Defining temporal resolution in Comsol post-processing - plot

I have a time dependent heat conduction simulation and need to plot the average temperature of some area over time. However, the exported table data apparently uses only a few data points and interpolates in between.
More specifically, I have some block of material (aluminum) that is heated periodically at some surface. I am now interested in temperature peaks at exactly this surface over time. I have defined the heating function, the surface, and have calculated the average temperature of the surface under observation over time. However, when I plot the exported data
the temperature data is really, REALLY coarse. The heating data however is very fine. Comsol seems to interpolate between very few points. Calculating with a finer temporal resolution won't fix it.
How can I tell Comsol to evaluate the temperature at every step?

OK, I found the answer:
https://www.comsol.com/support/knowledgebase/1254
Turns out the timesteps the solver chooses are completely separate from the ones the user can define for the simulation. This honestly makes me question the usefulness of the initial definition of the timesteps. It really seems to be just an additional hoop for people to be dependent on support....
Solution:
Turn the maximum timestep in Solution/Time Dependent Solver to an acceptable minimal value.

Related

determine time of significant increase of curve

I have the following data, plotted in R, depicting the angular rotation of an object vs. time. I would like to determine the time point at which the movement begins by calculating when the y-value significantly depart from the baseline (the start of the rise phase of the curve). I would love any ideas for how I should approach this problem using R.

segmenting lat/long data graph into lines/vectors

I have lat/lng data of multirotor UAV flights. There are alot of datapoints (~13k per flight) and I wish to find line segments from the data. They give me flight speed and direction. I know that most of the flights are guided missons meaning a point is given to fly to. However the exact points are unknown to me.
Here is a graph of a single flight lat/lng shifted to near (0,0) so they are visible on the same time-series graph.
I attempted to generate similar data, but there are several constraints and it may take more time to solve than working on the segmenting.
The graphs start and end nearly always at the same point.
Horisontal lines mean the UAV is stationary. These segments are expected.
Beginning and and end are always stationary for takeoff and landing.
There is some level of noise in the lines for the gps accuracy tho seemingly not that much.
Alot of data points.
The number of segments is unknown.
The noise I could calculate given the segments and least squares method to the line. Currently I'm thinking of sampling the data (to decimate it a little) and constructing lines. Merging the lines with smaller angle than x (dependant on the noise) and finding the intersection points of the lines left.
Another thought is to try and look at this problem in the frequency domain. The corners should be quite high frequency. Maybe I could make a custom filter kernel that would enable me to use a window function and win in efficency.
EDIT: Rewrote the question for more clarity and less rambling.

How do I do waveform analysis in R or Excel?

I'm trying to get some information out of a couple of waveforms, which I currently have in the format of a CSV table with the columns: Time, Volume, Pressure, Flow. (The data is the flow/pressure/volume data obtained from a healthcare ventilator.)
I want to get excel / R / another-programme-that-I've-not-yet-thought-of to do the following with the waveform:
Break it up into individual breaths - starting with when the pressure starts to rise above a baseline (shortly followed by the flow rising above 0)
For each breath, extract:The highest pressure that occurs, the pressure just before the start of the next breath, the lowest pressure that occurs
Does anyone know how to do that, without doing it manually? (It'd mean trawling through a few hours-worth of ventilator data for the project I'm trying to do)
I've attached a copy of the shapes of the waves I'm dealing with, to try to help make more sense.Pressure & Volume against time
My intention is to work out the breath-to-breath variability in maximum, minimum, and baseline pressures.
Ultimately, I've come up with my own fix using excel.
For each pressure value, I've taken the mean of that value and the two either side of it. I've then compared this to the previous mean. For my data, a change of this mean of more than 1% in either direction identifies the beginning and end of the up- and down-stroke of the pressure curve, and I can identify where in the curve I am based on the absolute value for pressure (the peak should never be lower than the highest baseline for the data I've collected), and for the slopes, the first direction of change of the mean (this smooths out occasionally inconsistent slopes).
I'm then graphing the data, along with the transition points, the calculated phase of the breath, and the breath count, so I can sense-check it visually.
Ged

Finding a density peak / cluster centrum in 2D grid / point process

I have a dataset with minute by minute GPS coordinates recorded by a persons cellphone. I.e. the dataset has 1440 rows with LON/LAT values. Based on the data I would like a point estimate (lon/lat value) of where the participants home is. Let's assume that home is the single location where they spend most of their time in a given 24h interval. Furthermore, the GPS sensor most of the time has quite high accuracy, however sometimes it is completely off resulting in gigantic outliers.
I think the best way to go about this is to treat it as a point process and use 2D density estimation to find the peak. Is there a native way to do this in R? I looked into kde2d (MASS) but this didn't really seem to do the trick. Kde2d creates a 25x25 grid of the data range with density values. However, in my data, the person can easily travel 100 miles or more per day, so these blocks are generally too large of an estimate. I could narrow them down and use a much larger grid but I am sure there must be a better way to get a point estimate.
There are "time spent" functions in the trip package (I'm the author). You can create objects from the track data that understand the underlying track process over time, and simply process the points assuming straight line segments between fixes. If "home" is where the largest value pixel is, i.e. when you break up all the segments based on the time duration and sum them into cells, then it's easy to find it. A "time spent" grid from the tripGrid function is a SpatialGridDataFrame with the standard sp package classes, and a trip object can be composed of one or many tracks.
Using rgdal you can easily transform coordinates to an appropriate map projection if lon/lat is not appropriate for your extent, but it makes no difference to the grid/time-spent calculation of line segments.
There is a simple speedfilter to remove fixes that imply movement that is too fast, but that is very simplistic and can introduce new problems, in general updating or filtering tracks for unlikely movement can be very complicated. (In my experience a basic time spent gridding gets you as good an estimate as many sophisticated models that just open up new complications). The filter works with Cartesian or long/lat coordinates, using tools in sp to calculate distances (long/lat is reliable, whereas a poor map projection choice can introduce problems - over short distances like humans on land it's probably no big deal).
(The function tripGrid calculates the exact components of the straight line segments using pixellate.psp, but that detail is hidden in the implementation).
In terms of data preparation, trip is strict about a sensible sequence of times and will prevent you from creating an object if the data have duplicates, are out of order, etc. There is an example of reading data from a text file in ?trip, and a very simple example with (really) dummy data is:
library(trip)
d <- data.frame(x = 1:10, y = rnorm(10), tms = Sys.time() + 1:10, id = gl(1, 5))
coordinates(d) <- ~x+y
tr <- trip(d, c("tms", "id"))
g <- tripGrid(tr)
pt <- coordinates(g)[which.max(g$z), ]
image(g, col = c("transparent", heat.colors(16)))
lines(tr, col = "black")
points(pt[1], pt[2], pch = "+", cex = 2)
That dummy track has no overlapping regions, but it shows that finding the max point in "time spent" is simple enough.
How about using the location that minimises the sum squared distance to all the events? This might be close to the supremum of any kernel smoothing if my brain is working right.
If your data comprises two clusters (home and work) then I think the location will be in the biggest cluster rather than between them. Its not the same as the simple mean of the x and y coordinates.
For an uncertainty on that, jitter your data by whatever your positional uncertainty is (would be great if you had that value from the GPS, otherwise guess - 50 metres?) and recompute. Do that 100 times, do a kernel smoothing of those locations and find the 95% contour.
Not rigorous, and I need to experiment with this minimum distance/kernel supremum thing...
In response to spacedman - I am pretty sure least squares won't work. Least squares is best known for bowing to the demands of outliers, without much weighting to things that are "nearby". This is the opposite of what is desired.
The bisquare estimator would probably work better, in my opinion - but I have never used it. I think it also requires some tuning.
It's more or less like a least squares estimator for a certain distance from 0, and then the weighting is constant beyond that. So once a point becomes an outlier, it's penalty is constant. We don't want outliers to weigh more and more and more as we move away from them, we would rather weigh them constant, and let the optimization focus on better fitting the things in the vicinity of the cluster.

Minimising interpolation error between two data sets

In the top of the diagrams below we can see some value (y-axis) changing over time (x-axis).
As this happens we are sampling the value at different and unpredictable times, also we are alternating the sampling between two data sets, indicated by red and blue.
When computing the value at any time, we expect that both red and blue data sets will return similar values. However as shown in the three smaller boxes this is not the case. Viewed over time the values from each data set (red and blue) will appear to diverge and then converge about the original value.
Initially I used linear interpolation to obtain a value, next I tried using Catmull-Rom interpolation. The former results in a values come close together and then drift apart between each data point; the latter results in values which remain closer, but where the average error is greater.
Can anyone suggest another strategy or interpolation method which will provide greater smoothing (perhaps by using a greater number of sample points from each data set)?
I believe what you ask is a question that does not have a straight answer without further knowledge on the underlying sampled process. By its nature, the value of the function between samples can be merely anything, so I think there is no way to assure the convergence of the interpolations of two sample arrays.
That said, if you have a prior knowledge of the underlying process, then you can choose among several interpolation methods to minimize the errors. For example, if you measure the drag force as a function of the wing velocity, you know the relation is square (a*V^2). Then you can choose polynomial fitting of the 2nd order and have pretty good match between the interpolations of the two serieses.
Try B-splines: Catmull-Rom interpolates (goes through the data points), B-spline does smoothing.
For example, for uniformly-spaced data (not your case)
Bspline(t) = (data(t-1) + 4*data(t) + data(t+1)) / 6
Of course the interpolated red / blue curves depend on the spacing of the red / blue data points,
so cannot match perfectly.
I'd like to quote Introduction to Catmull-Rom Splines to suggest not using Catmull-Rom for this interpolation task.
One of the features of the Catmull-Rom
spline is that the specified curve
will pass through all of the control
points - this is not true of all types
of splines.
By definition your red interpolated curve will pass through all red data points and your blue interpolated curve will pass through all blue points. Therefore you won't get a best fit for both data sets.
You might change your boundary conditions and use data points from both data sets for a piecewise approximation as shown in these slides.
I agree with ysap that this question cannot be answered as you may be expecting. There may be better interpolation methods, depending on your model dynamics - as with ysap, I recommend methods that utilize the underlying dynamics, if known.
Regarding the red/blue samples, I think you have made a good observation about sampled and interpolated data sets and I would challenge your original expectation that:
When computing the value at any time, we expect that both red and blue data sets will return similar values.
I do not expect this. If you assume that you cannot perfectly interpolate - and particularly if the interpolation error is large compared to the errors in samples - then you are certain to have a continuous error function that exhibits largest errors longest (time) from your sample points. Therefore two data sets that have differing sample points should exhibit the behaviour you see because points that are far (in time) from red sample points may be near (in time) to blue sample points and vice versa - if staggered as your points are, this is sure to be true. Thus I would expect what you show, that:
Viewed over time the values from each data set (red and blue) will appear to diverge and then converge about the original value.
(If you do not have information about underlying dynamics (except frequency content), then Giacomo's points on sampling are key - however, you need not interpolate if looking at info below Nyquist.)
When sampling the original continuous function, the sampling frequency should comply to the Nyquist-Shannon sampling theorem, otherwise the sampling process introduces an error (also known as aliasing). The error, being different in the two datasets, results in a different value when you interpolate.
Therefore, you need to know the highest frequency B of the original function and then collect samples with a frequency at least 2B. If your function has very high frequencies and you cannot sample that fast, you should at least try to filter them away before sampling.

Resources