How to I customise the values on the Y axis - r

I am using ggplot2 in R to create a histogram and I would like to customise the values on the y axis. At present the values on the Y axis range from one and have an interval of 3. I would like to make all the values on the on the y axis visible i.e. 1,2,3 and so on.
How do I do this?
plot_2 <-
ggplot(Tennis, aes(x=winner)) +
geom_bar(data = subset(top_wins, tournament == "French Open")) +
ggtitle("French Open")

You can use the scale_y_continuous() function. Below is an example where the y axis will go from 0 to 20.
ggplot() + geom_point(data = iris, aes(x = Petal.Width, y = Petal.Length,color = Species)) +
+ scale_y_continuous(limits = c(0, 20), breaks = seq(0, 20, by = 1)

Related

Use free_y scale on first axis and fixed on second + facet_grid + ggplot2

Is there any method to set scale = 'free_y' on the left hand (first) axis in ggplot2 and use a fixed axis on the right hand (second) axis?
I have a dataset where I need to use free scales for one variable and fixed for another but represent both on the same plot. To do so I'm trying to add a second, fixed, y-axis to my data. The problem is I cannot find any method to set a fixed scale for the 2nd axis and have that reflected in the facet grid.
This is the code I have so far to create the graph -
#plot weekly seizure date
p <- ggplot(dfspw_all, aes(x=WkYr, y=Seizures, group = 1)) + geom_line() +
xlab("Week Under Observation") + ggtitle("Average Seizures per Week - To Date") +
geom_line(data = dfsl_all, aes(x =WkYr, y = Sleep), color = 'green') +
scale_y_continuous(
# Features of the first axis
name = "Seizures",
# Add a second axis and specify its features
sec.axis = sec_axis(~.[0:20], name="Sleep")
)
p + facet_grid(vars(Name), scales = "free_y") +
theme(axis.ticks.x=element_blank(),axis.text.x = element_blank())
This is what it is producing (some details omitted from code for simplicity) -
What I need is for the scale on the left to remain "free" and the scale on the right to range from 0-24.
Secondary axes are implemented in ggplot2 as a decoration that is a transformation of the primary axis, so I don't know an elegant way to do this, since it would require the secondary axis formula to be aware of different scaling factors for each facet.
Here's a hacky approach where I scale each secondary series to its respective primary series, and then add some manual annotations for the secondary series. Another way might be to make the plots separately for each facet like here and use patchwork to combine them.
Given some fake data where the facets have different ranges for the primary series but the same range for the secondary series:
library(tidyverse)
fake <- tibble(facet = rep(1:3, each = 10),
x = rep(1:10, times = 3),
y_prim = (1+sin(x))*facet/2,
y_sec = (1 + sin(x*3))/2)
ggplot(fake, aes(x, y_prim)) +
geom_line() +
geom_line(aes(y= y_sec), color = "green") +
facet_wrap(~facet, ncol = 1)
...we could scale each secondary series to its primary series, and add custom annotations for that secondary series:
fake2 <- fake %>%
group_by(facet) %>%
mutate(y_sec_scaled = y_sec/max(y_sec) * (max(y_prim))) %>%
ungroup()
fake2_labels <- fake %>%
group_by(facet) %>%
summarize(max_prim = max(y_prim), baseline = 0, x_val = 10.5)
ggplot(fake2, aes(x, y_prim)) +
geom_line() +
geom_line(aes(y= y_sec_scaled), color = "green") +
facet_wrap(~facet, ncol = 1, scales = "free_y") +
geom_text(data = fake2_labels, aes(x = x_val, y = max_prim, label = "100%"),
hjust = 0, color = "green") +
geom_text(data = fake2_labels, aes(x = x_val, y = baseline, label = "0%"),
hjust = 0, color = "green") +
coord_cartesian(xlim = c(0, 10), clip = "off") +
theme(plot.margin = unit(c(1,3,1,1), "lines"))

Is there an equivalent to points() on ggplot2

I'm working with stock prices and trying to plot the price difference.
I created one using autoplot.zoo(), my question is, how can I manage to change the point shapes to triangles when they are above the upper threshold and to circles when they are below the lower threshold. I understand that when using the basic plot() function you can do these by calling the points() function, wondering how I can do this but with ggplot2.
Here is the code for the plot:
p<-autoplot.zoo(data, geom = "line")+
geom_hline(yintercept = threshold, color="red")+
geom_hline(yintercept = -threshold, color="red")+
ggtitle("AAPL vs. SPY out of sample")
p+geom_point()
We can't fully replicate without your data, but here's an attempt with some sample generated data that should be similar enough that you can adapt for your purposes.
# Sample data
data = data.frame(date = c(2001:2020),
spread = runif(20, -10,10))
# Upper and lower threshold
thresh <- 4
You can create an additional variable that determines the shape, based on the relationship in the data itself, and pass that as an argument into ggplot.
# Create conditional data
data$outlier[data$spread > thresh] <- "Above"
data$outlier[data$spread < -thresh] <- "Below"
data$outlier[is.na(data$outlier)] <- "In Range"
library(ggplot2)
ggplot(data, aes(x = date, y = spread, shape = outlier, group = 1)) +
geom_line() +
geom_point() +
geom_hline(yintercept = c(thresh, -thresh), color = "red") +
scale_shape_manual(values = c(17,16,15))
# If you want points just above and below# Sample data
data = data.frame(date = c(2001:2020),
spread = runif(20, -10,10))
thresh <- 4
data$outlier[data$spread > thresh] <- "Above"
data$outlier[data$spread < -thresh] <- "Below"
ggplot(data, aes(x = date, y = spread, shape = outlier, group = 1)) +
geom_line() +
geom_point() +
geom_hline(yintercept = c(thresh, -thresh), color = "red") +
scale_shape_manual(values = c(17,16))
Alternatively, you can just add the points above and below the threshold as individual layers with manually specified shapes, like this. The pch argument points to shape type.
# Another way of doing this
data = data.frame(date = c(2001:2020),
spread = runif(20, -10,10))
# Upper and lower threshold
thresh <- 4
ggplot(data, aes(x = date, y = spread, group = 1)) +
geom_line() +
geom_point(data = data[data$spread>thresh,], pch = 17) +
geom_point(data = data[data$spread< (-thresh),], pch = 16) +
geom_hline(yintercept = c(thresh, -thresh), color = "red") +
scale_shape_manual(values = c(17,16))

How to label only the modal peak in a geom_col plot

I'd like to put a label above only the modal bar (the tallest peak) on my geom_col plot, giving the x-axis value (CAG). Here's an example, but I can only get it to label every peak.
x <- seq(-20, 20, by = .1)
y <- dnorm(x, mean = 5.0, sd = 1.0)
z <- data.frame(CAG = 1:401, height = y)
ggplot(z, aes(x=CAG, y=height)) +
geom_col() +
geom_text(aes(label = CAG))
I'd be very grateful for help with labelling only the top peak
Just subset your dataset in geom_text to keep only the maximal value of y:
ggplot(z, aes(x=CAG, y=height)) +
geom_col() +
geom_text(data = subset(z, y == max(y)), aes(label = CAG))

Adjusting axis in ggtern ternary plots

I am trying to generate a ternary plot using ggtern.
My data ranges from 0 - 1000 for x, y,and z variables. I wondered if it is possible to extend the axis length above 100 to represent my data.
#Nevrome is on the right path, your points will still be plotted as 'compositions', ie, concentrations sum to unity, but you can change the labels of the axes, to indicate a range from 0 to 1000.
library(ggtern)
set.seed(1)
df = data.frame(x = runif(10)*1000,
y = runif(10)*1000,
z = runif(10)*1000)
breaks = seq(0,1,by=0.2)
ggtern(data = df, aes(x, y, z)) +
geom_point() +
limit_tern(breaks=breaks,labels=1000*breaks)
I think there is no direct solution to do this with ggtern. But an easy workaround could look like this:
library(ggtern)
df = data.frame(x = runif(50)*1000,
y = runif(50)*1000,
z = runif(50)*1000,
Group = as.factor(round(runif(50,1,2))))
ggtern() +
geom_point(data = df, aes(x/10, y/10, z/10, color = Group)) +
labs(x="X", y="Y", z="Z", title="Title") +
scale_T_continuous(breaks = seq(0,1,0.2), labels = 1000*seq(0,1,0.2)) +
scale_L_continuous(breaks = seq(0,1,0.2), labels = 1000*seq(0,1,0.2)) +
scale_R_continuous(breaks = seq(0,1,0.2), labels = 1000*seq(0,1,0.2))

Most succinct way to label/annotate extreme values with ggplot?

I'd like to annotate all y-values greater than a y-threshold using ggplot2.
When you plot(lm(y~x)), using the base package, the second graph that pops up automatically is Residuals vs Fitted, the third is qqplot, and the fourth is Scale-location. Each of these automatically label your extreme Y values by listing their corresponding X value as an adjacent annotation. I'm looking for something like this.
What's the best way to achieve this base-default behavior using ggplot2?
Updated scale_size_area() in place of scale_area()
You might be able to take something from this to suit your needs.
library(ggplot2)
#Some data
df <- data.frame(x = round(runif(100), 2), y = round(runif(100), 2))
m1 <- lm(y ~ x, data = df)
df.fortified = fortify(m1)
names(df.fortified) # Names for the variables containing residuals and derived qquantities
# Select extreme values
df.fortified$extreme = ifelse(abs(df.fortified$`.stdresid`) > 1.5, 1, 0)
# Based on examples on page 173 in Wickham's ggplot2 book
plot = ggplot(data = df.fortified, aes(x = x, y = .stdresid)) +
geom_point() +
geom_text(data = df.fortified[df.fortified$extreme == 1, ],
aes(label = x, x = x, y = .stdresid), size = 3, hjust = -.3)
plot
plot1 = ggplot(data = df.fortified, aes(x = .fitted, y = .resid)) +
geom_point() + geom_smooth(se = F)
plot2 = ggplot(data = df.fortified, aes(x = .fitted, y = .resid, size = .cooksd)) +
geom_point() + scale_size_area("Cook's distance") + geom_smooth(se = FALSE, show_guide = FALSE)
library(gridExtra)
grid.arrange(plot1, plot2)

Resources