination_leaflet %>%
filter(`State*` == input$state_selection)
# Creating map object & adding layers
leaflet(data) %>%
setView(lat = 26.64510, lng = 80.17012, zoom = 4) %>%
addTiles(group = "OSM") %>%
addProviderTiles(providers$CartoDB.DarkMatter, group = "Dark") %>%
addProviderTiles(providers$CartoDB.Positron, group = "Light") %>%
addProviderTiles("Stamen.Terrain", group = "Terrain") %>%
addProviderTiles("Esri.WorldImagery", group = "WorldImagery") %>%
addLayersControl(baseGroups = c("OSM","WorldImagery","Dark","Light","Terrain")) %>%
addCircleMarkers(
lng = ~`Longitude*`,
lat = ~`Latitude*`,
label = lapply(data$label_display, htmltools::HTML),
color = "midnightblue",
weight = 1,
radius = 8
)%>%
addMiniMap(tiles = providers$OpenStreetMap, width = 120, height=80)
})
output$mytable = DT::renderDataTable({
req(input$state_selection)
data <- ind_vaccination_leaflet %>%
filter(`State*` == input$state_selection)
data
})
}
# Run the application
shinyApp(ui = ui, server = server)
You need to do two changes.
tabPanel("Data Table", dataTableOutput("mytable"))
and
output$mytable = DT::renderDataTable({
req(input$state_selection)
data <- ind_vaccination_leaflet %>%
filter(`State*` == input$state_selection)
datatable(data)
})

Click-on ability on leaflet heatmap

I have a shiny app which displayes a leaflet heatmap. I would like to know if is possible to click on a certain point of the map and get the relative row(s) of the dataframe in a data table below.
library(shiny)
library(DT)
library(leaflet)
library(leaflet.extras)
# ui object
ui <- fluidPage(
titlePanel(p("Spatial app", style = "color:#3474A7")),
sidebarLayout(
sidebarPanel(
),
mainPanel(
leafletOutput("map"),
tableOutput("myTable")
)
)
)
# server()
server <- function(input, output, session) {
data <- reactiveValues(clickedMarker=NULL)
output$map<-renderLeaflet({
leaflet(quakes) %>%
addProviderTiles(providers$CartoDB.DarkMatter) %>%
setView( 178, -20, 5 ) %>%
addHeatmap(
lng = ~long, lat = ~lat, intensity = ~mag,
blur = 20, max = 0.05, radius = 15
) %>%
addCircleMarkers(lng = quakes$long, lat = quakes$lat, layerId = quakes$depth,
fillOpacity = 0, weight = 0,
popup = paste("Depth:", quakes$depth, "<br>",
"Stations:", quakes$stations),
labelOptions = labelOptions(noHide = TRUE))
})
# observe the marker click info and print to console when it is changed.
observeEvent(input$map_marker_click,{
print("observed map_marker_click")
data$clickedMarker <- input$map_marker_click
print(data$clickedMarker)
output$myTable <- renderTable({
return(
subset(quakes,depth == data$clickedMarker$depth)
)
})
})
}
# shinyApp()
shinyApp(ui = ui, server = server)
As update to my comment, I think the issue is that when you are trying to subset the dataset at the end, the rows you trying to match with are actually $id and not $depth - I think this is because when you call layerId = quakes$depth it creates an id to match on.
I think this does what you want:
library(shiny)
library(DT)
library(leaflet)
library(leaflet.extras)
# ui object
ui <- fluidPage(
titlePanel(p("Spatial app", style = "color:#3474A7")),
sidebarLayout(
sidebarPanel(
),
mainPanel(
leafletOutput("map"),
tableOutput("myTable")
)
)
)
# server()
server <- function(input, output, session) {
data <- reactiveValues(clickedMarker=NULL)
output$map<-renderLeaflet({
leaflet(quakes) %>%
addProviderTiles(providers$CartoDB.DarkMatter) %>%
setView( 178, -20, 5 ) %>%
addHeatmap(
lng = ~long, lat = ~lat, intensity = ~mag,
blur = 20, max = 0.05, radius = 15
) %>%
addCircleMarkers(lng = quakes$long, lat = quakes$lat, layerId = quakes$depth,
fillOpacity = 0, weight = 0,
popup = paste("Depth:", quakes$depth, "<br>",
"Stations:", quakes$stations),
labelOptions = labelOptions(noHide = TRUE))
})
# observe the marker click info and print to console when it is changed.
observeEvent(input$map_marker_click,{
print("observed map_marker_click")
data$clickedMarker <- input$map_marker_click
print(data$clickedMarker)
output$myTable <- renderTable({
return(
subset(quakes, depth == data$clickedMarker$id)
)
})
})
}
# shinyApp()
shinyApp(ui = ui, server = server)
giving:
If you check the console output you will see the id subsetted (not depth):
[1] "observed map_marker_click"
$id
[1] 46
$.nonce
[1] 0.3895379
$lat
[1] -13.66
$lng
[1] 172.23

Shiny Leaflet map renders twice on switching input

I'm trying to produce a Shiny app with Leaflet that renders a choropleth map based on different input criteria. The map displays incidents of different types (input$type) and backgrounds (input$background). When additional types or backgrounds are specified, polygons are filled with updated incident data. It is working correctly with one snag. When I switch the date input from date range (input$dateInput) to presidential period (input$president), the choropleth for presidential period renders once, displaying polygons with no data, and then again with the polygons filled with the correct data for the pre-selected period ("President1"). How do I avoid the map rendering twice like this when the Presidency tab is pressed?
Question also listed here on RStudio Community.
The raw data and shapefile used can be accessed here: https://github.com/cjbarrie/shiny_egy.
Working example:
Name of raw data: wikiraw
Name of shapefile: shapefile
Global:
library(shiny)
library(shinydashboard)
library(shinythemes)
library(leaflet)
library(rgdal)
library(rmapshaper)
library(sp)
library(dplyr)
library(lubridate)
wikiraw <-read.csv("~/wikisample_SO.csv")
shapefile <- readOGR("~/EGY_adm2.shp")
shapefile<-spTransform(shapefile, CRS("+init=epsg:4326"))
## Simplify shapefile to speed up rendering
shapefile <- ms_simplify(shapefile, keep = 0.01, keep_shapes = TRUE)
wikbounds<-bbox(shapefile)
wikiraw$incident_date <- as.Date(wikiraw$incident_date,
format = "%m/%d/%Y")
wikiraw$presidency <- rep(NA, nrow(wikiraw))
wikiraw$incident_date1 <- as.numeric(wikiraw$incident_date)
wikiraw$event <- rep(1,nrow(wikiraw))
## Generate presidency categorical var.
wikiraw$presidency <- cut(wikiraw$incident_date1,
breaks = c(-Inf, 15016, 15521, 15889, 16229, Inf),
labels = c("President1", "President2", "President3", "President4", "President5"),
right = FALSE)
Snippet of data.frame wikiraw:
ID_2 incident_date incident_background incident_type presidency event
1 168 2013-11-26 Cultural Group President4 1
2 133 2013-11-29 Cultural Group President4 1
3 137 2014-01-25 Cultural Group President4 1
4 168 2011-01-28 Cultural Collective President1 1
5 168 2016-04-25 Cultural Group President5 1
6 163 2015-02-08 Political Individual President5 1
UI:
ui <- dashboardPage(
dashboardHeader(title = "Map tool"),
dashboardSidebar(sidebarMenu(menuItem("Map", tabName = "map"),
selectInput("input_type", "Date input type",
c("Date", "Presidency")),
uiOutput("dateSelect"),
uiOutput("typeSelect"),
uiOutput("backgroundSelect"),
uiOutput("presidentSelect"))),
dashboardBody(tabItems(
tabItem(tabName = "map",
leafletOutput("mymap", height=500)))))
Server:
server <- function(input, output, session) {
output$dateSelect <- renderUI({
switch(input$input_type,
"Date" = dateRangeInput("dateInput", "Dates:",
min=min(wikiraw$incident_date), max = max(wikiraw$incident_date),
start = min(wikiraw$incident_date), end = max(wikiraw$incident_date)),
"Presidency" = checkboxGroupInput("president", "Presidency",
choices = levels(wikiraw$presidency),
selected = "President1"))
})
output$typeSelect <- renderUI({
selectInput("type", "Incident type",
choices = unique(wikiraw$incident_type), multiple = TRUE,
selected = wikiraw$incident_type[1])})
output$backgroundSelect <- renderUI({
checkboxGroupInput("background", "Incident background",
choices = unique(wikiraw$incident_background),
selected = wikiraw$incident_background[1])})
selected <- reactive({
wikiagg <- wikiraw %>% group_by(ID_2, incident_date, incident_type, incident_background, presidency) %>%
summarize(sum_event = sum(event))
if(input$input_type=="Date"){wikiagg <- filter(wikiagg,
incident_date >= min(input$dateInput),
incident_date <= max(input$dateInput),
incident_type%in%input$type,
incident_background%in%input$background)}
if(input$input_type=="Presidency"){wikiagg <- filter(wikiagg,
incident_type%in%input$type,
incident_background%in%input$background,
presidency%in%input$president)}
wikiagg <- wikiagg %>% group_by(ID_2) %>%
summarize(sum_event = sum(sum_event))
wikiagg
})
output$mymap <- renderLeaflet({
leaflet() %>%
addTiles() %>%
setView(mean(wikbounds[1,]),
mean(wikbounds[2,]),
zoom=6
)
})
observe({
if(!is.null(input$dateInput)){
shapefile#data <- left_join(shapefile#data, selected(), by="ID_2")
##Define palette across range of data
wikiaggpal <- wikiraw %>% group_by(ID_2) %>%
summarize(sum_event = sum(event))
pal <- colorBin("YlOrRd", wikiaggpal$sum_event, bins=5, na.color = "#bdbdbd")
leafletProxy("mymap", data = shapefile) %>%
addTiles() %>%
clearShapes() %>%
addPolygons(data = shapefile, fillColor = ~pal(sum_event), fillOpacity = 0.7,
color = "white", weight = 2)
}})
}
shinyApp(ui, server)
Gif of issue:
https://imgur.com/a/FnfOGKi
Any help would be hugely appreciated!
What if you change the reactive to a reactiveValue and assign the data in an observe? I don't know if it is working correctly as I dont know which shapes & colors to expect, but I am not seeing that double rendering anymore.
(Data & Preparation from question is used)
library(shiny)
library(shinydashboard)
library(shinythemes)
library(leaflet)
library(rgdal)
library(rmapshaper)
library(sp)
library(dplyr)
library(lubridate)
ui <- dashboardPage(
dashboardHeader(title = "Map tool"),
dashboardSidebar(sidebarMenu(menuItem("Map", tabName = "map"),
selectInput("input_type", "Date input type",
c("Date", "Presidency")),
uiOutput("dateSelect"),
uiOutput("typeSelect"),
uiOutput("backgroundSelect"),
uiOutput("presidentSelect"))),
dashboardBody(tabItems(
tabItem(tabName = "map",
leafletOutput("mymap", height=500)))))
server <- function(input, output, session) {
output$dateSelect <- renderUI({
switch(input$input_type,
"Date" = dateRangeInput("dateInput", "Dates:",
min=min(wikiraw$incident_date), max = max(wikiraw$incident_date),
start = min(wikiraw$incident_date), end = max(wikiraw$incident_date)),
"Presidency" = checkboxGroupInput("president", "Presidency",
choices = levels(wikiraw$presidency),
selected = "President1"))
})
output$typeSelect <- renderUI({
selectInput("type", "Incident type",
choices = unique(wikiraw$incident_type), multiple = TRUE,
selected = wikiraw$incident_type[1])})
output$backgroundSelect <- renderUI({
checkboxGroupInput("background", "Incident background",
choices = unique(wikiraw$incident_background),
selected = wikiraw$incident_background[1])})
sel_reactval = reactiveValues(s = NULL)
# selected <- reactive({
observe({
wikiagg <- wikiraw %>% group_by(ID_2, incident_date, incident_type, incident_background, presidency) %>%
summarize(sum_event = sum(event))
if(input$input_type=="Date"){wikiagg <- filter(wikiagg,
incident_date >= min(input$dateInput),
incident_date <= max(input$dateInput),
incident_type%in%input$type,
incident_background%in%input$background)}
if(input$input_type=="Presidency"){wikiagg <- filter(wikiagg,
incident_type%in%input$type,
incident_background%in%input$background,
presidency%in%input$president)}
wikiagg <- wikiagg %>% group_by(ID_2) %>%
summarize(sum_event = sum(sum_event))
sel_reactval$s = wikiagg
# wikiagg
})
output$mymap <- renderLeaflet({
leaflet() %>%
addTiles() %>%
setView(mean(wikbounds[1,]),
mean(wikbounds[2,]),
zoom=6
)
})
observe({
req(!is.null(input$dateInput))
req(nrow(as.data.frame(sel_reactval$s))!=0)
# if(!is.null(input$dateInput)){
# shapefile#data <- left_join(shapefile#data, selected(), by="ID_2")
shapefile#data <- left_join(shapefile#data, sel_reactval$s, by="ID_2")
##Define palette across range of data
wikiaggpal <- wikiraw %>% group_by(ID_2) %>%
summarize(sum_event = sum(event))
pal <- colorBin("YlOrRd", wikiaggpal$sum_event, bins=5, na.color = "#bdbdbd")
leafletProxy("mymap") %>%
addTiles() %>%
clearShapes() %>%
addPolygons(data = shapefile, fillColor = ~pal(sum_event), fillOpacity = 1,
color = "white", weight = 2)
# }
})
}
shinyApp(ui, server)

Resources