Changing elements in one data frame [duplicate] - r

This question already has answers here:
How to join (merge) data frames (inner, outer, left, right)
(13 answers)
Closed 1 year ago.
I have a df with two columns where the elements in them are codes:
> head(listaNombres)
ocupacion1 ocupacion2
1 11-2020 11-9190
2 11-2020 41-1010
3 11-2020 41-2030
4 11-2020 41-3090
5 11-2020 41-4010
6 11-3030 11-9190
And then a separate df with the meaning for each code:
> head(descripcion)
# A tibble: 6 x 2
broadGroup Desc
<chr> <chr>
1 11-1010 Chief Executives
2 11-1020 General and Operations Managers
3 11-1030 Legislators
4 11-2010 Advertising and Promotions Managers
5 11-2020 Marketing and Sales Managers
6 11-2030 Public Relations and Fundraising Managers
How can I convert the codes in the first df with the Desc column in the second?

This question has been answered a few times but non seem to have an answer that is simple and also uses base R. I'm not a fan of making people use unnecessary packages, so I'll write this up since there is an easy and straight forward solution that requires no extra packages.
Using the 'match' function we can
oldvalues <- descripcion$broadGroup
# sets up values we wish to change from
newvalues <- descripcion$Desc
# sets up the values we want to change to
listaNombres$ocupacion1 = newvalues[ match(listaNombres$ocupacion1, oldvalues) ]
# Overwrite current ocupacion1 values with desired recode
listaNombres$ocupacion2 = newvalues[ match(listaNombres$ocupacion2, oldvalues) ]
# Overwrite current ocupacion2 values with desired recode
Say we have
v3$recode = v2[ match(v3$recod, v1) ]
What this does is, is takes our three vectors, v1, v2 and v3 and using match(v3,v1), match returns a vector of positions in v1 where the first match between an element of v3 and v1 occurs. We then select elements from v2 using this vector of positions, which gives us the recoded version of v3$record. We then feed this recoded vector of values straight back into v3$record overwriting the old values.
edit: I've since had a look using R and this solution works using the following mockup dataset
ocupacion1 = c(1,2,3,4)
ocupacion2 = c(3,4,4,2)
listaNombres = data.frame(ocupacion1,ocupacion2)
broadGroup = c(1,2,3,4)
Desc = c("one","two","three","four")
descripcion = data.frame(broadGroup,Desc)
combining everything gives the following
> ocupacion1 = c(1,2,3,4)
> ocupacion2 = c(3,4,4,2)
> listaNombres = data.frame(ocupacion1,ocupacion2)
> head(listaNombres)
ocupacion1 ocupacion2
1 1 3
2 2 4
3 3 4
4 4 2
> broadGroup = c(1,2,3,4)
> Desc = c("one","two","three","four")
> descripcion = data.frame(broadGroup,Desc)
> head(descripcion)
broadGroup Desc
1 1 one
2 2 two
3 3 three
4 4 four
> oldvalues <- descripcion$broadGroup
> newvalues <- descripcion$Desc
> listaNombres$ocupacion1 = newvalues[ match(listaNombres$ocupacion1, oldvalues) ]
> listaNombres$ocupacion2 = newvalues[ match(listaNombres$ocupacion2, oldvalues) ]
> # Overwrite current ocupacion2 values with desired recode
> head(listaNombres)
ocupacion1 ocupacion2
1 one three
2 two four
3 three four
4 four two

Related

R: Adding a column of a conditional observation count [duplicate]

This question already has answers here:
Numbering rows within groups in a data frame
(10 answers)
Closed 3 years ago.
I am looking to add a column to my data that will list the individual count of the observation in the dataset. I have data on NBA teams and each of their games. They are listed by date, and I want to create a column that lists what # in each season each game is for each team.
My data looks like this:
# gmDate teamAbbr opptAbbr id
# 2012-10-30 WAS CLE 2012-10-30WAS
# 2012-10-30 CLE WAS 2012-10-30CLE
# 2012-10-30 BOS MIA 2012-10-30BOS
Commas separate each column
I've tried to use "add_count" but this has provided me with the total # of games each team has played in the dataset.
Prior attempts:
nba_box %>% add_count()
I expect the added column to display the # game for each team (1-82), but instead it now shows the total number of games in the dataset (82).
Here is a base R example that approaches the problem from a for loop standpoint. Given that a team can be either column, we keep track of the teams position by unlisting the data and using the table function to sum the previous rows.
# intialize some fake data
test <- as.data.frame(t(replicate(6, sample( LETTERS[1:3],2))),
stringsAsFactors = F)
colnames(test) <- c("team1","team2")
# initialize two new columns
test$team2_gamenum <- test$team1_gamenum <- NA
count <- NULL
for(i in 1:nrow(test)){
out <- c(count, table(unlist(test[i,c("team1","team2")])))
count <- table(rep(names(out), out)) # prob not optimum way of combining two table results
test$team1_gamenum[i] <- count[which(names(count) == test[i,1])]
test$team2_gamenum[i] <- count[which(names(count) == test[i,2])]
}
test
# team1 team2 team1_gamenum team2_gamenum
#1 B A 1 1
#2 A C 2 1
#3 C B 2 2
#4 C B 3 3
#5 A C 3 4
#6 A C 4 5

R - Compare column values in data frames of differing lengths by unique ID

I'm sure I can figure out a straightforward solution to this problem, but I didn't see a comparable question so I thought I'd post a question.
I have a longitudinal dataset with thousands of respondents over several time intervals. Everything from the questions to the data types can differ between the waves and often requires constructing long series of bools to construct indicators or dummy variables, but each respondent has a unique ID with no additional respondents add to the surveys after the first wave, so easy enough.
The issue is that while the early wave consist of one (Stata) file each, the latter waves contain lots of addendum files, structured differently. So, for example, in constructing previous indicators for the sex of previous partners there were columns (for one wave) called partnerNum and sex and there were up to 16 rows for each unique ID (respondent). Easy enough to spread (or cast) that data to be able to create a single row for each unique ID and columns partnerNum_1 ... partnerNum_16 with the value from the sex column as the entry in partnerDF. Then it's easy to construct indicators like:
sexuality$newIndicator[mainDF$bioSex = "Male" & apply(partnerDF[1:16] == "Male", 1, any)] <- 1
For other addendum files in the last two waves the data is structured long like the partner data, with multiple rows for each unique ID, but rather than just one variable like sex there are hundreds that I need to use to test against to construct indicators, all coded with different types, so it's impractical to spread (or cast) the data wide (never mind writing those bools). There are actually several of these files for each wave and the way they are structured some respondents (unique ID) occupy just 1 row, some a few dozen. (I've left_join'ed the addendum files together for each wave.)
What I'd like to be able to do to is test something like:
newDF$indicator[any(waveIIIAdds$var1 == 1) & any(waveIIIAdds$var2 == 1)] <- 1
or
newDF$indicator[mainDF$var1 == 1 & any(waveIIIAdds$var2 == 1)] <- 1
where newDF is the same length as mainDF (one row per unique ID).
So, for example, if I had two dfs.
df1 <- data.frame(ID = c(1:4), A = rep("a"))
df2 <- data.frame(ID = rep(1:4, each=2), B = rep(1:2, 2), stringsAsFactors = FALSE)
df1$A[1] <- "b"
df1$A[3] <- "b"
df2$B[8] <- 3
> df1 > df2
ID A ID B
1 b 1 1
2 a 1 2
3 b 2 1
4 a 2 2
3 1
3 2
4 1
4 3
I'd like to test like (assuming df3 has one column, just the unique IDs from df1)
df3$new <- 0
df3$new[df1$ID[df1$A == "a"] & df2$ID[df2$B == 2]] <- 1
So that df3 would have one unique ID per row and since there is an "a" in df1$A for all IDs but df1$A[1] and a 2 in at least one row of df2$B for all IDs except the last ID (df2$B[7:8]) the result would be:
> df3
ID new
1 0
2 1
3 1
4 0
and
df3$new <- 0
df3$new[df1$ID[df1$A == "a"] | df2$ID[df2$B == 2]] <- 1
> df3
ID new
1 1
2 1
3 1
4 0
This does it...
df3 <- data.frame(ID=unique(df1$ID),
new=sapply(unique(df1$ID),function(x)
as.numeric(x %in% df1$ID[df1$A == "a"] & x %in% df2$ID[df2$B == 2])))
df3
ID new
1 1 1
2 2 1
3 3 1
4 4 0
I came up with a parsimonious solution thinking about it for a few minutes after returning to the problem (rather than the wee hours of the morning of the post).
I wanted something a graduate student who will likely construct thousands of indicators or dummy variables this way and may learn R first, or even only ever learn R, could use. The following provides a solution for the example and actual data using the same schema:
if the DF was already created with the IDs and the column values for the dummy indicator initiated to zero already as assumed in the example:
df3 <- data.frame(ID = df1$ID)
df3$new <- 0
My solution was:
df3$new[df1$ID %in% df1$ID[df1$A == "a"] & df1$ID %in% df2$ID[df2$B == 2]] <- 1
> df3
ID new
1 0
2 1
3 0
4 1
Using | (or) instead:
df3$new[df1$ID %in% df1$ID[df1$A == "a"] | df1$ID %in% df2$ID[df2$B == 2]] <- 1
> df3
ID new
1 1
2 1
3 0
4 1

R: change one value every row in big dataframe

I just started working with R for my master thesis and up to now all my calculations worked out as I read a lot of questions and answers here (and it's a lot of trial and error, but thats ok).
Now i need to process a more sophisticated code and i can't find a way to do this.
Thats the situation: I have multiple sub-data-sets with a lot of entries, but they are all structured in the same way. In one of them (50000 entries) I want to change only one value every row. The new value should be the amount of the existing entry plus a few values from another sub-data-set (140000 entries) where the 'ID'-variable is the same.
As this is the third day I'm trying to solve this, I already found and tested for and apply but both are running for hours (canceled after three hours).
Here is an example of one of my attempts (with for):
for (i in 1:50000) {
Entry_ID <- Sub02[i,4]
SUM_Entries <- sum(Sub03$Source==Entry_ID)
Entries_w_ID <- subset(Sub03, grepl(Entry_ID, Sub03$Source)) # The Entry_ID/Source is a character
Value1 <- as.numeric(Entries_w_ID$VAL1)
SUM_Value1 <- sum(Value1)
Value2 <- as.numeric(Entries_w_ID$VAL2)
SUM_Value2 <- sum(Value2)
OLD_Val1 <- Sub02[i,13]
OLD_Val <- as.numeric(OLD_Val1)
NEW_Val <- SUM_Entries + SUM_Value1 + SUM_Value2 + OLD_Val
Sub02[i,13] <- NEW_Val
}
I know this might be a silly code, but thats the way I tried it as a beginner. I would be very grateful if someone could help me out with this so I can get along with my thesis.
Thank you!
Here's an example of my data-structure:
Text VAL0 Source ID VAL1 VAL2 VAL3 VAL4 VAL5 VAL6 VAL7 VAL8 VAL9
XXX 12 456335667806925_1075080942599058 10153901516433434_10153902087098434 4 1 0 0 4 9 4 6 8
ABC 8 456335667806925_1057045047735981 10153677787178434_10153677793613434 6 7 1 1 5 3 6 8 11
DEF 8 456747267806925_2357045047735981 45653677787178434_94153677793613434 5 8 2 1 5 4 1 1 9
The output I expect is an updated value 'VAL9' in every row.
From what I understood so far, you need 2 things:
sum up some values in one dataset
add them to another dataset, using an ID variable
Besides what #yoland already contributed, I would suggest to break it down in two separate tasks. Consider these two datasets:
a = data.frame(x = 1:2, id = letters[1:2], stringsAsFactors = FALSE)
a
# x id
# 1 1 a
# 2 2 b
b = data.frame(values = as.character(1:4), otherid = letters[1:2],
stringsAsFactors = FALSE)
sapply(b, class)
# values otherid
# "character" "character"
Values is character now, we need to convert it to numeric:
b$values = as.numeric(b$values)
sapply(b, class)
# values otherid
# "numeric" "character"
Then sum up the values in b (grouped by otherid):
library(dplyr)
b = group_by(b, otherid)
b = summarise(b, sum_values = sum(values))
b
# otherid sum_values
# <chr> <dbl>
# 1 a 4
# 2 b 6
Then join it with a - note that identifiers are specified in c():
ab = left_join(a, b, by = c("id" = "otherid"))
ab
# x id sum_values
# 1 1 a 4
# 2 2 b 6
We can then add the result of the sum from b to the variable x in a:
ab$total = ab$x + ab$sum_values
ab
# x id sum_values total
# 1 1 a 4 5
# 2 2 b 6 8
(Updated.)
From what I understand you want to create a new variable that uses information from two different data sets indexed by the same ID. The easiest way to do this is probably to join the data sets together (if you need to safe memory, just join the columns you need). I found dplyr's join functions very handy for these cases (explained neatly here) Once you joined the data sets into one, it should be easy to create the new columns you need. e.g.: df$new <- df$old1 + df$old2

Find string in data.frame

How do I search for a string in a data.frame? As a minimal example, how do I find the locations (columns and rows) of 'horse' in this data.frame?
> df = data.frame(animal=c('goat','horse','horse','two', 'five'), level=c('five','one','three',30,'horse'), length=c(10, 20, 30, 'horse', 'eight'))
> df
animal level length
1 goat five 10
2 horse one 20
3 horse three 30
4 two 30 horse
5 five horse eight
... so row 4 and 5 have the wrong order. Any output that would allow me to identify that 'horse' has shifted to the level column in row 5 and to the length column in row 4 is good. Maybe:
> magic_function(df, 'horse')
col row
'animal', 2
'animal', 3
'length', 4
'level', 5
Here's what I want to use this for: I have a very large data frame (around 60 columns, 20.000 rows) in which some columns are messed up for some rows. It's too large to eyeball in order to identify the different ways that order can be wrong, so searching would be nice. I will use this info to move data to the correct columns for these rows.
What about:
which(df == "horse", arr.ind = TRUE)
# row col
# [1,] 2 1
# [2,] 3 1
# [3,] 5 2
# [4,] 4 3
Another way around:
l <- sapply(colnames(df), function(x) grep("horse", df[,x]))
$animal
[1] 2 3
$level
[1] 5
$length
[1] 4
If you want the output to be matrix:
sapply(l,'[',1:max(lengths(l)))
animal level length
[1,] 2 5 4
[2,] 3 NA NA
We can get the indices where the value is equal to horse. Divide it by number of rows (nrow) to get the column indices and by columns (ncol) to get the row indices.
We use colnames to get column names instead of indices.
data.frame(col = colnames(df)[floor(which(df == "horse") / (nrow(df) + 1)) + 1],
row = floor(which(df == "horse") / ncol(df)) + 1)
# col row
#1 animal 1
#2 animal 2
#3 level 4
#4 length 5
Another way to do it is the following:
library(data.table)
library(zoo)
library(dplyr)
library(timeDate)
library(reshape2)
data frame name = tbl_account
first,Transpose it :
temp = t(tbl_Account)
Then, put it in to a list :
temp = list(temp)
This essentially puts every single observation in a data frame in to one massive string, allowing you to search the whole data frame in one go.
then do the searching :
temp[[1]][grep("Horse",temp[[1]])] #brings back the actual value occurrences
grep("Horse", temp[[1]]) # brings back the position of the element in a list it occurs in
hope this helps :)

R: Subset data frame based on multiple values for multiple variables

I need to pull records from a first data set (called df1 here) based on a combination of specific dates, ID#s, event start time, and event end time that match with a second data set (df2). Everything works fine when there is just 1 date, ID, and event start and end time, but some of the matching records between the data sets contain multiple IDs, dates, or times, and I can't get the records from df1 to subset properly in those cases. I ultimately want to put this in a FOR loop or independent function since I have a rather large dataset. Here's what I've got so far:
I started just by matching the dates between the two data sets as follows:
match_dates <- as.character(intersect(df1$Date, df2$Date))
Then I selected the records in df2 based on the first matching date, also keeping the other columns so I have the other ID and time information I need:
records <- df2[which(df2$Date == match_dates[1]), ]
The date, ID, start, and end time from records are then:
[1] "01-04-2009" "599091" "12:00" "17:21"
Finally I subset df1 for before and after the event based on the date, ID, and times in records and combined them into a new data frame called final to get at the data contained in df1 that I ultimately need.
before <- subset(df1, NUM==records$ID & Date==records$Date & Time<records$Start)
after <- subset(df1, NUM==records$ID & Date==records$Date & Time>records$End)
final <- rbind(before, after)
Here's the real problem - some of the matching dates have more than 1 corresponding row in df2, and return multiple IDs or times. Here is what an example of multiple records looks like:
records <- df2[which(df2$Date == match_dates[25]), ]
> records$ID
[1] 507646 680845 680845
> records$Date
[1] "04-02-2009" "04-02-2009" "04-02-2009"
> records$Start
[1] "09:43" "05:37" "11:59"
> records$End
[1] "05:19" "11:29" "16:47"
When I try to subset df1 based on this I get an error:
before <- subset(df1, NUM==records$ID & Date==records$Date & Time<records$Start)
Warning messages:
1: In NUM == records$ID :
longer object length is not a multiple of shorter object length
2: In Date == records$Date :
longer object length is not a multiple of shorter object length
3: In Time < records$Start :
longer object length is not a multiple of shorter object length
Trying to do it manually for each ID-date-time combination would be way to tedious. I have 9 years worth of data, all with multiple matching dates for a given year between the data sets, so ideally I would like to set this up as a FOR loop, or a function with a FOR loop in it, but I can't get past this. Thanks in advance for any tips!
If you're asking what I think you are the filter() function from the dplyr package combined with the match function does what you're looking for.
> df1 <- data.frame(A = c(rep(1,4),rep(2,4),rep(3,4)), B = c(rep(1:4,3)))
> df1
A B
1 1 1
2 1 2
3 1 3
4 1 4
5 2 1
6 2 2
7 2 3
8 2 4
9 3 1
10 3 2
11 3 3
12 3 4
> df2 <- data.frame(A = c(1,2), B = c(3,4))
> df2
A B
1 1 3
2 2 4
> filter(df1, A %in% df2$A, B %in% df2$B)
A B
1 1 3
2 1 4
3 2 3
4 2 4

Resources