Merge double integers with different decimal places - r

I want to merge two datasets based on their double integers, however one of the falls short 2 decimal places but I would like to merge them regardless if all units from the short match its relative length to the longer. The final integer can be of the longer or shorter one.
Example with expectation (xy):
x = c(0.456, 0.797, 0.978, 0.897, 0.567)
x1 = c(0.45698, 0.79786, 0.97895, 0.75869, 0.56049)
x x1
0.456 0.45698
0.797 0.79786
0.978 0.97895
# or if they match then replace with longer integers
I have tried merge but it duplicates:
> xx1<-merge(x, x1)
> unique(xx1)
x x1
1 0.456 0.45698
2 0.797 0.45698
3 0.978 0.45698
4 0.456 0.79786
5 0.797 0.79786
6 0.978 0.79786
7 0.456 0.97895
8 0.797 0.97895
9 0.978 0.97895

You can use pmatch:
i <- pmatch(x, x1)
j <- !is.na(i)
cbind(x=x[j], x1=x1[i[j]])
# x x1
#[1,] 0.456 0.45698
#[2,] 0.797 0.79786
#[3,] 0.978 0.97895

Related

The if else statement compare to 0

I try to get the square root of negative number. I got the absolute value of data and, for the positive number, I use the squart root of absolute number directly, otherwive add an negaitve sign to the result. However all numbers I got are negaitve...
My code
Results shown
I try to get negaitve and positive results, but I only got negative numbers.your text``your text
Library and Data
Not sure exactly what you are doing because your original data frame isn't included in the question. However, I have simulated a dataset that should emulate what you want depending on what you are doing. First, I loaded the tidyverse package for data wrangling like creating/manipulating variables, then set a random seed so you can reproduce the simulated data.
#### Load Library ####
library(tidyverse)
#### Set Random Seed ####
set.seed(123)
Now I create a randomly distributed x value that is both positive and negative.
#### Create Randomly Distributed X w/Neg Values ####
tib <- tibble(
x = rnorm(n=100)
)
Creating Variables
Now we can make absolute values, followed by square roots, which are made negative if the original raw value was negative.
#### Create Absolute and Sqrt Values ####
new.tib <- tib %>%
mutate(
abs.x = abs(x),
sq.x = sqrt(abs.x),
final.x = ifelse(x < 0,
sq.x * -1,
sq.x)
)
new.tib
If you print new.tib, the end result will look like this:
# A tibble: 100 × 4
x abs.x sq.x final.x
<dbl> <dbl> <dbl> <dbl>
1 2.20 2.20 1.48 1.48
2 1.31 1.31 1.15 1.15
3 -0.265 0.265 0.515 -0.515
4 0.543 0.543 0.737 0.737
5 -0.414 0.414 0.644 -0.644
6 -0.476 0.476 0.690 -0.690
7 -0.789 0.789 0.888 -0.888
8 -0.595 0.595 0.771 -0.771
9 1.65 1.65 1.28 1.28
10 -0.0540 0.0540 0.232 -0.232
If you just want to select the final x values, you can simply select them, like so:
new.tib %>%
select(final.x)
Giving you just this vector:
# A tibble: 100 × 1
final.x
<dbl>
1 1.48
2 1.15
3 -0.515
4 0.737
5 -0.644
6 -0.690
7 -0.888
8 -0.771
9 1.28
10 -0.232
# … with 90 more rows
Using the first example in ?ifelse:
x <- c(6:-4)
[1] 6 5 4 3 2 1 0 -1 -2 -3 -4
sqrt(ifelse(x >= 0, x, -x))
[1] 2.449490 2.236068 2.000000 1.732051 1.414214 1.000000
[7] 0.000000 1.000000 1.414214 1.732051 2.000000

Loop on several variables with the same suffix in R

I have a database which looks like this but with much more rows and columns.
Several variables (x,y,z) measured at different time (1,2,3).
df <-
tibble(
x1 = rnorm(10),
x2 = rnorm(10),
x3 = rnorm(10),
y1 = rnorm(10),
y2 = rnorm(10),
y3 = rnorm(10),
z1 = rnorm(10),
z2 = rnorm(10),
z3 = rnorm(10),
)
I am trying to create dummies variables from the variables with the same suffix (measured at the same time) like this:
df <- df %>%
mutate(var1= ifelse(x1>0 & (y1<0.5 |z1<0.5),0,1)) %>%
mutate(var2= ifelse(x2>0 & (y2<0.5 |z2<0.5),0,1)) %>%
mutate(var3= ifelse(x3>0 & (y1<0.5 |z3<0.5),0,1))
I am used to coding in SAS or Stata, so I would like to use a function or a loop because I have many more variables in my database.
But I think I don't have the right approach in R to deal with this.
Thank you very much for your help !
{dplyover} makes this kind of operation easy (disclaimer: I'm the maintainer), given that your desired output contains a typo:
I think you want to use all variables with the same digit (1, 2, 3 and so on) in each calculation:
df <- df %>%
mutate(var1= ifelse(x1>0 & (y1<0.5 |z1<0.5),0,1)) %>%
mutate(var2= ifelse(x2>0 & (y2<0.5 |z2<0.5),0,1)) %>%
mutate(var3= ifelse(x3>0 & (y3<0.5 |z3<0.5),0,1))
If that is the case we can use dplyover::over to apply the same function over a vector. Here we construct the vector with extract_names("[0-9]{1}$") which gets us all ending numbers of our variable names here: c(1,2,3). We can then construct the variable names using a special syntax: .("x{.x}"). Here .x evaluates to the first number in our vector so it would return the object name x1 (not a string!) which we can use inside the function argument of over.
library(dplyr)
library(dplyover) # Only on GitHub: https://github.com/TimTeaFan/dplyover
df %>%
mutate(over(cut_names("^[a-z]{1}"),
~ ifelse(.("x{.x}") > 0 & (.("y{.x}") < 0.5 | .("z{.x}") < 0.5), 0, 1),
.names = "var{x}"
))
#> # A tibble: 10 x 12
#> x1 x2 x3 y1 y2 y3 z1 z2 z3 var1
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.690 0.550 0.911 0.203 -0.111 0.530 -2.09 0.189 0.147 0
#> 2 -0.238 1.32 -0.145 0.744 1.05 -0.448 2.05 -1.04 1.50 1
#> 3 0.888 0.898 -1.46 -1.87 -1.14 1.59 1.91 -0.155 1.46 0
#> 4 -2.78 -1.34 -0.486 -0.0674 0.246 0.141 0.154 1.08 -0.319 1
#> 5 -1.20 0.835 1.28 -1.32 -0.674 0.115 0.362 1.06 0.515 1
#> 6 0.622 -0.713 0.0525 1.79 -0.427 0.819 -1.53 -0.885 0.00237 0
#> 7 -2.54 0.0197 0.942 0.230 -1.37 -1.02 -1.55 -0.721 -1.06 1
#> 8 -0.434 1.97 -0.274 0.848 -0.482 -0.422 0.197 0.497 -0.600 1
#> 9 -0.316 -0.219 0.467 -1.97 -0.718 -0.442 -1.39 -0.877 1.52 1
#> 10 -1.03 0.226 2.04 0.432 -1.02 -0.535 0.954 -1.11 0.804 1
#> # ... with 2 more variables: var2 <dbl>, var3 <dbl>
Alternatively we can use dplyr::across and use cur_column(), get() and gsub() to alter the name of the column on the fly. To name the new variables correctly we use gsub() in the .names argument of across and wrap it in curly braces {} to evaluate the expression.
library(dplyr)
df %>%
mutate(across(starts_with("x"),
~ {
cur_c <- dplyr::cur_column()
ifelse(.x > 0 & (get(gsub("x","y", cur_c)) < 0.5 | get(gsub("x","z", cur_c)) < 0.5), 0, 1)
},
.names = '{gsub("x", "var", .col)}'
))
#> # A tibble: 10 x 12
#> x1 x2 x3 y1 y2 y3 z1 z2 z3 var1
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 -0.423 -1.42 -1.15 -1.54 1.92 -0.511 -0.739 0.501 0.451 1
#> 2 -0.358 0.164 0.971 -1.61 1.96 -0.675 -0.0188 -1.88 1.63 1
#> 3 -0.453 -0.758 -0.258 -0.449 -0.795 -0.362 -1.81 -0.780 -1.90 1
#> 4 0.855 0.335 -1.36 0.796 -0.674 -1.37 -1.42 -1.03 -0.560 0
#> 5 0.436 -0.0487 -0.639 0.352 -0.325 -0.893 -0.746 0.0548 -0.394 0
#> 6 -0.228 -0.240 -0.854 -0.197 0.884 0.118 -0.0713 1.09 -0.0289 1
#> 7 -0.949 -0.231 0.428 0.290 -0.803 2.15 -1.11 -0.202 -1.21 1
#> 8 1.88 -0.0980 -2.60 -1.86 -0.0258 -0.965 -1.52 -0.539 0.108 0
#> 9 0.221 1.58 -1.46 -0.806 0.749 0.506 1.09 0.523 1.86 0
#> 10 0.0238 -0.389 -0.474 0.512 -0.448 0.178 0.529 1.56 -1.12 1
#> # ... with 2 more variables: var2 <dbl>, var3 <dbl>
Created on 2022-06-08 by the reprex package (v2.0.1)
You could restructure your data along the principles of tidy data (see e.g. https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html).
Here to a long format and using tidyverse:
library(tidyverse)
df <-
df |>
pivot_longer(everything()) |>
separate(name, c("var", "time"), sep = "(?=[0-9])") |>
pivot_wider(id_col = "time",
names_from = "var",
names_prefix = "var_",
values_from = "value",
values_fn = list) |>
unnest(-time) |>
mutate(new_var = ifelse(var_x > 0 & (var_y < 0.5 | var_z < 0.5), 0, 1))
df
You would probably want to keep the data in a long format, but if you want, you can pivot_wider and get back to the format you started with. E.g.
df |>
pivot_wider(values_from = c(starts_with("var_"), "new_var"),
names_from = "time",
values_fn = list) |>
unnest(everything())
As you suggested, a solution using a loop is definitely possible.
# times as unique non-alphabetical parts of column names
times <- unique(gsub('[[:alpha:]]', '', names(df)))
for (time in times) {
# column names for current time
xyz <- paste0(c('x', 'y', 'z'), time)
df[[paste0('var', time)]] <-
ifelse(df[[xyz[1]]]>0 & (df[[xyz[2]]]<.5 | df[[xyz[3]]]<.5), 0, 1)
}
Another way I can think of is transforming the data into a 3D array (observartion × variable × time) so that you can actually do the computation for all variables at once.
times <- unique(gsub('[[:alpha:]]', '', names(df)))
df.arr <- sapply(c('x', 'y', 'z'),
function(var) as.matrix(df[, paste0(var, times)]),
simplify='array')
new.vars <- ifelse(df.arr[, , 1]>0 & (df.arr[, , 2]<0.5 | df.arr[, , 3]<0.5), 0, 1)
colnames(new.vars) <- paste0('var', times)
cbind(df, new.vars)
Here, sapply creates a matrix from columns of measurings for each variable at different times and stacks them into a 3D array.
If you trust (or ensure) correct ordering of columns in the data frame, instead of using sapply you can create the array just by modifying the object's dimensions. I didn't do any benchmarking but i guess this could be the most computationally efficient solution (if it should matter).
df.arr <- as.matrix(df)
dim(df.arr) <- c(dim(df.arr) / c(1, 3), 3)

Make a matrix of 2 rows into a row and a column in R

I'm using R
I have a csv file from single cell data like this, where the column 'cluster' is repeated for all the unique 'gene' column.
dput(markers)
p_val avg_logFC pct.1 pct.2 p_val_adj cluster gene
APOC1 0 1.696639642 0.939 0.394 0 0 APOC1
APOE 0 1.487160872 0.958 0.475 0 0 APOE
GPNMB 9.30E-269 1.31714457 0.745 0.301 2.49E-264 0 GPNMB
FTL 2.24E-230 0.766844152 1 0.977 6.00E-226 0 FTL
PSAP 2.27E-225 0.98726538 0.925 0.685 6.07E-221 0 PSAP
CTSB 4.84E-211 0.925031015 0.902 0.606 1.29E-206 0 CTSB
CTSS 1.37E-197 0.898457063 0.869 0.609 3.67E-193 0 CTSS
CSTB 8.05E-191 0.853658991 0.918 0.732 2.15E-186 0 CSTB
CTSD 1.23E-187 1.08931251 0.787 0.443 3.30E-183 0 CTSD
IGKC 0 1.560337702 0.998 0.237 0 1 IGKC
IGLC2 0 1.546344857 0.997 0.152 0 1 IGLC2
IGLC3 0 1.342649567 0.967 0.073 0 1 IGLC3
C11orf96 0 1.245172517 0.99 0.253 0 1 C11orf96
COL3A1 0 1.212528128 1 0.343 0 1 COL3A1
LUM 0 1.202452925 0.971 0.143 0 1 LUM
IGHG4 0 0.977399051 0.876 0.092 0 1 IGHG4
HSPG2 0 0.957478533 0.883 0.148 0 1 HSPG2
NNMT 0 0.952577589 0.945 0.213 0 1 NNMT
IGHG1 0 0.913733424 0.861 0.07 0 1 IGHG1
COL6A31 0 1.847828827 0.907 0.192 0 2 COL6A3
PDGFRA 5.38E-292 0.849349193 0.503 0.052 1.44E-287 2 PDGFRA
COL5A21 2.67E-280 1.400314195 0.649 0.105 7.14E-276 2 COL5A2
CALD1 1.11E-275 1.292924443 0.771 0.155 2.98E-271 2 CALD1
CCDC80 1.73E-271 1.168549626 0.706 0.123 4.64E-267 2 CCDC80
COL1A21 1.66E-268 2.004626869 0.966 0.326 4.45E-264 2 COL1A2
DCN1 1.47E-253 1.540631398 0.886 0.254 3.93E-249 2 DCN
COL3A11 3.88E-253 2.216642854 0.955 0.353 1.04E-248 2 COL3A1
FBN1 6.40E-251 0.949521182 0.525 0.07 1.71E-246 2 FBN1
I want to transform my matrix so that the row name is the unique cluster name and each column has all the genes from that cluster name (picture 2). How should i write the code?
dput(markers)
0 1 2
APOC1 IGKC COL6A3
APOE IGLC2 PDGFRA
GPNMB IGLC3 COL5A2
FTL C11orf96 CALD1
PSAP COL3A1 CCDC80
CTSB LUM COL1A2
CTSS IGHG4 DCN
CSTB HSPG2 COL3A1
CTSD NNMT FBN1
I tried this and the result file has no values.
markers = read.csv("./markers.csv", row.names=1, stringsAsFactors=FALSE)
z1 = matrix("", ncol = length(unique(markers$cluster)))
colnames(z1) = unique(markers$cluster)
for (i in 1:nrow(z1)){
for (j in 1:ncol(z1)){
genes1 = as.character(markers$gene)[markers$cluster == rownames(z1)[i]]
z1[i,0] = paste(genes1, collapse=" ")
z1 = matrix("", ncol = length(unique(markers$cluster)))
colnames(z1) = unique(markers$cluster)
for (i in 1:nrow(z1)){
for (j in 1:ncol(z1)){
genes1 = as.character(markers$gene)[markers$cluster == rownames(z1)[i]]
z1[i,0] = paste(genes1, collapse=" ")
}
}
write.csv(z1, "test.csv")
This may accomplish what you want, but first we need a reproducible example:
set.seed(42)
cluster <- c(rep(0, 8), rep(1, 10), rep(2, 12))
gene <- replicate(30, paste0(sample(LETTERS, 4), collapse=""))
markers <- data.frame(cluster, gene, stringsAsFactors=FALSE)
This data frame only contains the two columns you are interested in. We need to split the data frame by gene:
markers.split <- split(markers$gene, markers$cluster)
Print this out. It is a list containing 3 character vectors, one for 0, 1, and 2. The problem with the table format you want is that tables and matrices have to have the same number of rows in each column. We have to pad the vectors so they are all as long as the longest one (12 in this case):
rows <- max(sapply(markers.split, length))
markers.sp <- lapply(markers.split, function(x) c(x, rep("", rows - length(x))))
markers.df <- do.call(data.frame, list(markers.sp, stringsAsFactors=FALSE))
markers.df
# X0 X1 X2
# 1 QEAJ ZHDX TIKC
# 2 DRQO VRME PEXN
# 3 XGDE DBXR EVBR
# 4 NTRO CXWQ XQRE
# 5 CIDE URFX NHWY
# 6 METB BTCV UDYG
# 7 HCAJ UBWF JRMU
# 8 XKOV ZJHE VSPZ
# 9 AQGD QLIU
# 10 MJIL KYPH
# 11 WFAM
# 12 NEIW
R automatically adds "X" to any column name that starts with a number.

Conditional sorting / reordering of column values in R

I have a data set similar to the following with 1 column and 60 rows:
value
1 0.0423
2 0.0388
3 0.0386
4 0.0342
5 0.0296
6 0.0276
7 0.0246
8 0.0239
9 0.0234
10 0.0214
.
40 0.1424
.
60 -0.0312
I want to reorder the rows so that certain conditions are met. For example one condition could be: sum(df$value[4:7]) > 0.1000 & sum(df$value[4:7]) <0.1100
With the data set looking like this for example.
value
1 0.0423
2 0.0388
3 0.0386
4 0.1312
5 -0.0312
6 0.0276
7 0.0246
8 0.0239
9 0.0234
10 0.0214
.
.
.
60 0.0342
What I tried was using repeat and sample as in the following:
repeat{
df1 <- as_tibble(sample(sdf$value, replace = TRUE))
if (sum(df$value[4:7]) > 0.1000 & sum(df$value[4:7]) <0.1100) break
}
Unfortunately, this method takes quite some time and I was wondering if there is a faster way to reorder rows based on mathematical conditions such as sum or prod
Here's a quick implementation of the hill-climbing method I outlined in my comment. I've had to slightly reframe the desired condition as "distance of sum(x[4:7]) from 0.105" to make it continuous, although you can still use the exact condition when doing the check that all requirements are satisfied. The benefit is that you can add extra conditions to the distance function easily.
# Using same example data as Jon Spring
set.seed(42)
vs = rnorm(60, 0.05, 0.08)
get_distance = function(x) {
distance = abs(sum(x[4:7]) - 0.105)
# Add to the distance with further conditions if needed
distance
}
max_attempts = 10000
best_distance = Inf
swaps_made = 0
for (step in 1:max_attempts) {
# Copy the vector and swap two random values
new_vs = vs
swap_inds = sample.int(length(vs), 2, replace = FALSE)
new_vs[swap_inds] = rev(new_vs[swap_inds])
# Keep the new vector if the distance has improved
new_distance = get_distance(new_vs)
if (new_distance < best_distance) {
vs = new_vs
best_distance = new_distance
swaps_made = swaps_made + 1
}
complete = (sum(vs[4:7]) < 0.11) & (sum(vs[4:7]) > 0.1)
if (complete) {
print(paste0("Solution found in ", step, " steps"))
break
}
}
sum(vs[4:7])
There's no real guarantee that this method will reach a solution, but I often try this kind of basic hill-climbing when I'm not sure if there's a "smart" way to approach a problem.
Here's an approach using combn from base R, and then filtering using dplyr. (I'm sure there's a way w/o it but my base-fu isn't there yet.)
With only 4 numbers from a pool of 60, there are "only" 488k different combinations (ignoring order; =60*59*58*57/4/3/2), so it's quick to brute force in about a second.
# Make a vector of 60 numbers like your example
set.seed(42)
my_nums <- rnorm(60, 0.05, 0.08);
all_combos <- combn(my_nums, 4) # Get all unique combos of 4 numbers
library(tidyverse)
combos_table <- all_combos %>%
t() %>%
as_tibble() %>%
mutate(sum = V1 + V2 + V3 + V4) %>%
filter(sum > 0.1, sum < 0.11)
> combos_table
# A tibble: 8,989 x 5
V1 V2 V3 V4 sum
<dbl> <dbl> <dbl> <dbl> <dbl>
1 0.160 0.00482 0.0791 -0.143 0.100
2 0.160 0.00482 0.101 -0.163 0.103
3 0.160 0.00482 0.0823 -0.145 0.102
4 0.160 0.00482 0.0823 -0.143 0.104
5 0.160 0.00482 -0.0611 -0.00120 0.102
6 0.160 0.00482 -0.0611 0.00129 0.105
7 0.160 0.00482 0.0277 -0.0911 0.101
8 0.160 0.00482 0.0277 -0.0874 0.105
9 0.160 0.00482 0.101 -0.163 0.103
10 0.160 0.00482 0.0273 -0.0911 0.101
# … with 8,979 more rows
This says that in this example, there are about 9000 different sets of 4 numbers from my sequence which meet the criteria. We could pick any of these and put them in positions 4-7 to meet your requirement.

Produce a matrix from every row (tidyverse)

I am trying to implement analyses across a posterior of matrices. What I start with is a tibble of k^2 columns, where k is the dimensions of the matrix. The ith row forms the matrix of the ith iteration.
So, for example for a 3x3 matrix, this is:
set.seed(12)
n <- 1000
z1z1 <- rnorm(n, 5, 1)
z2z2 <- rnorm(n, 5, 1)
z3z3 <- rnorm(n, 5, 1)
z1z2 <- rnorm(n, 0, 1)
z1z3 <- rnorm(n, 0, 1)
z2z3 <- rnorm(n, 0, 1)
post3 <- as_tibble(matrix(c(z1z1, z1z2, z1z3,
z1z2, z2z2, z2z3,
z1z3, z2z3, z3z3),
ncol = 9))
post3
Giving:
# A tibble: 1,000 x 9
V1 V2 V3 V4 V5 V6 V7 V8 V9
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 3.52 -0.618 2.96 -0.618 2.48 -0.634 2.96 -0.634 5.98
2 6.58 -0.827 0.0909 -0.827 5.52 -1.84 0.0909 -1.84 6.20
3 4.04 1.48 -1.66 1.48 6.58 0.166 -1.66 0.166 5.58
4 4.08 -1.01 0.809 -1.01 5.49 0.607 0.809 0.607 6.55
5 3.00 0.582 -0.485 0.582 6.20 0.0765 -0.485 0.0765 6.38
6 4.73 0.718 1.97 0.718 4.00 -0.147 1.97 -0.147 4.35
7 4.68 -0.372 0.572 -0.372 4.65 -1.68 0.572 -1.68 3.83
8 4.37 -0.809 0.883 -0.809 3.96 0.985 0.883 0.985 4.97
9 4.89 0.405 0.686 0.405 6.02 0.252 0.686 0.252 6.29
10 5.43 0.124 0.199 0.124 5.75 0.354 0.199 0.354 4.20
# ... with 990 more rows
Where this is the matrix in the first iteration:
k <- sqrt(length(post3))
matrix(post3[1,], nrow = k)
[,1] [,2] [,3]
[1,] 3.519432 -0.618137 2.962622
[2,] -0.618137 2.479522 -0.6338298
[3,] 2.962622 -0.6338298 5.977552
I am then working along this posterior to calculate the dominance of the first eigenvector:
post3 %>%
rowwise %>%
mutate(
pre_eig = list(eigen(matrix(c(V1, V2, V3, V4, V5, V6, V7, V8, V9), nrow = k))),
dom = pre_eig[[1]][1] / sum(pre_eig[[1]][1:k])) %>%
select('dom')
Giving:
# A tibble: 1,000 x 1
dom
<dbl>
1 0.676
2 0.437
3 0.462
4 0.427
5 0.414
6 0.504
7 0.474
8 0.429
9 0.394
10 0.383
# ... with 990 more rows
What I would like to do is make this script versatile so that it can take posteriors for any value of k. The issue I am having is in how to define the matrix without having to hand write all the column names - when applying this to 2000x2000 matrices I don't want to write out V1, V2, V3... V4000000!
I tried a few things (including ...eigen(matrix(c(paste0('V', 1:(k^2))), nrow = k)))..., which I think is not working because it wants V1, V2... rather than "V1", "V2"...) and I all out of ideas. How do I get it to automatically take the column names from the posterior tibble?
I would then be able to use the exact same piece of script for example on post3 <- as_tibble(matrix(c(z1z1, z1z2, z1z2, z2z2), ncol = 4))...
You can avoid naming all the columns explicitly if you gather each row's values into key-value pairs:
library(tidyr)
post3 %>%
# add row ID (so that results can be sorted back into original order)
mutate(row.id = seq(1, n())) %>%
# convert each row to long format, with values sorted from 1st to k^2th column
gather(position, value, -row.id) %>%
mutate(position = as.numeric(gsub("^V", "", position))) %>%
arrange(row.id, position) %>%
select(-position) %>%
# group by row ID & calculate
group_by(row.id) %>%
summarise(pre_eig = list(eigen(matrix(value, nrow = k))[["values"]]),
dom = pre_eig[[1]][1] / sum(pre_eig[[1]][1:k])) %>%
ungroup() %>%
# sort results in original order
arrange(row.id) %>%
select(dom)
The results should be the same as before:
# A tibble: 1,000 x 1
dom
<dbl>
1 0.676
2 0.437
3 0.462
4 0.427
5 0.414
6 0.504
7 0.474
8 0.429
9 0.394
10 0.383
# ... with 990 more rows

Resources