Does parallellization in R copy all data in the parent process? - r

I have some large bioinformatics project where I want to run a small function on about a million markers, which takes a small tibble (22 rows, 2 columns) as well as an integer as input. The returned object is about 80KB each, and no large amount of data is created within the function, just some formatting and statistical testing. I've tried various approaches using the parallel, doParallel and doMC packages, all pretty canonical stuff (foreach, %dopar% etc.), on a machine with 182 cores, of which I am using 60.
However, no matter what I do, the memory requirement gets into the terabytes quickly and crashes the machine. The parent process holds many gigabytes of data in memory though, which makes me suspicious: Does all the memory content of the parent process get copied to the parallelized processes, even when it is not needed? If so, how can I prevent this?
Note: I'm not necessarily interested in a solution to my specific problem, hence no code example or the like. I'm having trouble understanding the details of how memory works in R parallelization.

Related

R running very slowly after loading large datasets > 8GB

I have been unable to work in R given how slow it is operating once my datasets are loaded. These datasets total around 8GB. I am running on a 8GB RAM and have adjusted memory.limit to exceed my RAM but nothing seems to be working. Also, I have used fread from the data.table package to read these files; simply because read.table would not run.
After seeing a similar post on the forum addressing the same issue, I have attempted to run gctorture(), but to no avail.
R is running so slowly that I cannot even check the length of the list of datasets I have uploaded, cannot View or do any basic operation once these datasets are uploaded.
I have tried uploading the datasets in 'pieces', so 1/3 of the total files over 3 times, which seemed to make things run more smoothly for the importing part, but has not changed anything with regards to how slow R runs after this.
Is there any way to get around this issue? Any help would be much appreciated.
Thank you all for your time.
The problem arises because R loads the full dataset into the RAM which mostly brings the system to a halt when you try to View your data.
If it's a really huge dataset, first make sure the data contains only the most important columns and rows. Valid columns can be identified through the domain and world knowledge you have about the problem. You can also try to eliminate rows with missing values.
Once this is done, depending on your size of the data, you can try different approaches. One is through the use of packages like bigmemory and ff. bigmemory for example, creates a pointer object using which you can read the data from disk without loading it to the memory.
Another approach is through parallelism (implicit or explicit). MapReduce is another package which is very useful for handling big datasets.
For more information on these, check out this blog post on rpubs and this old but gold post from SO.

protection from stack overflow in R with a lot of free RAM

I apologize in advance since this post will not have any reproducible example.
I am using R x64 3.4.2 to run some cross-validated analyses on quite big matrices (number of columns ~ 80000, number of rows between 40 and 180). The analyses involve several features selection steps (performed with in-house functions or with functions from the CORElearnpackage, which is written in C++), as well as some clustering of the features and the fitting of a SVM model (by means of the package RWeka, that is written in Java).
I am working on a DELL Precision T7910 machine, with 2 processors Intel Xeon E5-2695 v3 2.30 GHz, 192 Gb RAM and Windows 7 x64 operating system.
To speed up the running time of my analysis I thought to use the doParallel package in combination with foreach. I would set up the cluster as follow
cl <- makeCluster(number_of_cores, type='PSOCK')
registerDoParallel(cl)
with number_of_clusterset to various numbers between 2 and 10 (detectCore() tells me that I have 56 cores in total).
My problem is that even if only setting number_of_cluster to 2, I got a protection from stack overflowerror message. The thing is that I monitor the RAM usage while the script is running and not even 20 Gb of my 192 Gb RAM are being used.
If I run the script in a sequential way it takes its sweet time (~ 3 hours with 42 rows and ~ 80000 columns), but it does run until the end.
I have tried (almost) every trick in the book for good memory management in R:
I am loading and removing big variables as needed in order to reduce memory usage
I am breaking down the steps with functions rather than scripting them directly, to take advantage of scoping
I am calling gc()every time I delete a big object in order to prompt R to return memory to the operating system
But I am still unable to run the script in parallel.
Do someone have any suggestion about this ? Should I just give up and wait > 3 hours every time I run the analyses ? And more generally: how is it possible to have a stack overflow problem when having a lot of free RAM ?
UPDATE
I have now tried to "pseudo-parallelize" the work using the same machine: since I am running a 10-fold cross-validation scheme, I am opening 5 different instances of Rgui and running 2 folds in each instances. Proceeding in this way, everything run smoothly, and the process indeed take 10 times less than running it in a single instance of R. What makes me wonder is that if 10 instances of Rgui can run at the same time and get the job done, this means that the machine has the computational resources needed. Hence I can not really get my head around the fact that %dopar% with 10 clusters does not work.
The "protection stack overflow" means that you have run out of the "protection stack", that is too many pointers have been PROTECTed but not (yet) UNPROTECTed. This could be because of a bug or inefficiency in the code you are running (in native code of a package or in native code of R, but not a bug in R source code).
This problem has nothing to do with the amount of available memory on the heap, so calling gc() will have no impact, and it is not important how much physical memory the machine has. Please do not call gc() explicitly at all, even if there was a problem with the heap usage, it just makes the program run slower but does not help: if there is not enough heap space but it could be obtained by garbage collection, the garbage collector will run automatically. As the problem is the protection stack, neither restructuring the R code nor removing dead variables explicitly will help. In principle, structuring the code into (relatively small) functions is a good thing for maintainability/readability and it also indirectly reduces scope of variables, so removing variables explicitly should become unnecessary.
It might help to increase the pointer protection stack size, which can be done at R startup from the command line using --max-ppsize.

Forcing R (and Rstudio) to use the virtual memory on Windows

I'm working with large datasets and quite often R produces an error telling it can't allocate a vector of that size or it doesn't have enough memory.
My computer has 16GB RAM (Windows 10) and I'm working with datasets of around 4GB but some operations need a lot of memory, for example converting the dataset from wide format to long.
In some situations I can use gc() to realease some memory but many times it's not enough.
Sometimes I can break the dataset on smaller chunks but sometimes I need to work with all the table at once.
I've read that Linux users don't have this problem, but what about Windows?
I've tried setting a large pagefile on a SSD (200GB) but I've found that R doesn't use it at all.
I can see the task manager and when the memory consumption reaches 16GB R stops working. The size of the pagefile doesn't seem to make any difference.
How can I force R to use the pagefile?
Do I need to compile it myself with some special flags?
PD: My experience is that deleting an object rm() and later using gc() doesn't recover all the memory. As I perform operations with large datasets my computer has less and less free memory at every step, no matter if I use gc().
PD2: I expect not to hear trivial solutions like "you need more RAM memory"
PD3: I've been testing and the problem only happens in Rstudio. If I use directly R it works well. Does anybody know how to do it in RStudio.
In order to get it working automatically every time you start RStudio the solution with R_MAX_MEM_SIZE is ignored, both if created as an environment variable or if created inside the .Rprofile.
Writing memory.limit(64000) is ignored too.
The proper way is adding the following line in the file .Rprofile
invisible(utils::memory.limit(64000))
or whatever number you want.
Of course you need to have a pagefile big enough. That number includes free RAM and free pagefile space.
Using the pagefile is slower but it's going to be used only when needed.
Something strange I've found is that it only let's you increase the maximum memory to use but it doesn't allow you to decrease it.

R code failed with: "Error: cannot allocate buffer"

Compiling an RMarkdown script overnight failed with the message:
Error: cannot allocate buffer
Execution halted
The code chunk that it died on was while training a caretEnsemble list of 10 machine learning algorithms. I know it takes a fair bit of RAM and computing time, but I did previously succeed to run that same code in the console. Why did it fail in RMarkdown? I'm fairly sure that even if it ran out of free RAM, there was enough swap.
I'm running Ubuntu with 3GB RAM and 4GB swap.
I found a blog article about memory limits in R, but it only applies to Windows: http://www.r-bloggers.com/memory-limit-management-in-r/
Any ideas on solving/avoiding this problem?
One reason why it may be backing up is that knitr and Rmarkdown just add a layer of computing complexity to things and they take some memory. The console is the most streamline implementation.
Also Caret is fat, slow and unapologetic about it. If the machine learning algorithm is complex, the data set is large and you have limited RAM it can become problematic.
Some things you can do to reduce the burden:
If there are unused variables in the set, use a subset of the ones you want and then clear the old set from memory using rm() with your variable name for the data frame in the parentheses.
After removing variables, run garbage collect, it reclaims the memory space your removed variables and interim sets are taking up in memory.
R has no native means of memory purging, so if a function is not written with a garbage collect and you do not do it, all your past executed refuse is persisting in memory making life hard.
To do this just type gc() with nothing in the parentheses. Also clear out the memory with gc() between the 10 ML runs. And if you import data with XLConnect the java implementation is nasty inefficient...that alone could tap your memory, gc() after using it every time.
After setting up training, testing and validation sets, save the testing and validation files in csv format on the hard drive and REMOVE THEM from your memory and run,you guessed it gc(). Load them again when you need them after the first model.
Once you have decided which of the algorithms to run, try installing their original packages separately instead of running Caret, require() each by name as you get to it and clean up after each one with detach(package:packagenamehere) gc().
There are two reasons for this.
One, Caret is a collection of other ML algorithms, and it is inherently slower than ALL of them in their native environment. An example: I was running a data set through random forest in Caret after 30 minutes I was less than 20% done. It had crashed twice already at about the one hour mark. I loaded the original independent package and in about 4 minutes had a completed analysis.
Two, if you require, detach and garbage collect, you have less in resident memory to worry about bogging you down. Otherwise you have ALL of carets functions in memory at once...that is wasteful.
There are some general things that you can do to make it go better that you might not initially think of but could be useful. Depending on your code they may or may not work or work to varying degrees, but try them and see where it gets you.
I. Use the lexical scoping to your advantage. Run the whole script in a clean Rstudio environment and make sure that all of the pieces and parts are living in your work space. Then garbage collect the remnants. Then go to knitr & rMarkdown and call pieces and parts from your existing work space. It is available to you in Markdown under the same rStudio shell so as long as nothing was created inside a loop and without saving it to to global environment.
II. In markdown set your code chunks up so that you cache the stuff that would need to be calculated multiple times so that it lives somewhere ready to be called upon instead of taxing memory multiple times.
If you call a variable from a data frame, do something as simple as multiply against it to each observation in one column and save it back into that original same frame, you could end up with as many as 3 copies in memory. If the file is large that is a killer. So make a clean copy, garbage collect and cache the pure frame.
Caching intuitively seems like it would waste memory, and done wrong it will, but if you rm() the unnecessary from the environment and gc() regularly, you will probably benefit from tactical caching
III. If things are still getting bogged down, you can try to save results in csv files send them to the hard drive and call them back up as needed to move them out of memory if you do not need all of the data at one time.
I am pretty certain that you can set the program up to load and unload libraries, data and results as needed. But honestly the best thing you can do, based on my own biased experience, is move away from Caret on big multi- algorithm processes.
I was getting this error when I was inadvertently running the 32-bit version of R on my 64-bit machine.

mclapply cores spending lots of time in uninterruptable sleep

This is a somewhat generic question for which I apologize, but I can't generate a code example that reproduces the behavior. My question is this: I'm scoring a largish data set (~11 million rows with 274 dimensions) by subdividing the data set into a list of data frames and then running a scoring function on 16 cores of a 24 core Linux server using mclapply. Each data frame on the list is allocated to a spawned instance and scored, returning a list of data frames of predictions. While the mclapply is running the various R instances are spending a lot of time in uninterruptable sleep, more than they're spending running. Has anyone else experienced this using mclapply? I'm a Linux neophyte, from an OS perspective does this make any sense? Thanks.
You need to be careful when using mclapply to operate on large data sets. It's easy to create too many workers for the amount of memory on your computer and the amount of memory used by your computation. It's hard to predict the memory requirements due to the complexity of R's memory management, so it's best to monitor memory usage carefully using a tool such as "top" or "htop".
You may be able to decrease the memory usage by splitting your work into more but smaller tasks since that may reduce the memory needed by the computation. I don't think that the choice of prescheduling affects the memory usage much, since mclapply will never fork more than mc.cores workers at a time, regardless of the value of mc.prescheduling.

Resources