Based on this answer How to get the coordinates of an intesected line with an outline - R ,I tried to run a loop using the script below. Any idea why I can not plot all the intersection points and lines? The shape is different than the answer given
Code:
library(ggplot2)
library(sf)
t <- seq(0, 2*pi, by=0.1)
df <- data.frame(x = 13*sin(t)^3,
y = 4*cos(t)-2*cos(3*t)-5*cos(4*t)-cos(2*t))
df <- rbind(df, df[1,]) # close the polygon
meanX <- mean(df$x)
meanY <- mean(df$y)
# Transform your data.frame in a sf polygon (the first and last points
# must have the same coordinates)
#> Linking to GEOS 3.5.1, GDAL 2.1.3, proj.4 4.9.2
poly <- st_sf(st_sfc(st_polygon(list(as.matrix(df)))))
# Choose the angle (in degrees)
rotAngles <- 5
for(angle in seq(0,359,rotAngles)) {
# Find the minimum length for the line segment to be always
# outside the cloud whatever the choosen angle
maxX <- max(abs(abs(df[,"x"]) - abs(meanX)))
maxY <- max(abs(abs(df[,"y"]) - abs(meanY)))
line_length = sqrt(maxX^2 + maxY^2) + 1
# Find the coordinates of the 2 points to draw a line with
# the intended angle.
# This is the gray line on the graph below
line <- rbind(c(meanX,meanY),
c(meanX + line_length * cos((pi/180)*angle),
meanY + line_length * sin((pi/180)*angle)))
# Transform into a sf line object
line <- st_sf(st_sfc(st_linestring(line)))
# Intersect the polygon and line. The result is a two points line
# shown in black on the plot below
intersect_line <- st_intersection(poly, line)
# Extract only the second point of this line.
# This is the intersecting point
intersect_point <- st_coordinates(intersect_line)[2,c("X","Y")]
# Visualise this with ggplot and without geom_sf
# you need first transform back the lines into data.frame
line <- as.data.frame(st_coordinates(line))[,1:2]
intersect_line <- as.data.frame(st_coordinates(intersect_line))[,1:2]
ggplot() + geom_path(data=df, aes(x = x, y = y)) +
geom_line(data=line, aes(x = X, y = Y), color = "gray80", lwd = 3) +
geom_line(data=intersect_line, aes(x = X, y = Y), color = "gray20", lwd = 1) +
geom_point(aes(meanX, meanY), colour="orangered", size=2) +
geom_point(aes(intersect_point["X"], intersect_point["Y"]),
colour="orangered", size=2) +
theme_bw()
}
First we'll go back to #Gilles polygon shape as it is more consistent with his reasoning and presentation:
# Generate a heart shape
t <- seq(0, 2*pi, by=0.1)
df <- data.frame(x = 16*sin(t)^3,
y = 13*cos(t)-5*cos(2*t)-2*cos(3*t)-cos(4*t))
df <- rbind(df, df[1,]) # close the polygon
meanX <- mean(df$x)
meanY <- mean(df$y)
library(sf)
poly <- st_sf(st_sfc(st_polygon(list(as.matrix(df)))))
These elements don't change and don't need to calculated multiple times inside a loop:
maxX <- max(abs(abs(df[,"x"]) - abs(meanX)))
maxY <- max(abs(abs(df[,"y"]) - abs(meanY)))
line_length = sqrt(maxX^2 + maxY^2) + 1
Then your rotAngle and angle:
rotAngle <- 5
angle <- seq(0, 359, rotAngle)
Focusing attention on the for loop, the first line call has elements that do and don't change. Let's make an empty list to hold our results, made outside the for loop, that will hold 2x2 matrices:
line_lst <- list()
for (j in 1:length(angle)) {
line_lst[[j]] <- matrix(nrow = 2, ncol=2)
line_lst[[j]][1,1] <- meanX
line_lst[[j]][1,2] <- meanY
line_lst[[j]][2,1] <- meanX + line_length * cos((pi/180)*angle[j])
line_lst[[j]][2,2] <- meanY + line_length * sin((pi/180)*angle[j])
}
line_lst[[1]]
[,1] [,2]
[1,] 1.225402e-06 0.09131118
[2,] 2.425684e+01 0.09131118
line_lst[[72]]
[,1] [,2]
[1,] 1.225402e-06 0.09131118
[2,] 2.416454e+01 -2.02281169
Those seem reasonable, and this was mainly what I wanted to show, explicating on the LHS[j] <- RHS[j], with the which iteration we're on in 1:length(angle). And on to linestring, intersection, and points,
same make an empty receiver, loop thru:
# here we have mismatch of establishing an `i` counter then
# counting `j`, which look close enough to tired eyes
# this will result in NULL(s)
linestring_lst <- list()
for (i in 1:length(line_lst)) { # this causes future error
linestring_lst[[j]] <- st_sf(st_sfc(st_linestring(line_lst[[j]])))
}
# simply keeping our accounting right, using all `i` or all `j`,
# or staying away from things that look alike and using `k` here
for (k in 1:length(line_lst)) {
linestring_lst[[k]] <- st_sf(st_sfc(st_linestring(line_lst[[k]])))
}
intersection_lst <- list()
for (j in 1:length(linestring_lst)) {
intersection_lst[[j]] <- st_intersection(poly, linestring_lst[[j]])
}
intersect_points <- list()
for (j in 1:length(intersection_lst)) {
intersect_points[[j]] <- st_coordinates(intersection_lst[[j]])[2,c('X','Y')]
}
The things to remember here related to for loops, create your receiver objects outside the loop, index both the LHS[j] and RHS[j] ([ for vector-like receivers, [[ for lists). And having done each of these independently, you can put it all in one for loop.
And final step, take the lists to data.frame(s) for use in ggplot.
intersect_pts_df <- as.data.frame(do.call('rbind', intersect_points))
head(intersect_pts_df, n = 3)
X Y
1 14.96993 0.09131118
2 15.56797 1.45333163
3 15.87039 2.88968964
Related
I am relying on edge detection (as opposed to colour detection) to extract features from blood cells. The original image looks like:
I am using the R EBImage package to run a sobel + low pass filter to get to something like this:
library(EBImage)
library(data.table)
img <- readImage("6hr-007-DIC.tif")
#plot(img)
#print(img, short = T)
# 1. define filter for edge detection
hfilt <- matrix(c(1, 2, 1, 0, 0, 0, -1, -2, -1), nrow = 3) # sobel
# rotate horizontal filter to obtain vertical filter
vfilt <- t(hfilt)
# get horizontal and vertical edges
imgH <- filter2(img, hfilt, boundary="replicate")
imgV <- filter2(img, vfilt, boundary="replicate")
# combine edge pixel data to get overall edge data
hdata <- imageData(imgH)
vdata <- imageData(imgV)
edata <- sqrt(hdata^2 + vdata^2)
# transform edge data to image
imgE <- Image(edata)
#print(display(combine(img, imgH, imgV, imgE), method = "raster", all = T))
display(imgE, method = "raster", all = T)
# 2. Enhance edges with low pass filter
hfilt <- matrix(c(1, 1, 1, 1, 1, 1, 1, 1, 1), nrow = 3) # low pass
# rotate horizontal filter to obtain vertical filter
vfilt <- t(hfilt)
# get horizontal and vertical edges
imgH <- filter2(imgE, hfilt, boundary="replicate")
imgV <- filter2(imgE, vfilt, boundary="replicate")
# combine edge pixel data to get overall edge data
hdata <- imageData(imgH)
vdata <- imageData(imgV)
edata <- sqrt(hdata^2 + vdata^2)
# transform edge data to image
imgE <- Image(edata)
plot(imgE)
I would like to know if there are any methods to fill in the holes in the large rings (blood cells) so they are solid bodies a bit like:
(obviously this is not the same image but imagine that last image only started out with edges.)
I would then like to use something like computeFeatures() method from the EBImage package (which as far as I'm aware only works on solid bodies)
EDIT Little more code to extract interior of objects with "connections" to border. The additional code includes defining the convex hull of the segmented cells and creating a filled mask.
The short answer is that fillHull and floodFill may be helpful for filling cells that have well defined borders.
The longer (edited) answer below suggests an approach with floodFill that might be useful. You did a great job extracting information from the low contrast DIC images, but even more image processing might be helpful such as "flat-field correction" for noisy DIC images. The principle is described in this Wikipedia page but a simple implementation does wonders. The coding solution suggested here requires user interaction to select cells. That's not such a robust approach. Still, perhaps more image processing combined with code to locate cells could work. In the end, the interior of cells are segmented and available for analysis with computeFeatures.
The code starts with the thresholded image (having trimmed the edges and converted to binary).
# Set up plots for 96 dpi images
library(EBImage)
dm <- dim(img2)/96
dev.new(width = dm[1], height = dm[2])
# Low pass filter with gblur and make binary
xb <- gblur(img2, 3)
xt <- thresh(xb, offset = 0.0001)
plot(xt) # thresh.jpg
# dev.print(jpeg, "thresh.jpg", width = dm[1], unit = "in", res = 96)
# Keep only "large" objects
xm <- bwlabel(xt)
FS <- computeFeatures.shape(xm)
sel <- which(FS[,"s.area"] < 800)
xe <- rmObjects(xm, sel)
# Make binary again and plot
xe <- thresh(xe)
plot(xe) # trimmed.jpg
# dev.print(jpeg, "trimmed.jpg", width = dm[1], unit = "in", res = 96)
# Choose cells with intact interiors
# This is done by hand here but with more pre-processing, it may be
# possible to have the image suitable for more automated analysis...
pp <- locator(type = "p", pch = 3, col = 2) # marked.jpg
# dev.print(jpeg, "marked.jpg", width = dm[1], unit = "in", res = 96)
# Fill interior of each cell with a unique integer
myCol <- seq_along(pp$x) + 1
xf1 <- floodFill(xe, do.call(rbind, pp), col = myCol)
# Discard original objects from threshold (value = 1) and see
cells1 <- rmObjects(xf1, 1)
plot(colorLabels(cells1))
# dev.print(jpeg, "cells1.jpg", width = dm[1], unit = "in", res = 96)
I need to introduce algorithms to connect integer points between vertices and fill a convex polygon. The code here implements Bresenham's algorithm and uses a simplistic polygon filling routine that works only for convex (simple) polygons.
#
# Bresenham's balanced integer line drawing algorithm
#
bresenham <- function(x, y = NULL, close = TRUE)
{
# accept any coordinate structure
v <- xy.coords(x = x, y = y, recycle = TRUE, setLab = FALSE)
if (!all(is.finite(v$x), is.finite(v$y)))
stop("finite coordinates required")
v[1:2] <- lapply(v[1:2], round) # Bresenham's algorithm IS for integers
nx <- length(v$x)
if (nx == 1) return(list(x = v$x, y = v$y)) # just one point
if (nx > 2 && close == TRUE) { # close polygon by replicating 1st point
v$x <- c(v$x, v$x[1])
v$y <- c(v$y, v$y[1])
nx <- nx + 1
}
# collect result in 'ans, staring with 1st point
ans <- lapply(v[1:2], "[", 1)
# process all vertices in pairs
for (i in seq.int(nx - 1)) {
x <- v$x[i] # coordinates updated in x, y
y <- v$y[i]
x.end <- v$x[i + 1]
y.end <- v$y[i + 1]
dx <- abs(x.end - x); dy <- -abs(y.end - y)
sx <- ifelse(x < x.end, 1, -1)
sy <- ifelse(y < y.end, 1, -1)
err <- dx + dy
# process one segment
while(!(isTRUE(all.equal(x, x.end)) && isTRUE(all.equal(y, y.end)))) {
e2 <- 2 * err
if (e2 >= dy) { # increment x
err <- err + dy
x <- x + sx
}
if (e2 <= dx) { # increment y
err <- err + dx
y <- y + sy
}
ans$x <- c(ans$x, x)
ans$y <- c(ans$y, y)
}
}
# remove duplicated points (typically 1st and last)
dups <- duplicated(do.call(cbind, ans), MARGIN = 1)
return(lapply(ans, "[", !dups))
}
And a simple routine to find interior points of a simple polygon.
#
# Return x,y integer coordinates of the interior of a CONVEX polygon
#
cPolyFill <- function(x, y = NULL)
{
p <- xy.coords(x, y = y, recycle = TRUE, setLab = FALSE)
p[1:2] <- lapply(p[1:2], round)
nx <- length(p$x)
if (any(!is.finite(p$x), !is.finite(p$y)))
stop("finite coordinates are needed")
yc <- seq.int(min(p$y), max(p$y))
xlist <- lapply(yc, function(y) sort(seq.int(min(p$x[p$y == y]), max(p$x[p$y == y]))))
ylist <- Map(rep, yc, lengths(xlist))
ans <- cbind(x = unlist(xlist), y = unlist(ylist))
return(ans)
}
Now these can be used along with ocontour() and chull() to create and fill a convex hull about each segmented cells. This "fixes" those cells with intrusions.
# Create convex hull mask
oc <- ocontour(cells1) # for all points along perimeter
oc <- lapply(oc, function(v) v + 1) # off-by-one flaw in ocontour
sel <- lapply(oc, chull) # find points that define convex hull
xh <- Map(function(v, i) rbind(v[i,]), oc, sel) # new vertices for convex hull
oc2 <- lapply(xh, bresenham) # perimeter points along convex hull
# Collect interior coordinates and fill
coords <- lapply(oc2, cPolyFill)
cells2 <- Image(0, dim = dim(cells1))
for(i in seq_along(coords))
cells2[coords[[i]]] <- i # blank image for mask
xf2 <- xe
for (i in seq_along(coords))
xf2[coords[[i]]] <- i # early binary mask
# Compare before and after
img <- combine(colorLabels(xf1), colorLabels(cells1),
colorLabels(xf2), colorLabels(cells2))
plot(img, all = T, nx = 2)
labs <- c("xf1", "cells1", "xf2", "cells2")
ix <- c(0, 1, 0, 1)
iy <- c(0, 0, 1, 1)
text(dm[1]*96*(ix + 0.05), 96*dm[2]*(iy + 0.05), labels = labs,
col = "white", adj = c(0.05,1))
# dev.print(jpeg, "final.jpg", width = dm[1], unit = "in", res = 96)
The my simple case:
Plotting graphs within the loop brings different results than plotting it directly after the loop
# Initialize
Input <- list(c(3,3,3,3),c(1,1,1,1))
y <- c()
x <- c()
plotlist <- c()
Answer <- c()
# create helper grid
x.grid = c(1:4)
y.grid = c(1:4)
helpergrid <- expand.grid(xgrid=x.grid, ygrid=y.grid )
#- Loop Lists -
for (m in c(1,2))
{
# # Loop within each list
# for(j in 1:4)
# {
# y[j] <- Input[[m]][j]
# x[j] <- j
# }
y[1] <- Input[[m]][1]
x[1] <- 1
y[2] <- Input[[m]][2]
x[2] <- 2
y[3] <- Input[[m]][3]
x[3] <- 3
y[4] <- Input[[m]][4]
x[4] <- 4
Points <- data.frame(x, y)
# Example Plot
plot = ggplot() + labs(title = paste("Loop m = ",m)) + labs(subtitle = paste("y-values = ",Points$y)) + geom_tile(data = helpergrid, aes(x=xgrid, y=ygrid, fill=1), colour="grey20") + geom_point(data = Points, aes(x=Points$x, y=Points$y), stroke=3, size=5, shape=1, color="white") + theme_minimal()
# Plot to plotlist
plotlist[[m]] <- plot
# --- Plot plotlist within loop ---
plot(plotlist[[m]])
}
# --- Plot plotlist outside of loop ---
plot(plotlist[[1]])
plot(plotlist[[2]])
Here is an image of the results:
Plot Results
as aaumai is pointing out that there is a nested loop that might cause the issue for ggplot using static values, however the resulting plot 'is' showing the correct y-value (y=3) explicitely, but the geom_points are using the wrong values (y=1)...
It makes absolutely (!) no sense to me, I am relatively new to R and trying to debug this for hours now - so I hope someone can help me with this !!
EDIT: I manually removed the nested loop and updated the example code, but the problem still persists :(
The problem arises due to your use of Points$x within aes. The "tl;dr" is that basically you should never use $ or [ or [[ within aes. See the answer here from baptiste.
library(ggplot2)
# Initialize
Input <- list(c(3,3,3,3),c(1,1,1,1))
y <- c()
x <- c()
plotlist <- c()
Answer <- c()
# create helper grid
x.grid = c(1:4)
y.grid = c(1:4)
helpergrid <- expand.grid(xgrid=x.grid, ygrid=y.grid )
#- Loop Lists -
for (m in c(1,2)) {
y[1] <- Input[[m]][1]
x[1] <- 1
y[2] <- Input[[m]][2]
x[2] <- 2
y[3] <- Input[[m]][3]
x[3] <- 3
y[4] <- Input[[m]][4]
x[4] <- 4
Points <- data.frame(x, y)
# Example Plot
plot = ggplot() + labs(title = paste("Loop m = ",m)) + labs(subtitle = paste("y-values = ",force(Points$y))) +
geom_tile(data = helpergrid, aes(x=xgrid, y=ygrid, fill=1), colour="grey20") +
geom_point(data = Points, aes(x=x, y=y), stroke=3, size=5, shape=1, color="white") + theme_minimal()
# Plot to plotlist
plotlist[[m]] <- plot
# --- Plot plotlist within loop ---
print(plotlist[[m]])
}
# --- Plot plotlist outside of loop ---
print(plotlist[[1]])
print(plotlist[[2]])
I believe the reason this happens is due to lazy evaluation. The data passed into geom_tile/point gets stored, but when the plot is printed, it grabs Points$x from the current environment. During the loop, this points to the current state of the Points data frame, the desired state. After the loop is finished, only the second version of Points exists, so when the referenced value from aes is evaluated, it grabs the x values from Points$x as it exists after the second evaluation of the loop. Hope this is clear, feel free to ask further if not.
To clarify, if you remove Points$ and just refer to x within aes, it takes these values from the data.frame as it was passed into the data argument of the geom calls.
If I'm not mistaken, this is because you have a loop within the loop.
The plot within the loop returns plots for changing y values in the Points data (from 1 to 4), whereas the plot outside is only plotting the static values.
Consider the Togliatti implicit surface. I want to clip it to the ball centered at the origin with radius 4.8. A solution, with the misc3d package, consists in using the mask argument of the computeContour3d function, which allows to use only the points satisfying x^2+y^2+z^2 < 4.8^2:
library(misc3d)
# Togliatti surface equation: f(x,y,z) = 0
f <- function(x,y,z){
w <- 1
64*(x-w)*
(x^4-4*x^3*w-10*x^2*y^2-4*x^2*w^2+16*x*w^3-20*x*y^2*w+5*y^4+16*w^4-20*y^2*w^2) -
5*sqrt(5-sqrt(5))*(2*z-sqrt(5-sqrt(5))*w)*(4*(x^2+y^2-z^2)+(1+3*sqrt(5))*w^2)^2
}
# make grid
nx <- 220; ny <- 220; nz <- 220
x <- seq(-5, 5, length=nx)
y <- seq(-5, 5, length=ny)
z <- seq(-4, 4, length=nz)
g <- expand.grid(x=x, y=y, z=z)
# calculate voxel
voxel <- array(with(g, f(x,y,z)), dim = c(nx,ny,nz))
# mask: keep points satisfying x^2+y^2+z^2 < 4.8^2, in order to
# clip the surface to the ball of radius 4.8
mask <- array(with(g, x^2+y^2+z^2 < 4.8^2), dim = c(nx,ny,nz))
# compute isosurface
surf <- computeContour3d(voxel, maxvol=max(voxel), level=0, mask=mask, x=x, y=y, z=z)
# draw isosurface
drawScene.rgl(makeTriangles(surf, smooth=TRUE))
But the borders of the resulting surface are irregular:
How to get regular, smooth borders?
The solution I found resorts to spherical coordinates. It consists in defining the function f in terms of spherical coordinates (ρ, θ, ϕ), then to compute the isosurface with ρ running from 0 to the desired radius, and then to transform the result to Cartesian coordinates:
# Togliatti surface equation with spherical coordinates
f <- function(ρ, θ, ϕ){
w <- 1
x <- ρ*cos(θ)*sin(ϕ)
y <- ρ*sin(θ)*sin(ϕ)
z <- ρ*cos(ϕ)
64*(x-w)*
(x^4-4*x^3*w-10*x^2*y^2-4*x^2*w^2+16*x*w^3-20*x*y^2*w+5*y^4+16*w^4-20*y^2*w^2) -
5*sqrt(5-sqrt(5))*(2*z-sqrt(5-sqrt(5))*w)*(4*(x^2+y^2-z^2)+(1+3*sqrt(5))*w^2)^2
}
# make grid
nρ <- 300; nθ <- 400; nϕ <- 300
ρ <- seq(0, 4.8, length = nρ) # ρ runs from 0 to the desired radius
θ <- seq(0, 2*pi, length = nθ)
ϕ <- seq(0, pi, length = nϕ)
g <- expand.grid(ρ=ρ, θ=θ, ϕ=ϕ)
# calculate voxel
voxel <- array(with(g, f(ρ,θ,ϕ)), dim = c(nρ,nθ,nϕ))
# calculate isosurface
surf <- computeContour3d(voxel, maxvol=max(voxel), level=0, x=ρ, y=θ, z=ϕ)
# transform to Cartesian coordinates
surf <- t(apply(surf, 1, function(rtp){
ρ <- rtp[1]; θ <- rtp[2]; ϕ <- rtp[3]
c(
ρ*cos(θ)*sin(ϕ),
ρ*sin(θ)*sin(ϕ),
ρ*cos(ϕ)
)
}))
# draw isosurface
drawScene.rgl(makeTriangles(surf, smooth=TRUE, color = "violetred"))
Now the resulting surface has regular, smooth borders:
Your solution is excellent for the problem you stated, because spherical coordinates are so natural for that boundary. However, here is a more general solution that would work for other smooth boundaries.
The idea is to allow input of a boundary function, and cull points when they are too large or too small. In your case it would be the squared distance from the origin, and you would want to cull points where the value is bigger than 4.8^2. But sometimes the triangles being drawn to make the smooth surface should only be partially culled: one point would be kept and two deleted, or two kept and one deleted. If you cull the whole triangle that leads to the jagged edges in your original plot.
To fix this, the points can be modified. If only one is supposed to be kept, then the other two points can be shrunk towards it until they lie on an approximation to the boundary. If two are supposed to be kept you want the shape to be a quadrilateral, so you would build that out of two triangles.
This function does that, assuming the input surf is the output of computeContour3d:
boundSurface <- function(surf, boundFn, bound = 0, greater = TRUE) {
# Surf is n x 3: each row is a point, triplets are triangles
values <- matrix(boundFn(surf) - bound, 3)
# values is (m = n/3) x 3: each row is the boundFn value at one point
# of a triangle
if (!greater)
values <- -values
keep <- values >= 0
# counts is m vector counting number of points to keep in each triangle
counts <- apply(keep, 2, sum)
# result is initialized to an empty array
result <- matrix(nrow = 0, ncol = 3)
# singles is set to all the rows of surf where exactly one
# point in the triangle is kept, say s x 3
singles <- surf[rep(counts == 1, each = 3),]
if (length(singles)) {
# singleValues is a subset of values where only one vertex is kept
singleValues <- values[, counts == 1]
singleIndex <- 3*col(singleValues) + 1:3 - 3
# good is the index of the vertex to keep, bad are those to fix
good <- apply(singleValues, 2, function(col) which(col >= 0))
bad <- apply(singleValues, 2, function(col) which(col < 0))
for (j in 1:ncol(singleValues)) {
goodval <- singleValues[good[j], j]
for (i in 1:2) {
badval <- singleValues[bad[i,j], j]
alpha <- goodval/(goodval - badval)
singles[singleIndex[bad[i,j], j], ] <-
(1-alpha)*singles[singleIndex[good[j], j],] +
alpha *singles[singleIndex[bad[i,j], j],]
}
}
result <- rbind(result, singles)
}
doubles <- surf[rep(counts == 2, each = 3),]
if (length(doubles)) {
# doubleValues is a subset of values where two vertices are kept
doubleValues <- values[, counts == 2]
doubleIndex <- 3*col(doubleValues) + 1:3 - 3
doubles2 <- doubles
# good is the index of the vertex to keep, bad are those to fix
good <- apply(doubleValues, 2, function(col) which(col >= 0))
bad <- apply(doubleValues, 2, function(col) which(col < 0))
newvert <- matrix(NA, 2, 3)
for (j in 1:ncol(doubleValues)) {
badval <- doubleValues[bad[j], j]
for (i in 1:2) {
goodval <- doubleValues[good[i,j], j]
alpha <- goodval/(goodval - badval)
newvert[i,] <-
(1-alpha)*doubles[doubleIndex[good[i,j], j],] +
alpha *doubles[doubleIndex[bad[j], j],]
}
doubles[doubleIndex[bad[j], j],] <- newvert[1,]
doubles2[doubleIndex[good[1,j], j],] <- newvert[1,]
doubles2[doubleIndex[bad[j], j],] <- newvert[2,]
}
result <- rbind(result, doubles, doubles2)
}
# Finally add all the rows of surf where the whole
# triangle is kept
rbind(result, surf[rep(counts == 3, each = 3),])
}
You would use it after computeContour3d and before makeTriangles, e.g.
fn <- function(x) {
apply(x^2, 1, sum)
}
drawScene.rgl(makeTriangles(boundSurface(surf, fn, bound = 4.8^2,
greater = FALSE),
smooth = TRUE))
Here's the output I see:
It's not quite as good as yours, but it would work for many different boundary functions.
Edited to add: Version 0.100.26 of rgl now has a function clipMesh3d which incorporates these ideas.
I would like to plot a sphere in R with the gridlines on the surface corresponding to the equal area gridding of the sphere using the arcos transformation.
I have been experimenting with the R packakge rgl and got some help from :
Plot points on a sphere in R
Which plots the gridlines with equal lat long spacing.
I have the below function which returns a data frame of points that are the cross over points of the grid lines I want, but not sure how to proceed.
plot_sphere <- function(theta_num,phi_num){
theta <- seq(0,2*pi,(2*pi)/(theta_num))
phi <- seq(0,pi,pi/(phi_num))
tmp <- seq(0,2*phi_num,2)/phi_num
phi <- acos(1-tmp)
tmp <- cbind(rep(seq(1,theta_num),each = phi_num),rep(seq(1,phi_num),times = theta_num))
results <- as.data.frame(cbind(theta[tmp[,1]],phi[tmp[,2]]))
names(results) <- c("theta","phi")
results$x <- cos(results$theta)*sin(results$phi)
results$y <- sin(results$theta)*sin(results$phi)
results$z <- cos(results$phi)
return(results)
}
sphere <- plot_sphere(10,10)
Can anyone help, in general I am finding the rgl functions tricky to work with.
If you use lines3d or plot3d(..., type="l"), you'll get a plot joining the points in your dataframe. To get breaks (you don't want one long line), add rows containing NA values.
The code in your plot_sphere function seems really messed up (you compute phi twice, you don't generate vectors of the requested length, etc.), but this function based on it works:
function(theta_num,phi_num){
theta0 <- seq(0,2*pi, len = theta_num)
tmp <- seq(0, 2, len = phi_num)
phi0 <- acos(1-tmp)
i <- seq(1, (phi_num + 1)*theta_num) - 1
theta <- theta0[i %/% (phi_num + 1) + 1]
phi <- phi0[i %% (phi_num + 1) + 1]
i <- seq(1, phi_num*(theta_num + 1)) - 1
theta <- c(theta, theta0[i %% (theta_num + 1) + 1])
phi <- c(phi, phi0[i %/% (theta_num + 1) + 1])
results <- data.frame( x = cos(theta)*sin(phi),
y = sin(theta)*sin(phi),
z = cos(phi))
lines3d(results)
}
Does anyone know of a way to turn the output of contourLines polygons in order to plot as filled contours, as with filled.contours. Is there an order to how the polygons must then be plotted in order to see all available levels? Here is an example snippet of code that doesn't work:
#typical plot
filled.contour(volcano, color.palette = terrain.colors)
#try
cont <- contourLines(volcano)
fun <- function(x) x$level
LEVS <- sort(unique(unlist(lapply(cont, fun))))
COLS <- terrain.colors(length(LEVS))
contour(volcano)
for(i in seq(cont)){
COLNUM <- match(cont[[i]]$level, LEVS)
polygon(cont[[i]], col=COLS[COLNUM], border="NA")
}
contour(volcano, add=TRUE)
A solution that uses the raster package (which calls rgeos and sp). The output is a SpatialPolygonsDataFrame that will cover every value in your grid:
library('raster')
rr <- raster(t(volcano))
rc <- cut(rr, breaks= 10)
pols <- rasterToPolygons(rc, dissolve=T)
spplot(pols)
Here's a discussion that will show you how to simplify ('prettify') the resulting polygons.
Thanks to some inspiration from this site, I worked up a function to convert contour lines to filled contours. It's set-up to process a raster object and return a SpatialPolygonsDataFrame.
raster2contourPolys <- function(r, levels = NULL) {
## set-up levels
levels <- sort(levels)
plevels <- c(min(values(r), na.rm=TRUE), levels, max(values(r), na.rm=TRUE)) # pad with raster range
llevels <- paste(plevels[-length(plevels)], plevels[-1], sep=" - ")
llevels[1] <- paste("<", min(levels))
llevels[length(llevels)] <- paste(">", max(levels))
## convert raster object to matrix so it can be fed into contourLines
xmin <- extent(r)#xmin
xmax <- extent(r)#xmax
ymin <- extent(r)#ymin
ymax <- extent(r)#ymax
rx <- seq(xmin, xmax, length.out=ncol(r))
ry <- seq(ymin, ymax, length.out=nrow(r))
rz <- t(as.matrix(r))
rz <- rz[,ncol(rz):1] # reshape
## get contour lines and convert to SpatialLinesDataFrame
cat("Converting to contour lines...\n")
cl <- contourLines(rx,ry,rz,levels=levels)
cl <- ContourLines2SLDF(cl)
## extract coordinates to generate overall boundary polygon
xy <- coordinates(r)[which(!is.na(values(r))),]
i <- chull(xy)
b <- xy[c(i,i[1]),]
b <- SpatialPolygons(list(Polygons(list(Polygon(b, hole = FALSE)), "1")))
## add buffer around lines and cut boundary polygon
cat("Converting contour lines to polygons...\n")
bcl <- gBuffer(cl, width = 0.0001) # add small buffer so it cuts bounding poly
cp <- gDifference(b, bcl)
## restructure and make polygon number the ID
polys <- list()
for(j in seq_along(cp#polygons[[1]]#Polygons)) {
polys[[j]] <- Polygons(list(cp#polygons[[1]]#Polygons[[j]]),j)
}
cp <- SpatialPolygons(polys)
cp <- SpatialPolygonsDataFrame(cp, data.frame(id=seq_along(cp)))
## cut the raster by levels
rc <- cut(r, breaks=plevels)
## loop through each polygon, create internal buffer, select points and define overlap with raster
cat("Adding attributes to polygons...\n")
l <- character(length(cp))
for(j in seq_along(cp)) {
p <- cp[cp$id==j,]
bp <- gBuffer(p, width = -max(res(r))) # use a negative buffer to obtain internal points
if(!is.null(bp)) {
xy <- SpatialPoints(coordinates(bp#polygons[[1]]#Polygons[[1]]))[1]
l[j] <- llevels[extract(rc,xy)]
}
else {
xy <- coordinates(gCentroid(p)) # buffer will not be calculated for smaller polygons, so grab centroid
l[j] <- llevels[extract(rc,xy)]
}
}
## assign level to each polygon
cp$level <- factor(l, levels=llevels)
cp$min <- plevels[-length(plevels)][cp$level]
cp$max <- plevels[-1][cp$level]
cp <- cp[!is.na(cp$level),] # discard small polygons that did not capture a raster point
df <- unique(cp#data[,c("level","min","max")]) # to be used after holes are defined
df <- df[order(df$min),]
row.names(df) <- df$level
llevels <- df$level
## define depressions in higher levels (ie holes)
cat("Defining holes...\n")
spolys <- list()
p <- cp[cp$level==llevels[1],] # add deepest layer
p <- gUnaryUnion(p)
spolys[[1]] <- Polygons(p#polygons[[1]]#Polygons, ID=llevels[1])
for(i in seq(length(llevels)-1)) {
p1 <- cp[cp$level==llevels[i+1],] # upper layer
p2 <- cp[cp$level==llevels[i],] # lower layer
x <- numeric(length(p2)) # grab one point from each of the deeper polygons
y <- numeric(length(p2))
id <- numeric(length(p2))
for(j in seq_along(p2)) {
xy <- coordinates(p2#polygons[[j]]#Polygons[[1]])[1,]
x[j] <- xy[1]; y[j] <- xy[2]
id[j] <- as.numeric(p2#polygons[[j]]#ID)
}
xy <- SpatialPointsDataFrame(cbind(x,y), data.frame(id=id))
holes <- over(xy, p1)$id
holes <- xy$id[which(!is.na(holes))]
if(length(holes)>0) {
p2 <- p2[p2$id %in% holes,] # keep the polygons over the shallower polygon
p1 <- gUnaryUnion(p1) # simplify each group of polygons
p2 <- gUnaryUnion(p2)
p <- gDifference(p1, p2) # cut holes in p1
} else { p <- gUnaryUnion(p1) }
spolys[[i+1]] <- Polygons(p#polygons[[1]]#Polygons, ID=llevels[i+1]) # add level
}
cp <- SpatialPolygons(spolys, pO=seq_along(llevels), proj4string=CRS(proj4string(r))) # compile into final object
cp <- SpatialPolygonsDataFrame(cp, df)
cat("Done!")
cp
}
It probably holds several inefficiencies, but it has worked well in the tests I've conducted using bathymetry data. Here's an example using the volcano data:
r <- raster(t(volcano))
l <- seq(100,200,by=10)
cp <- raster2contourPolys(r, levels=l)
cols <- terrain.colors(length(cp))
plot(cp, col=cols, border=cols, axes=TRUE, xaxs="i", yaxs="i")
contour(r, levels=l, add=TRUE)
box()
Building on the excellent work of Paul Regular, here is a version that should ensure exclusive polygons (i.e. no overlapping).
I've added a new argument fd for fairy dust to address an issue I discovered working with UTM-type coordinates. Basically as I understand the algorithm works by sampling lateral points from the contour lines to determine which side is inside the polygon. The distance of the sample point from the line can create problems if it ends up in e.g. behind another contour. So if your resulting polygons looks wrong try setting fd to values 10^±n until it looks very wrong or about right..
raster2contourPolys <- function(r, levels = NULL, fd = 1) {
## set-up levels
levels <- sort(levels)
plevels <- c(min(values(r)-1, na.rm=TRUE), levels, max(values(r)+1, na.rm=TRUE)) # pad with raster range
llevels <- paste(plevels[-length(plevels)], plevels[-1], sep=" - ")
llevels[1] <- paste("<", min(levels))
llevels[length(llevels)] <- paste(">", max(levels))
## convert raster object to matrix so it can be fed into contourLines
xmin <- extent(r)#xmin
xmax <- extent(r)#xmax
ymin <- extent(r)#ymin
ymax <- extent(r)#ymax
rx <- seq(xmin, xmax, length.out=ncol(r))
ry <- seq(ymin, ymax, length.out=nrow(r))
rz <- t(as.matrix(r))
rz <- rz[,ncol(rz):1] # reshape
## get contour lines and convert to SpatialLinesDataFrame
cat("Converting to contour lines...\n")
cl0 <- contourLines(rx, ry, rz, levels = levels)
cl <- ContourLines2SLDF(cl0)
## extract coordinates to generate overall boundary polygon
xy <- coordinates(r)[which(!is.na(values(r))),]
i <- chull(xy)
b <- xy[c(i,i[1]),]
b <- SpatialPolygons(list(Polygons(list(Polygon(b, hole = FALSE)), "1")))
## add buffer around lines and cut boundary polygon
cat("Converting contour lines to polygons...\n")
bcl <- gBuffer(cl, width = fd*diff(bbox(r)[1,])/3600000) # add small buffer so it cuts bounding poly
cp <- gDifference(b, bcl)
## restructure and make polygon number the ID
polys <- list()
for(j in seq_along(cp#polygons[[1]]#Polygons)) {
polys[[j]] <- Polygons(list(cp#polygons[[1]]#Polygons[[j]]),j)
}
cp <- SpatialPolygons(polys)
cp <- SpatialPolygonsDataFrame(cp, data.frame(id=seq_along(cp)))
# group by elev (replicate ids)
# ids = sapply(slot(cl, "lines"), slot, "ID")
# lens = sapply(1:length(cl), function(i) length(cl[i,]#lines[[1]]#Lines))
## cut the raster by levels
rc <- cut(r, breaks=plevels)
## loop through each polygon, create internal buffer, select points and define overlap with raster
cat("Adding attributes to polygons...\n")
l <- character(length(cp))
for(j in seq_along(cp)) {
p <- cp[cp$id==j,]
bp <- gBuffer(p, width = -max(res(r))) # use a negative buffer to obtain internal points
if(!is.null(bp)) {
xy <- SpatialPoints(coordinates(bp#polygons[[1]]#Polygons[[1]]))[1]
l[j] <- llevels[raster::extract(rc,xy)]
}
else {
xy <- coordinates(gCentroid(p)) # buffer will not be calculated for smaller polygons, so grab centroid
l[j] <- llevels[raster::extract(rc,xy)]
}
}
## assign level to each polygon
cp$level <- factor(l, levels=llevels)
cp$min <- plevels[-length(plevels)][cp$level]
cp$max <- plevels[-1][cp$level]
cp <- cp[!is.na(cp$level),] # discard small polygons that did not capture a raster point
df <- unique(cp#data[,c("level","min","max")]) # to be used after holes are defined
df <- df[order(df$min),]
row.names(df) <- df$level
llevels <- df$level
## define depressions in higher levels (ie holes)
cat("Defining holes...\n")
spolys <- list()
p <- cp[cp$level==llevels[1],] # add deepest layer
p <- gUnaryUnion(p)
spolys[[1]] <- Polygons(p#polygons[[1]]#Polygons, ID=llevels[1])
for(i in seq(length(llevels)-1)) {
p1 <- cp[cp$level==llevels[i+1],] # upper layer
p2 <- cp[cp$level==llevels[i],] # lower layer
x <- numeric(length(p2)) # grab one point from each of the deeper polygons
y <- numeric(length(p2))
id <- numeric(length(p2))
for(j in seq_along(p2)) {
xy <- coordinates(p2#polygons[[j]]#Polygons[[1]])[1,]
x[j] <- xy[1]; y[j] <- xy[2]
id[j] <- as.numeric(p2#polygons[[j]]#ID)
}
xy <- SpatialPointsDataFrame(cbind(x,y), data.frame(id=id))
holes <- over(xy, p1)$id
holes <- xy$id[which(!is.na(holes))]
if(length(holes)>0) {
p2 <- p2[p2$id %in% holes,] # keep the polygons over the shallower polygon
p1 <- gUnaryUnion(p1) # simplify each group of polygons
p2 <- gUnaryUnion(p2)
p <- gDifference(p1, p2) # cut holes in p1
} else { p <- gUnaryUnion(p1) }
spolys[[i+1]] <- Polygons(p#polygons[[1]]#Polygons, ID=llevels[i+1]) # add level
}
cp <- SpatialPolygons(spolys, pO=seq_along(llevels), proj4string=CRS(proj4string(r))) # compile into final object
## make polygons exclusive (i.e. no overlapping)
cpx = gDifference(cp[1,], cp[2,], id=cp[1,]#polygons[[1]]#ID)
for(i in 2:(length(cp)-1)) cpx = spRbind(cpx, gDifference(cp[i,], cp[i+1,], id=cp[i,]#polygons[[1]]#ID))
cp = spRbind(cpx, cp[length(cp),])
## it's a wrap
cp <- SpatialPolygonsDataFrame(cp, df)
cat("Done!")
cp
}