Creating new columns with mutate() and across() - r

This is a simplified version of the actual problem I'm dealing with. In this example, I'll be working with four columns, and the actual problem requires working with about 20-30 columns.
Consider the iris dataset. Suppose that I wanted to, for some reason, append new columns which would be equal to double the .Length and the .Width columns. With the following code, this would change the existing columns:
library(dplyr)
head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
df_iris <- iris %>% mutate(across(matches("(\\.)(Length|Width)"),
function(x) { x * 2 }))
head(df_iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 10.2 7.0 2.8 0.4 setosa
2 9.8 6.0 2.8 0.4 setosa
3 9.4 6.4 2.6 0.4 setosa
4 9.2 6.2 3.0 0.4 setosa
5 10.0 7.2 2.8 0.4 setosa
6 10.8 7.8 3.4 0.8 setosa
However, instead, I would like to have this doubled calculation create NEW columns, say .Length.2 and .Width.2. One way this could be done is the following:
double <- function(x) {
x * 2
}
df_iris <- iris %>%
mutate(Sepal.Length.2 = double(Sepal.Length),
Sepal.Width.2 = double(Sepal.Width),
Petal.Length.2 = double(Petal.Length),
Petal.Width.2 = double(Petal.Width))
head(df_iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length.2 Sepal.Width.2 Petal.Length.2 Petal.Width.2
1 5.1 3.5 1.4 0.2 setosa 10.2 7.0 2.8 0.4
2 4.9 3.0 1.4 0.2 setosa 9.8 6.0 2.8 0.4
3 4.7 3.2 1.3 0.2 setosa 9.4 6.4 2.6 0.4
4 4.6 3.1 1.5 0.2 setosa 9.2 6.2 3.0 0.4
5 5.0 3.6 1.4 0.2 setosa 10.0 7.2 2.8 0.4
6 5.4 3.9 1.7 0.4 setosa 10.8 7.8 3.4 0.8
Is there a way to do this in dplyr without:
relying on superseded/deprecated functions?
having to manually specify each column name?

We can use across (used dplyr 1.0.6 version)
library(dplyr)
df_iris <- iris %>%
mutate(across(where(is.numeric), double, .names = '{.col}.2'))
-output
head(df_iris, 3)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length.2 Sepal.Width.2 Petal.Length.2 Petal.Width.2
1 5.1 3.5 1.4 0.2 setosa 10.2 7.0 2.8 0.4
2 4.9 3.0 1.4 0.2 setosa 9.8 6.0 2.8 0.4
3 4.7 3.2 1.3 0.2 setosa 9.4 6.4 2.6 0.4

Related

How to subtract two columns using tidyverse mutate with columns named by external variables

I’d like to dynamically assign which columns to subtract from each other. I’ve read around and looks like I need to use all_of, and maybe across (How to subtract one column from multiple columns in a dataframe in R using dplyr, How to you use objects in dplyr filter?). I can get it working for one variable in a mutate phrase (e.g. mutate(y = all_of(x))), but I can’t seem to do even simple calculations using two. Here’s a simplified example of what I want to do:
var1 <- c("Sepal.Length")
var2 <- c("Sepal.Width")
result <- iris %>%
mutate(calculation = all_of(var1) - all_of(var2))
We may use .data to subset the column as a vector. The all_of/any_of are used along with across to loop across the columns
library(dplyr)
iris %>%
mutate(calculation = .data[[var1]] - .data[[var2]])%>%
head
-output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or may also use cur_data()
iris %>%
head %>%
mutate(calculation = cur_data()[[var1]] - cur_data()[[var2]])
-output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or another option is to pass both the variables in across, and then reduce with -
library(purrr)
iris %>%
head %>%
mutate(calculation = reduce(across(all_of(c(var1, var2))), `-`))
-output
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or could convert to symbol and evaluate (!!)
iris %>%
head %>%
mutate(calculation = !! rlang::sym(var1) - !! rlang::sym(var2))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
Or if we want to use all_of in across, just subset the column with [[
iris %>%
head %>%
mutate(calculation = across(all_of(var1))[[1]] -
across(all_of(var2))[[1]])
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
The reason we need to subset is because, across by default will update the original column when the .names is not present. The calculation will be a data.frame with a single column
out <- iris %>%
head %>%
mutate(calculation = across(all_of(var1)) -
across(all_of(var2)))
out
Sepal.Length Sepal.Width Petal.Length Petal.Width Species Sepal.Length
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3.0 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5.0 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
str(out)
data.frame': 6 obs. of 6 variables:
$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4
$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9
$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7
$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4
$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1
$ calculation :'data.frame': 6 obs. of 1 variable:
..$ Sepal.Length: num 1.6 1.9 1.5 1.5 1.4 1.5
We could use get to access the variable values where the name of variable is stored in a string (thanks to akrun for assist):
iris %>%
mutate(calculation = get(var1) - get(var2))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species calculation
<dbl> <dbl> <dbl> <dbl> <fct> <dbl>
1 5.1 3.5 1.4 0.2 setosa 1.6
2 4.9 3 1.4 0.2 setosa 1.9
3 4.7 3.2 1.3 0.2 setosa 1.5
4 4.6 3.1 1.5 0.2 setosa 1.5
5 5 3.6 1.4 0.2 setosa 1.4
6 5.4 3.9 1.7 0.4 setosa 1.5
7 4.6 3.4 1.4 0.3 setosa 1.2
8 5 3.4 1.5 0.2 setosa 1.6
9 4.4 2.9 1.4 0.2 setosa 1.5
10 4.9 3.1 1.5 0.1 setosa 1.8
# ... with 140 more rows

Sorting data list according to an external list

I have a data frame with 81 objects and 12 variables, including an ID for each object.
Further, I have a sorted(!) list of ID's.
Now, I want to sort my data frame after this specific list.
Can anyone make a simple example for that case?
I am a newbie, trying to learn.
Thanks in advance!
Quick example of my case:
ID City NR1 NR2
Dataframe1 = "11000", Berlin, (123,2), (532,1)
"02401", Hamburg, (435,2), (352,1)
"83329", München, (124,3), (125,2)
ID = list("02401", "83329", "11000")
Now, I want Dataframe1 to be sorted after the ID from the list.
You can arrange your dataframe using arrange().
An example:
The iris dataset, as is:
> head(iris)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
creating an external vector:
index<-sample(1:150)
Then you can sort your dataframe with that external vector:
head(arrange(iris, index))
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 6.4 2.7 5.3 1.9 virginica
2 5.5 3.5 1.3 0.2 setosa
3 6.3 3.3 6.0 2.5 virginica
4 6.3 3.3 4.7 1.6 versicolor
5 4.9 2.5 4.5 1.7 virginica
6 5.7 2.8 4.5 1.3 versicolor
To arrange by a specific external vector that matches one of the variables, you can use match()
iris2<-head(iris)%>%mutate(ID=sample(1:150, 6))
> iris2
Sepal.Length Sepal.Width Petal.Length Petal.Width Species ID
1 5.1 3.5 1.4 0.2 setosa 29
2 4.9 3.0 1.4 0.2 setosa 61
3 4.7 3.2 1.3 0.2 setosa 69
4 4.6 3.1 1.5 0.2 setosa 89
5 5.0 3.6 1.4 0.2 setosa 59
6 5.4 3.9 1.7 0.4 setosa 84
external_vector<-c(69,59,84,29,61,89)
arrange with match():
iris2[match(external_vector, iris2$ID),]
Sepal.Length Sepal.Width Petal.Length Petal.Width Species ID
3 4.7 3.2 1.3 0.2 setosa 69
5 5.0 3.6 1.4 0.2 setosa 59
6 5.4 3.9 1.7 0.4 setosa 84
1 5.1 3.5 1.4 0.2 setosa 29
2 4.9 3.0 1.4 0.2 setosa 61
4 4.6 3.1 1.5 0.2 setosa 89

How to use lag/lead in mutate with only one initial value?

Sample df:
library(tidyverse)
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5
2 4.9 3.0 1.4 0.2 setosa NA
3 4.7 3.2 1.3 0.2 setosa NA
4 4.6 3.1 1.5 0.2 setosa NA
5 5.0 3.6 1.4 0.2 setosa NA
6 5.4 3.9 1.7 0.4 setosa NA
7 4.6 3.4 1.4 0.3 setosa NA
8 5.0 3.4 1.5 0.2 setosa NA
9 4.4 2.9 1.4 0.2 setosa NA
10 4.9 3.1 1.5 0.1 setosa NA
In the testlag column, I'm interesting in using dplyr::lag() to retrieve the previous value and add some column, for example Petal.Length to it. As I have only one initial value, each subsequent calculation requires it to work iteratively, so I thought something like mutate would work.
I first tried doing something like this:
iris %>% mutate_at("testlag", ~ lag(.) + Petal.Length)
But this removed the first value, and only gave a valid value for the second row and NAs for the rest. Intuitively I know why it's removing the first value, but I thought the nature of mutate would allow it to work for the rest of the values, so I don't know how to fix that.
Of course using base R I could something like:
for (idx in 2:nrow(iris)) {
iris[[idx, "testlag"]] <-
lag(iris$testlag)[idx] + iris[[idx, "Petal.Length"]]
}
But I would prefer to implement this in tidyverse syntax.
Edit: Desired output (from my for loop)
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5.0
2 4.9 3.0 1.4 0.2 setosa 6.4
3 4.7 3.2 1.3 0.2 setosa 7.7
4 4.6 3.1 1.5 0.2 setosa 9.2
5 5.0 3.6 1.4 0.2 setosa 10.6
6 5.4 3.9 1.7 0.4 setosa 12.3
7 4.6 3.4 1.4 0.3 setosa 13.7
8 5.0 3.4 1.5 0.2 setosa 15.2
9 4.4 2.9 1.4 0.2 setosa 16.6
10 4.9 3.1 1.5 0.1 setosa 18.1
Does this work for you?
library(tidyverse)
library("data.table")
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
iris %>% mutate (testlag = lag(first(testlag) + cumsum(Petal.Length)))
Result:
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa NA
2 4.9 3.0 1.4 0.2 setosa 6.4
3 4.7 3.2 1.3 0.2 setosa 7.8
4 4.6 3.1 1.5 0.2 setosa 9.1
5 5.0 3.6 1.4 0.2 setosa 10.6
6 5.4 3.9 1.7 0.4 setosa 12.0
7 4.6 3.4 1.4 0.3 setosa 13.7
8 5.0 3.4 1.5 0.2 setosa 15.1
9 4.4 2.9 1.4 0.2 setosa 16.6
10 4.9 3.1 1.5 0.1 setosa 18.0
Since technically there is no N-1 Petal length when N = 1, I left the first value of testlag NA. Do you really need it to be initial value? If you need, this will work:
iris %>% mutate (testlag = lag(first(testlag) + cumsum(Petal.Length), default=first(testlag)))
The function you're looking for is tidyr::fill
library(tidyverse)
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
iris %>% fill(testlag, .direction = "down")
# Note the default is 'down', but I included here for completeness
This takes the specified column (testlag in this case), and copies any values in that column to the values below. This also works if you have a value in a subset of the rows: it copies the value down until it reaches a new value, then it picks up with that one.
For example:
library(tidyverse)
iris <- iris[1:10,]
iris$testlag <- NA
iris[[1,"testlag"]] <- 5
iris[[5,"testlag"]] <- 10
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5
2 4.9 3.0 1.4 0.2 setosa NA
3 4.7 3.2 1.3 0.2 setosa NA
4 4.6 3.1 1.5 0.2 setosa NA
5 5.0 3.6 1.4 0.2 setosa 10
6 5.4 3.9 1.7 0.4 setosa NA
7 4.6 3.4 1.4 0.3 setosa NA
8 5.0 3.4 1.5 0.2 setosa NA
9 4.4 2.9 1.4 0.2 setosa NA
10 4.9 3.1 1.5 0.1 setosa NA
Applying this function...
iris %>% fill(testlag, .direction = "down")
Gives
Sepal.Length Sepal.Width Petal.Length Petal.Width Species testlag
1 5.1 3.5 1.4 0.2 setosa 5
2 4.9 3.0 1.4 0.2 setosa 5
3 4.7 3.2 1.3 0.2 setosa 5
4 4.6 3.1 1.5 0.2 setosa 5
5 5.0 3.6 1.4 0.2 setosa 10
6 5.4 3.9 1.7 0.4 setosa 10
7 4.6 3.4 1.4 0.3 setosa 10
8 5.0 3.4 1.5 0.2 setosa 10
9 4.4 2.9 1.4 0.2 setosa 10
10 4.9 3.1 1.5 0.1 setosa 10

Combining multiple dataframe in R

I have 5 dataframe (df1, df2, df3, df4, df5). All have same columns and column names (NIR database). I would like to frist combine df1 and df2 into df12 and then df3, df4 and df5 into df345 and finally combine df12 and df345 into df. (It has to be this two stages).
df12 <- do.call(rbind, list(df1,df2))
df345 <- do.call(rbind, list(df3,df4,df5))
df <- do.call(rbind, list(df12,df345))
newdf <- data.frame(oiltype="olive",nir=df[2:276]);
With this I got one of the column names become nir.nir.V4 while I need it to be nir.V4.
I think this is due to the use of list. I would like to know if there's any alternative to combine multiple dataframes without having to face this trouble. Appreciate any suggestion.
I have 5 data.frame df1, df2, df3, df4, df5 having same columns and column names.
> df1
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
> df2
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
> df3
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
> df4
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
> df5
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
13 4.8 3 1.4 0.1 setosa
14 4.3 3 1.1 0.1 setosa
15 5.8 4 1.2 0.2 setosa
For combining df1 and df2
> df12 <- rbind(df1,df2)
> df12
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
For combining df3, df4, df5 do the same as above
> df345 <- rbind(df3,df4,df5)
> df345
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa
And at last combining newly formed data frame can be done in similar way
> df <- rbind(df12,df345)
> df
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 4.6 3.1 1.5 0.2 setosa
5 5.0 3.6 1.4 0.2 setosa
6 5.4 3.9 1.7 0.4 setosa
7 4.6 3.4 1.4 0.3 setosa
8 5.0 3.4 1.5 0.2 setosa
9 4.4 2.9 1.4 0.2 setosa
10 4.9 3.1 1.5 0.1 setosa
11 5.4 3.7 1.5 0.2 setosa
12 4.8 3.4 1.6 0.2 setosa
13 4.8 3.0 1.4 0.1 setosa
14 4.3 3.0 1.1 0.1 setosa
15 5.8 4.0 1.2 0.2 setosa

Creating a random sample from a dataframe with a nested structure

This question builds from the SO post found here
I am trying to extract a random sample of rows in a data frame using a nesting condition.
Using the following dummy dataset (modified from iris):
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
2 4.9 3.0 1.4 0.2 setosa
3 4.7 3.2 1.3 0.2 setosa
4 5.3 2.9 1.5 0.2 setosa
5 5.2 3.7 1.3 0.2 virginica
6 4.7 3.2 1.5 0.2 virginica
7 3.9 3.1 1.4 0.2 virginica
8 4.7 3.2 1.3 0.2 virginica
9 4.0 3.1 1.5 0.2 versicolor
10 5.0 3.6 1.4 0.2 versicolor
11 4.6 3.1 1.5 0.2 versicolor
12 5.0 3.6 1.5 0.2 versicolor
The code below works fine to take a simple sample of 2 rows:
iris[sample(nrow(iris), 2), ]
However, what I would like to do is to take a sample of 2 rows for each level of a specific variable. For example create a random sample of 2 rows for each level of the variable 'Species', like that:
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
4 5.3 2.9 1.5 0.2 setosa
6 4.7 3.2 1.5 0.2 virginica
7 3.9 3.1 1.4 0.2 virginica
11 4.6 3.1 1.5 0.2 versicolor
12 5.0 3.6 1.5 0.2 versicolor
Thanks for your help!
Very easy with dplyr:
library(dplyr)
iris %>%
group_by(Species) %>%
sample_n(size = 2)
# Sepal.Length Sepal.Width Petal.Length Petal.Width Species
# 1 4.6 3.4 1.4 0.3 setosa
# 2 5.2 3.5 1.5 0.2 setosa
# 3 6.5 2.8 4.6 1.5 versicolor
# 4 5.7 2.8 4.5 1.3 versicolor
# 5 5.8 2.8 5.1 2.4 virginica
# 6 7.7 2.6 6.9 2.3 virginica
You can group by as many columns as you'd like
CO2 %>% group_by(Type, Treatment) %>% sample_n(size = 2)

Resources