Logistic Regression glm() in R not recognizing numerical values - r

I'm fairly new to R and machine learning and I'm trying to build a logistic regression model that can predict which of the clinical variables can better predict the outcome of death (0 being death and 1 is living in the dataset below).
Here is the dput of the data
structure(list(ID = c(13154920, 13201107, 13207948, 13234892,
13082943, 13193903, 13283776, 13154288, 13269178, 13055690, 13207670,
13220627, 13055009, 13044947, 13060589, 13201616, 13054278, 13160156,
13160971, 13239318, 13321288, 13154966, 13165362, 12999835, 13223721,
13064865, 13104602, 13036280, 13040507, 12964437, 13029805, 13029001,
12993036, 13072516, 13060586, 13119819, 13040632, 13055908, 13059026,
13207119, 13261022, 13259391, 13262499, 13207315, 13135316, 13233898,
13181075, 13261607, 13186960, 13240091, 13260671, 13302375, 13021555,
13062360, 13035346, 13077712, 13128769, 13267480, 13040172, 12977871,
13090190, 13040530, 13100979, 13192142, 13289317, 13315577, 13044653,
13079694, 13128639, 13207352, 13049409, 13210994, 13283675),
outcome = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1), day = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0), pa02 = c("121", "NA", "78.7", "69.099999999999994", "131",
"26.3", "68.900000000000006", "74.099999999999994", "118",
"404", "399", "NA", "NA", "73.7", "265", "75", "222", "112",
"133", "77.900000000000006", "64.7", "84", "92.2", "107",
"64.599999999999994", "56.6", "69.900000000000006", "130",
"91.4", "NA", "111", "79.2", "86.9", "65.7", "94.5", "129",
"NA", "157,0", "32,8", "160,0", "38,1", "61,7", "NA", "86,8",
"86,5", "87,4", "143,0", "57,8", "NA", "88,6", "94,3", "NA",
"70,0", "107,0", "57,2", "75,9", "148,0", "NA", "60,4", "NA",
"NA", "148,0", "75,3", "75,4", "58", "46,4", "82,3", "189,0",
"132,0", "96,5", "112,0", "67,0", "65"), iot = c("0", "1",
"1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1",
"0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1",
"1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1",
"0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1",
"0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0"), fio2 = c("0.23",
"1", "0.6", "0.23", "1", "0.23", "0.23", "0.23", "0.4", "1",
"0.23", "0.23", "0.23", "1", "0.23", "0.23", "0.23", "0.23",
"0.5", "0.5", "0.23", "0.23", "0.23", "0.23", "0.75", "NA",
"NA", "0.23", "0.1", "0.23", "NA", "0.23", "NA", "0.23",
"1", "0.5", "0.4", "0.45", "0.23", "0.23", "0.7", "0.23",
"0.23", "0.23", "0.23", "0.23", "1", "0.23", "0.23", "0.23",
"0.23", "0.23", "0.23", "1", "0.23", "1", "0.23", "0.8",
"0.23", "0.4", "0.23", "0.4", "0.23", "0.23", "0.23", "0.23",
"0.3", "0.23", "0.8", "0.23", "0.3", "0.23", "0.23"), resp_syst = c("526.08695652173913",
"NA", "131.16666666666669", "300.43478260869563", "131",
"114.34782608695652", "299.56521739130437", "322.17391304347819",
"295", "404", "1734.782608695652", "NA", "NA", "73.7", "1152.1739130434783",
"326.08695652173913", "965.21739130434776", "486.95652173913044",
"266", "155.80000000000001", "281.30434782608694", "365.21739130434781",
"400.86956521739131", "465.21739130434781", "86.133333333333326",
"NA", "NA", "565.21739130434776", "914", "NA", "NA", "344.3478260869565",
"NA", "285.6521739130435", "94.5", "258", "NA", "348.88888888888886",
"142.60869565217391", "695.6521739130435", "54.428571428571431",
"268.26086956521738", "NA", "377.39130434782606", "376.08695652173913",
"380", "143", "251.30434782608694", "NA", "385.21739130434776",
"409.99999999999994", "NA", "304.3478260869565", "107", "248.69565217391303",
"75.900000000000006", "643.47826086956513", "NA", "262.60869565217388",
"NA", "NA", "370", "327.39130434782606", "327.82608695652175",
"252.17391304347825", "201.7391304347826", "274.33333333333331",
"821.73913043478262", "165", "419.56521739130432", "373.33333333333337",
"291.30434782608694", "282.60869565217388"), resp_score = c(0,
NA, 3, 1, 3, 2, 2, 1, 2, 0, 0, NA, NA, 4, 0, 1, 0, 0, 2,
3, 2, 1, 0, 0, 4, NA, NA, 0, 0, NA, NA, 1, NA, 2, 4, 2, NA,
1, 2, 0, 4, 2, NA, 1, 1, 1, 3, 2, NA, 1, 0, NA, 1, 3, 2,
4, 0, NA, 2, NA, NA, 1, 1, 1, 2, 2, 2, 0, 2, 0, 1, 2, 2),
platelets = c("NA", "363000", "NA", "NA", "620000", "NA",
"419000", "277000", "NA", "NA", "277000", "255000", "NA",
"185000", "318000", "296000", "182000", "48000", "129000",
"260000", "254000", "213000", "132000", "293000", "NA", "99000",
"297000", "227000", "174000", "172000", "76000", "NA", "242000",
"181000", "90000", "NA", "NA", "264000", "331000", "237000",
"279000", "NA", "214000", "NA", "NA", "283000", "416000",
"349000", "NA", "243000", "635000", "100000", "165000", "343000",
"NA", "423000", "206000", "NA", "439000", "NA", "358000",
"253000", "130000", "NA", "498000", "415000", "236000", "440000",
"218000", "300000", "190000", "244000", "275000"), coag_score = c(NA,
0, NA, NA, 0, NA, 0, 0, NA, NA, 0, 0, NA, 0, 0, 0, 0, 3,
1, 0, 0, 0, 1, 0, NA, 2, 0, 0, 0, 0, 2, NA, 0, 0, 2, NA,
NA, 0, 0, 0, 0, NA, 0, NA, NA, 0, 0, 0, NA, 0, 0, 2, 0, 0,
NA, 0, 0, NA, 0, NA, 0, 0, 1, NA, 0, 0, 0, 0, 0, 0, 0, 0,
0), bilirrubin = c("NA", "0.4", "NA", "0.5", "0.3", "NA",
"0.9", "NA", "0.4", "NA", "0.5", "NA", "NA", "1.1000000000000001",
"NA", "0.3", "NA", "0.5", "NA", "0.3", "0.3", "NA", "NA",
"0.4", "NA", "0.5", "0.4", "0.4", "1", "0.5", "NA", "NA",
"NA", "NA", "NA", "0.3", "0.3", "1", "0.7", "0.3", "1.4",
"NA", "NA", "0.3", "0.3", "0.3", "0.7", "0.4", "NA", "NA",
"NA", "0.7", "0.6", "0.5", "NA", "NA", "0.3", "0.3", "NA",
"NA", "NA", "0.4", "0.3", "NA", "NA", "0.4", "1.1000000000000001",
"NA", "0.5", "1.4", "0.4", "0.6", "0.7"), liver_score = c(NA,
0, NA, 0, 0, NA, 0, NA, 0, NA, 0, NA, NA, 0, NA, 0, NA, 0,
NA, 0, 0, NA, NA, 0, NA, 0, 0, 0, 0, 0, NA, NA, NA, NA, NA,
0, 0, 0, 0, 0, 1, NA, NA, 0, 0, 0, 0, 0, NA, NA, NA, 0, 0,
0, NA, NA, 0, 0, NA, NA, NA, 0, 0, NA, NA, 0, 0, NA, 0, 0,
0, 0, 0), pam = c("NA", "80.666666666666671", "73.333333333333329",
"83.333333333333329", "84.666666666666671", "100.6666666666667",
"101", "100", "95", "69.333333333333329", "93.666666666666671",
"70", "91.666666666666671", "70.666666666666671", "81.666666666666671",
"71.333333333333329", "95.333333333333329", "92", "77.666666666666671",
"84.333333333333329", "90", "80", "96.333333333333329", "93.333333333333329",
"69.333333333333329", "57.333333333333343", "80", "63", "81.666666666666671",
"80", "76.666666666666671", "90", "62.666666666666657", "89.333333333333329",
"87.333333333333329", "72.333333333333329", "93.333333333333329",
"87.666666666666671", "105.3333333333333", "107.6666666666667",
"69.333333333333329", "111.3333333333333", "75.666666666666671",
"103", "85.333333333333329", "86.666666666666671", "64.333333333333329",
"93.333333333333329", "87.333333333333329", "100", "106.6666666666667",
"96.666666666666671", "102", "98.666666666666671", "83.333333333333329",
"73.666666666666671", "95.333333333333329", "81", "93.333333333333329",
"62.666666666666657", "83.333333333333329", "93", "92.333333333333329",
"73.333333333333329", "87.333333333333329", "74.333333333333329",
"95.333333333333329", "80.333333333333329", "83.333333333333329",
"96.333333333333329", "97.666666666666671", "91.666666666666671",
"85.333333333333329"), catecolamine = c("10 ml/h", "0,1 mcg/kg/min",
"0", "0", "0,1mcg/kg/min", "0", "0", "0", "0", "0,8 mcg/kg/min",
"0,1 mcg/kg/min", "0", "0", "0,3mcg/kg/min", "0,15 mcg/kg/min",
"0,13mcg/kg/min", "6ml/h", "0", "0", "0,03mcg/kg/min", "0",
"0", "0", "0", "9mL/h", "0", "0", "0.45", "5.5555555555555558E-3",
"0", "NA", "0", "0.2857142857142857", "0", "0.32258064516129031",
"0", "0.16", "0,05mcg/kg/min", "0", "0", "0", "0", "0", "0",
"0", "0", "0,1mcg/Kg/min", "0", "0", "0", "0", "0", "0",
"0", "0", "10ml/hr", "0", "0", "0", "30ml/h", "0", "0", "0",
"0", "0", "0", "0", "10 ml/h", "0", "0", "0", "0", "0"),
cardiovas_score = c(NA, 3, 0, 0, 3, 0, 0, 0, 0, 4, 3, 0,
0, 4, 4, 4, 3, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 4, 4, 0, NA,
0, 4, 0, 4, 0, 4, 3, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, NA, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, NA,
0, 0, 0, 0, 0), creatinine = c("0.62", "2.21", "NA", "1.25",
"1.84", "0.94", "0.77", "0.41", "1.58", "NA", "2.4500000000000002",
"0.21", "NA", "1.65", "2.77", "2.1800000000000002", "1.1299999999999999",
"0.49", "0.53", "1.34", "1.23", "0.8", "0.65", "2.9", "0.45",
"1.05", "0.72", "5.14", "0.65", "0.47", "1.46", "NA", "2.77",
"2.21", "0.97", "0.35", "NA", "1.83", "0.78", "0.45", "1.23",
"NA", "0.59", "1.21", "0.61", "0.75", "1.23", "0.74", "NA",
"0.88", "0.65", "3.48", "0.7", "0.88", "NA", "1.1499999999999999",
"0.59", "0.6", "0.41", "NA", "0.66", "0.72", "0.69", "NA",
"NA", "1.29", "0.8", "0.94", "0.48", "1.1399999999999999",
"0.85", "0.74", "0.86"), renal_score = c(0, 2, NA, 1, 1,
0, 0, 0, 0, NA, 2, 0, NA, 1, 2, 2, 1, 0, 0, 1, 1, 0, 0, 2,
0, 0, 0, 4, 0, 0, 1, NA, 2, 2, 0, 0, NA, 1, 0, 0, 1, NA,
0, 1, 0, 0, 1, 0, NA, 0, 0, 3, 0, 0, NA, 0, 0, 0, 0, NA,
0, 0, 0, NA, NA, 1, 0, 0, 0, 0, 0, 0, 0), `SOFA SCORE` = c(0,
5, 3, 2, 7, 2, 2, 1, 2, 4, 5, 0, 0, 9, 6, 6, 4, 3, 3, 7,
3, 1, 0, 2, 7, 2, 0, 8, 4, 0, 3, 1, 6, 4, 10, 2, 4, 5, 2,
0, 7, 2, 0, 2, 1, 1, 7, 2, 0, 1, 0, 5, 1, 3, 2, 4, 0, 0,
2, 3, 0, 1, 1, 1, 2, 3, 2, 3, 2, 0, 1, 2, 2)), row.names = c(NA,
-73L), class = c("tbl_df", "tbl", "data.frame"))
I have tried
test <- glm(sofa_t0_deadoralive$outcome ~ resp_score + coag_score + liver_score + cardiovas_score + renal_score, family = binomial)
Which outputs
Warning message:
glm.fit: fitted probabilities numerically 0 or 1 occurred
And when I use
glm(formula = sofa_t0_deadoralive$outcome ~ resp_score + coag_score +
liver_score + cardiovas_score + renal_score, family = binomial)
I get
Deviance Residuals:
Min 1Q Median 3Q Max
-1.9432 -0.5247 0.0000 0.5729 1.5111
Coefficients: (1 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.543e+00 1.429e+00 1.779 0.0752 .
resp_score1 -5.534e-02 1.381e+00 -0.040 0.9680
resp_score2 -8.189e-01 1.415e+00 -0.579 0.5627
resp_score3 -1.803e+00 1.664e+00 -1.084 0.2784
resp_score4 -1.639e+01 4.315e+03 -0.004 0.9970
resp_scoreNA -1.282e+00 1.460e+00 -0.878 0.3799
coag_score1 -1.889e+00 1.538e+00 -1.228 0.2193
coag_score2 -1.917e+01 4.706e+03 -0.004 0.9967
coag_score3 -2.211e+01 1.075e+04 -0.002 0.9984
coag_scoreNA -1.777e+00 9.772e-01 -1.819 0.0690 .
liver_score1 3.463e+01 1.159e+04 0.003 0.9976
liver_scoreNA -1.833e+00 9.257e-01 -1.980 0.0478 *
cardiovas_score1 NA NA NA NA
cardiovas_score3 -2.795e-01 1.722e+00 -0.162 0.8710
cardiovas_score4 -1.997e+01 2.782e+03 -0.007 0.9943
cardiovas_scoreNA -1.747e+01 6.423e+03 -0.003 0.9978
.
.
.
Why is R recognizing each score of resp_score, liver_score and cardiovas_score, in this example, as different categorical data instead of continuous? What can I do to fix it?
Any direction as to where to focus is greatly appreciated.

I tried your dataset as follows:
myData <- structure(list(ID = c(13154920, 13201107, 13207948, 13234892,
13082943, 13193903, 13283776, 13154288, 13269178, 13055690, 13207670,
13220627, 13055009, 13044947, 13060589, 13201616, 13054278, 13160156,
13160971, 13239318, 13321288, 13154966, 13165362, 12999835, 13223721,
13064865, 13104602, 13036280, 13040507, 12964437, 13029805, 13029001,
12993036, 13072516, 13060586, 13119819, 13040632, 13055908, 13059026,
13207119, 13261022, 13259391, 13262499, 13207315, 13135316, 13233898,
13181075, 13261607, 13186960, 13240091, 13260671, 13302375, 13021555,
13062360, 13035346, 13077712, 13128769, 13267480, 13040172, 12977871,
13090190, 13040530, 13100979, 13192142, 13289317, 13315577, 13044653,
13079694, 13128639, 13207352, 13049409, 13210994, 13283675),
outcome = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1),
day = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0),
pa02 = c("121", "NA", "78.7", "69.099999999999994", "131",
"26.3", "68.900000000000006", "74.099999999999994", "118",
"404", "399", "NA", "NA", "73.7", "265", "75", "222", "112",
"133", "77.900000000000006", "64.7", "84", "92.2", "107",
"64.599999999999994", "56.6", "69.900000000000006", "130",
"91.4", "NA", "111", "79.2", "86.9", "65.7", "94.5", "129",
"NA", "157,0", "32,8", "160,0", "38,1", "61,7", "NA", "86,8",
"86,5", "87,4", "143,0", "57,8", "NA", "88,6", "94,3", "NA",
"70,0", "107,0", "57,2", "75,9", "148,0", "NA", "60,4", "NA",
"NA", "148,0", "75,3", "75,4", "58", "46,4", "82,3", "189,0",
"132,0", "96,5", "112,0", "67,0", "65"),
iot = c("0", "1", "1", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "1",
"0", "0", "0", "0", "1", "1", "0", "0", "0", "0", "1", "1",
"1", "0", "1", "0", "1", "0", "1", "0", "1", "1", "1", "1",
"0", "0", "1", "0", "0", "0", "0", "0", "1", "0", "0", "0",
"0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1",
"0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0"),
fio2 = c("0.23", "1", "0.6", "0.23", "1", "0.23", "0.23", "0.23", "0.4", "1",
"0.23", "0.23", "0.23", "1", "0.23", "0.23", "0.23", "0.23",
"0.5", "0.5", "0.23", "0.23", "0.23", "0.23", "0.75", "NA",
"NA", "0.23", "0.1", "0.23", "NA", "0.23", "NA", "0.23",
"1", "0.5", "0.4", "0.45", "0.23", "0.23", "0.7", "0.23",
"0.23", "0.23", "0.23", "0.23", "1", "0.23", "0.23", "0.23",
"0.23", "0.23", "0.23", "1", "0.23", "1", "0.23", "0.8",
"0.23", "0.4", "0.23", "0.4", "0.23", "0.23", "0.23", "0.23",
"0.3", "0.23", "0.8", "0.23", "0.3", "0.23", "0.23"),
resp_syst = c("526.08695652173913", "NA", "131.16666666666669", "300.43478260869563", "131",
"114.34782608695652", "299.56521739130437", "322.17391304347819",
"295", "404", "1734.782608695652", "NA", "NA", "73.7", "1152.1739130434783",
"326.08695652173913", "965.21739130434776", "486.95652173913044",
"266", "155.80000000000001", "281.30434782608694", "365.21739130434781",
"400.86956521739131", "465.21739130434781", "86.133333333333326",
"NA", "NA", "565.21739130434776", "914", "NA", "NA", "344.3478260869565",
"NA", "285.6521739130435", "94.5", "258", "NA", "348.88888888888886",
"142.60869565217391", "695.6521739130435", "54.428571428571431",
"268.26086956521738", "NA", "377.39130434782606", "376.08695652173913",
"380", "143", "251.30434782608694", "NA", "385.21739130434776",
"409.99999999999994", "NA", "304.3478260869565", "107", "248.69565217391303",
"75.900000000000006", "643.47826086956513", "NA", "262.60869565217388",
"NA", "NA", "370", "327.39130434782606", "327.82608695652175",
"252.17391304347825", "201.7391304347826", "274.33333333333331",
"821.73913043478262", "165", "419.56521739130432", "373.33333333333337",
"291.30434782608694", "282.60869565217388"),
resp_score = c(0, NA, 3, 1, 3, 2, 2, 1, 2, 0, 0, NA, NA, 4, 0, 1, 0, 0, 2,
3, 2, 1, 0, 0, 4, NA, NA, 0, 0, NA, NA, 1, NA, 2, 4, 2, NA,
1, 2, 0, 4, 2, NA, 1, 1, 1, 3, 2, NA, 1, 0, NA, 1, 3, 2,
4, 0, NA, 2, NA, NA, 1, 1, 1, 2, 2, 2, 0, 2, 0, 1, 2, 2),
platelets = c("NA", "363000", "NA", "NA", "620000", "NA",
"419000", "277000", "NA", "NA", "277000", "255000", "NA",
"185000", "318000", "296000", "182000", "48000", "129000",
"260000", "254000", "213000", "132000", "293000", "NA", "99000",
"297000", "227000", "174000", "172000", "76000", "NA", "242000",
"181000", "90000", "NA", "NA", "264000", "331000", "237000",
"279000", "NA", "214000", "NA", "NA", "283000", "416000",
"349000", "NA", "243000", "635000", "100000", "165000", "343000",
"NA", "423000", "206000", "NA", "439000", "NA", "358000",
"253000", "130000", "NA", "498000", "415000", "236000", "440000",
"218000", "300000", "190000", "244000", "275000"),
coag_score = c(NA, 0, NA, NA, 0, NA, 0, 0, NA, NA, 0, 0, NA, 0, 0, 0, 0, 3,
1, 0, 0, 0, 1, 0, NA, 2, 0, 0, 0, 0, 2, NA, 0, 0, 2, NA,
NA, 0, 0, 0, 0, NA, 0, NA, NA, 0, 0, 0, NA, 0, 0, 2, 0, 0,
NA, 0, 0, NA, 0, NA, 0, 0, 1, NA, 0, 0, 0, 0, 0, 0, 0, 0, 0),
bilirrubin = c("NA", "0.4", "NA", "0.5", "0.3", "NA",
"0.9", "NA", "0.4", "NA", "0.5", "NA", "NA", "1.1000000000000001",
"NA", "0.3", "NA", "0.5", "NA", "0.3", "0.3", "NA", "NA",
"0.4", "NA", "0.5", "0.4", "0.4", "1", "0.5", "NA", "NA",
"NA", "NA", "NA", "0.3", "0.3", "1", "0.7", "0.3", "1.4",
"NA", "NA", "0.3", "0.3", "0.3", "0.7", "0.4", "NA", "NA",
"NA", "0.7", "0.6", "0.5", "NA", "NA", "0.3", "0.3", "NA",
"NA", "NA", "0.4", "0.3", "NA", "NA", "0.4", "1.1000000000000001",
"NA", "0.5", "1.4", "0.4", "0.6", "0.7"),
liver_score = c(NA, 0, NA, 0, 0, NA, 0, NA, 0, NA, 0, NA, NA, 0, NA, 0, NA, 0,
NA, 0, 0, NA, NA, 0, NA, 0, 0, 0, 0, 0, NA, NA, NA, NA, NA,
0, 0, 0, 0, 0, 1, NA, NA, 0, 0, 0, 0, 0, NA, NA, NA, 0, 0,
0, NA, NA, 0, 0, NA, NA, NA, 0, 0, NA, NA, 0, 0, NA, 0, 0,
0, 0, 0),
pam = c("NA", "80.666666666666671", "73.333333333333329", "83.333333333333329",
"84.666666666666671", "100.6666666666667",
"101", "100", "95", "69.333333333333329", "93.666666666666671",
"70", "91.666666666666671", "70.666666666666671", "81.666666666666671",
"71.333333333333329", "95.333333333333329", "92", "77.666666666666671",
"84.333333333333329", "90", "80", "96.333333333333329", "93.333333333333329",
"69.333333333333329", "57.333333333333343", "80", "63", "81.666666666666671",
"80", "76.666666666666671", "90", "62.666666666666657", "89.333333333333329",
"87.333333333333329", "72.333333333333329", "93.333333333333329",
"87.666666666666671", "105.3333333333333", "107.6666666666667",
"69.333333333333329", "111.3333333333333", "75.666666666666671",
"103", "85.333333333333329", "86.666666666666671", "64.333333333333329",
"93.333333333333329", "87.333333333333329", "100", "106.6666666666667",
"96.666666666666671", "102", "98.666666666666671", "83.333333333333329",
"73.666666666666671", "95.333333333333329", "81", "93.333333333333329",
"62.666666666666657", "83.333333333333329", "93", "92.333333333333329",
"73.333333333333329", "87.333333333333329", "74.333333333333329",
"95.333333333333329", "80.333333333333329", "83.333333333333329",
"96.333333333333329", "97.666666666666671", "91.666666666666671",
"85.333333333333329"),
catecolamine = c("10 ml/h", "0,1 mcg/kg/min", "0", "0",
"0,1mcg/kg/min", "0", "0", "0", "0", "0,8 mcg/kg/min",
"0,1 mcg/kg/min", "0", "0", "0,3mcg/kg/min", "0,15 mcg/kg/min",
"0,13mcg/kg/min", "6ml/h", "0", "0", "0,03mcg/kg/min", "0",
"0", "0", "0", "9mL/h", "0", "0", "0.45", "5.5555555555555558E-3",
"0", "NA", "0", "0.2857142857142857", "0", "0.32258064516129031",
"0", "0.16", "0,05mcg/kg/min", "0", "0", "0", "0", "0", "0",
"0", "0", "0,1mcg/Kg/min", "0", "0", "0", "0", "0", "0",
"0", "0", "10ml/hr", "0", "0", "0", "30ml/h", "0", "0", "0",
"0", "0", "0", "0", "10 ml/h", "0", "0", "0", "0", "0"),
cardiovas_score = c(NA, 3, 0, 0, 3, 0, 0, 0, 0, 4, 3, 0,
0, 4, 4, 4, 3, 0, 0, 3, 0, 0, 0, 0, 3, 0, 0, 4, 4, 0, NA,
0, 4, 0, 4, 0, 4, 3, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0,
0, 0, 0, 0, 0, NA, 0, 0, 0, NA, 0, 0, 0, 0, 0, 0, 0, NA,
0, 0, 0, 0, 0),
creatinine = c("0.62", "2.21", "NA", "1.25", "1.84", "0.94",
"0.77", "0.41", "1.58", "NA", "2.4500000000000002",
"0.21", "NA", "1.65", "2.77", "2.1800000000000002",
"1.1299999999999999", "0.49", "0.53", "1.34",
"1.23", "0.8", "0.65", "2.9", "0.45", "1.05", "0.72",
"5.14", "0.65", "0.47", "1.46", "NA", "2.77", "2.21",
"0.97", "0.35", "NA", "1.83", "0.78", "0.45", "1.23",
"NA", "0.59", "1.21", "0.61", "0.75", "1.23", "0.74",
"NA", "0.88", "0.65", "3.48", "0.7", "0.88", "NA",
"1.1499999999999999", "0.59", "0.6", "0.41", "NA",
"0.66", "0.72", "0.69", "NA", "NA", "1.29", "0.8",
"0.94", "0.48", "1.1399999999999999", "0.85", "0.74",
"0.86"),
renal_score = c(0, 2, NA, 1, 1, 0, 0, 0, 0, NA, 2, 0, NA, 1, 2, 2,
1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 0, 1, NA, 2,
2, 0, 0, NA, 1, 0, 0, 1, NA, 0, 1, 0, 0, 1, 0, NA,
0, 0, 3, 0, 0, NA, 0, 0, 0, 0, NA, 0, 0, 0, NA, NA,
1, 0, 0, 0, 0, 0, 0, 0),
`SOFA SCORE` = c(0, 5, 3, 2, 7, 2, 2, 1, 2, 4, 5, 0, 0, 9, 6, 6, 4,
3, 3, 7, 3, 1, 0, 2, 7, 2, 0, 8, 4, 0, 3, 1, 6, 4,
10, 2, 4, 5, 2, 0, 7, 2, 0, 2, 1, 1, 7, 2, 0, 1, 0,
5, 1, 3, 2, 4, 0, 0, 2, 3, 0, 1, 1, 1, 2, 3, 2, 3,
2, 0, 1, 2, 2)
),
row.names = c(NA, -73L),
class = c("tbl_df", "tbl", "data.frame")
)
test <- glm(outcome ~ resp_score + coag_score + liver_score +
cardiovas_score + renal_score, data = myData)
summary(test)
The only thing that I removed from your command is Family = binomial and got the following results:
Call:
glm(formula = outcome ~ resp_score + coag_score + liver_score +
cardiovas_score + renal_score, data = myData)
Deviance Residuals:
Min 1Q Median 3Q Max
-0.88541 -0.16677 0.09191 0.11459 0.68038
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.93077 0.13547 6.871 4.17e-07 ***
resp_score -0.02268 0.06703 -0.338 0.7381
coag_score -0.27004 0.12882 -2.096 0.0468 *
liver_score 0.47799 0.42628 1.121 0.2733
cardiovas_score -0.11254 0.05819 -1.934 0.0650 .
renal_score -0.20551 0.10250 -2.005 0.0564 .
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
(Dispersion parameter for gaussian family taken to be 0.1415673)
Null deviance: 6.9667 on 29 degrees of freedom
Residual deviance: 3.3976 on 24 degrees of freedom
(43 observations deleted due to missingness)
AIC: 33.793
Number of Fisher Scoring iterations: 2
So I didn't get any factors in variables. I think somehow your dataset storing variables as factors. I don't know if it's going to solve your problem but just wanted to share my experience with this very dataset. You can try it my way if you like.

Related

How to convert panel data with R so that each observation per ID is saved in one row and still arranged by year?

I am planning to do a supvervised machine learning project where I use data from a panel (371'503 rows & 20 columns). The goal is to use data from 2002 to 2014. I have now done a first data-preprocessing and the data frame looks like the following in a highly abbreviated form:
data_ex_old <- structure(
list(
ID = c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, 1,
2, 3, 1, 2, 3, 1, 2, 3),
Studyyear = c(
2002,
2002,
2002,
2004,
2004,
2004,
2006,
2006,
2006,
2008,
2008,
2008,
2010,
2010,
2010,
2012,
2012,
2012,
2014,
2014,
2014
),
Gender = c(2, 1, 2, 2, 1,
2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2),
Predictor1 = c(
"6",
"5",
"4",
"NA",
"NA",
"NA",
"5",
"6",
"4",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA"
),
Predictor2 = c(2,
2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 2, 1),
Predictor3 = c(
"NA",
"NA",
"NA",
"6",
"0",
"0",
"NA",
"NA",
"NA",
"0",
"6",
"1",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA"
),
Outcome1 = c(
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"NA",
"0",
"1",
"1",
"NA",
"NA",
"NA",
"1",
"1",
"0",
"NA",
"NA",
"NA"
),
Outcome2 = c(0, 0, 1, 0,
0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1)
),
class = c("tbl_df",
"tbl", "data.frame"),
row.names = c(NA,-21L)
)
So that I can make useful predictions, all obeservations per ID should be in a row (arranged by year). The result should look like this:
data_ex_new <-
structure(
list(
ID = c(1, 2, 3),
Gender = c(2, 1, 2),
Predictor1_2002 = c(6,
5, 4),
Predictor2_2002 = c(2, 2, 1),
Predictor3_2002 = c("NA",
"NA", "NA"),
Outcome1_2002 = c("NA", "NA", "NA"),
Outcome2_2002 = c(0,
0, 1),
Predictor1_2004 = c("NA", "NA", "NA"),
Predictor2_2004 = c(1,
2, 2),
Predictor3_2004 = c(6, 0, 0),
Outcome1_2004 = c("NA",
"NA", "NA"),
Outcome2_2004 = c(0, 0, 1),
Predictor1_2006 = c(5,
6, 4),
Predictor2_2006 = c(1, 2, 2),
Predictor3_2006 = c("NA",
"NA", "NA"),
Outcome1_2006 = c("NA", "NA", "NA"),
Outcome2_2006 = c(0,
0, 1),
Predictor1_2008 = c("NA", "NA", "NA"),
Predictor2_2008 = c(2,
2, 1),
Predictor3_2008 = c(0, 6, 1),
Outcome1_2008 = c(0, 1,
1),
Outcome2_2008 = c(0, 0, 1),
Predictor1_2010 = c("NA", "NA",
"NA"),
Predictor2_2010 = c(1, 2, 2),
Predictor3_2010 = c("NA",
"NA", "NA"),
Outcome1_2010 = c("NA", "NA", "NA"),
Outcome2_2010 = c(0,
0, 0),
Predictor1_2012 = c("NA", "NA", "NA"),
Predictor2_2012 = c(2,
2, 2),
Predictor3_2012 = c("NA", "NA", "NA"),
Outcome1_2012 = c(1,
1, 0),
Outcome2_2012 = c(1, 1, 0),
Predictor1_2014 = c("NA",
"NA", "NA"),
Predictor2_2014 = c(2, 2, 1),
Predictor3_2014 = c("NA",
"NA", "NA"),
Outcome1_2014 = c("NA", "NA", "NA"),
Outcome2_2014 = c(1,
1, 1)
),
class = c("tbl_df", "tbl", "data.frame"),
row.names = c(NA,-3L)
)
How can one convert the data with R so that each observation per ID is saved in one row and still arranged by year (see "data_ex_new")?
I already tried out different dplyr functions like spread() to make the data wide. But so far it didn't work.
I think this does it:
data_ex_old %>% pivot_wider(id_cols = c(ID, Gender), names_from = Studyyear,
values_from = c(starts_with('Predictor'),
starts_with('Outcome')))
# A tibble: 3 × 37
# ID Gender Predic…¹ Predi…² Predi…³ Predi…⁴ Predi…⁵ Predi…⁶ Predi…⁷ Predi…⁸ Predi…⁹ Predi…˟ Predi…˟
# <dbl> <dbl> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
# 1 1 2 6 NA 5 NA NA NA NA 2 1 1 2
# 2 2 1 5 NA 6 NA NA NA NA 2 2 2 2
# 3 3 2 4 NA 4 NA NA NA NA 1 2 2 1
# # … with 24 more variables: Predictor2_2010 <dbl>, Predictor2_2012 <dbl>, Predictor2_2014 <dbl>,
# # Predictor3_2002 <chr>, Predictor3_2004 <chr>, Predictor3_2006 <chr>, Predictor3_2008 <chr>,
# # Predictor3_2010 <chr>, Predictor3_2012 <chr>, Predictor3_2014 <chr>, Outcome1_2002 <chr>,
# # Outcome1_2004 <chr>, Outcome1_2006 <chr>, Outcome1_2008 <chr>, Outcome1_2010 <chr>,
# # Outcome1_2012 <chr>, Outcome1_2014 <chr>, Outcome2_2002 <dbl>, Outcome2_2004 <dbl>,
# # Outcome2_2006 <dbl>, Outcome2_2008 <dbl>, Outcome2_2010 <dbl>, Outcome2_2012 <dbl>,
# # Outcome2_2014 <dbl>, and abbreviated variable names ¹​Predictor1_2002, ²​Predictor1_2004, …

Create a binary variable based on a threshold in R

The following dataset contains 7 columns (i.e., AI_1 until AI_7) that have 1440 observations per ID (in total 42 IDs). I want to create a dataset that makes a binary variable of each AI based on a threshold. For example if AI_1 > 0,1 it should get the value 1 in a new variable called ACTIVITY otherwise the value 0 in the same variable ACTIVITY. I tried this with the following code but when I try to find the mean value of the binary variable it indicates that the mean is above 1.. which is curious since it can only take the value of either 0 or 1. So does anyone know how to make 7 of these binary variables in the same dataset where the mean is between 0 and 1?
structure(list(X = 1:30, x1.time = c("00:00:00", "00:01:00",
"00:02:00", "00:03:00", "00:04:00", "00:05:00", "00:06:00", "00:07:00",
"00:08:00", "00:09:00", "00:10:00", "00:11:00", "00:12:00", "00:13:00",
"00:14:00", "00:15:00", "00:16:00", "00:17:00", "00:18:00", "00:19:00",
"00:20:00", "00:21:00", "00:22:00", "00:23:00", "00:24:00", "00:25:00",
"00:26:00", "00:27:00", "00:28:00", "00:29:00"), AI_1 = c(0.17532896077581,
0.174249939439765, 0.174170544792533, 0.172877357886967, 0.173679017353614,
0.174216799443538, 0.174514454250882, 0.174656389074666, 0.173377175454716,
0.173044040397703, 0.172476572884875, 0.174738790856458, 0.173833445732856,
0.174229265722835, 0.174392878820111, 0.174715890976243, 0.174241614289181,
0.173229751013599, 0.173579164085914, 0.173829069216696, 0.173499039975341,
0.174387946222767, 0.173802854581089, 0.174107580137568, 0.174113709936873,
0.173172609295233, 0.174509255493075, 0.173383120975257, 0.173398927511582,
0.173466516952908), AI_2 = c(0.173549588758752, 0, 0.85729795236214,
0.513925586220723, 0.140789239632585, 0.0989981552300843, 0.321625480480368,
0.62540390366724, 0.00714855410741877, 0, 0, 0, 0.212943798631015,
0, 0, 0.023650258664654, 0.00159158576982517, 0.0172670511608436,
0, 0, 0, 0.25653572767355, 0.41158598021939, 0.433889173147664,
0.442200975044019, 0.471931171507954, 0.415009919603445, 0.43364443321512,
0.449930874231746, 0.48397633182816), AI_3 = c(0.026069149474549,
0.0417747330978121, 0.276687600798659, 0.258591321128928, 0.208790296683244,
0.0300099278967508, 0.15234594700642, 0.26519848659315, 0.34220566727692,
0.352310255219813, 0.297621781376737, 0.292800000618149, 0.481566536382664,
0.337770306519177, 0.743182296874282, 0.256202127993172, 0.201340506649845,
0.200155318345632, 0.237126429055375, 0.234974163009848, 0.235808994849961,
0.302168675921402, 0.377936665388589, 0.416123299239618, 0.389279883023212,
0.357972848973051, 0.305268847437493, 0.290040891577408, 0.197384083463156,
0.258282654013295), AI_4 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00841646877382803,
0), AI_5 = c(0, 0, 0.0015062890214412, 0.00154798776365785, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0), AI_6 = c(0.190018331633492, 0.241159552783285, 0.231916111803065,
0.193196835220518, 0.240381778378367, 0.266125762332231, 0.339227319507121,
0.354841547583334, 0.277011867279295, 0.474462632995715, 0.516356521276347,
0.559477604383845, 0.374857636694405, 0.376675155204282, 0.516347133869462,
0.627633542885353, 0.565732682034457, 0.544148310829377, 0.545022418887296,
0.602327138107482, 0.529578366594453, 0.571672817412653, 0.51963881197827,
0.493590581088222, 0.487545798153711, 0.525272191616523, 0.586906227102549,
0.555446579214151, 0.578788883825157, 0.617822898150646), AI_7 = c(0.139608768263461,
0.165583663096789, 0.326959508587122, 0.221739297198209, 0.160657663051105,
0.107439748199699, 0.117594125364214, 0.133528520361788, 0.117950354159875,
0.131428192187155, 0.125355403562937, 0.119185646272255, 0.196285453922129,
0.167061057207379, 0.169855099745761, 0.141077126343563, 0.078433720675593,
0.0999303057993443, 0.0798045801131668, 0.0331137028671696, 0.0920945831761988,
0.0233052285173748, 0, 0, 0, 0.00876293044107867, 0, 0.109134564970416,
0.110323312017635, 0.117772975747077), ID = c("ID1", "ID1", "ID1",
"ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1",
"ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1",
"ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1"
), activity = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0), activity2 = c("0",
"1", "0", "0", "0", "1", "0", "0", "1", "1", "1", "1", "0", "1",
"1", "1", "1", "1", "1", "1", "1", "0", "0", "0", "0", "0", "0",
"0", "0", "0"), activity3 = c("1", "1", "0", "0", "0", "1", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0"), activity4 = c("1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1"), activity5 = c("1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1"), activity6 = c("0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0"), activity7 = c("0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "0", "0", "0", "0", "0", "0", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "0", "0", "0")), row.names = c(NA,
30L), class = "data.frame")
This is the code I used
Threshold <- Activity_index_1 %>%
mutate(activity = case_when(
AI_1 <= 0.1 ~ "1",
AI_1 > 0.1 ~ "0",
))
Threshold2 <- Threshold %>%
mutate(activity2 = case_when(
AI_2 <= 0.1 ~ "1",
AI_2 > 0.1 ~ "0",
))
Threshold3 <- Threshold2 %>%
mutate(activity3 = case_when(
AI_3 <= 0.1 ~ "1",
AI_3 > 0.1 ~ "0",
))
Threshold4 <- Threshold3 %>%
mutate(activity4 = case_when(
AI_4 <= 0.1 ~ "1",
AI_4 > 0.1 ~ "0",
))
Threshold5 <- Threshold4 %>%
mutate(activity5 = case_when(
AI_5 <= 0.1 ~ "1",
AI_5 > 0.1 ~ "0",
))
Threshold6 <- Threshold5 %>%
mutate(activity6 = case_when(
AI_6 <= 0.1 ~ "1",
AI_6 > 0.1 ~ "0",
))
Threshold7 <- Threshold6 %>%
mutate(activity7 = case_when(
AI_7 <= 0.1 ~ "1",
AI_7 > 0.1 ~ "0",
))
Here is a solution with mutate/across and a logical condition returning FALSE/TRUE then coerced to integers 0/1.
The posted data already has columns activity so I start by removing them from the data.
suppressPackageStartupMessages({
library(dplyr)
library(stringr)
})
Threshold <- Activity_index_1 %>%
select(-starts_with("activity")) %>%
mutate(across(starts_with("AI_"), ~ as.integer(.x <= 0.1), .names = "activity_{col}")) %>%
rename_at(vars(starts_with("activity_AI")), ~ str_remove(., "_AI_"))
str(Threshold)
#> 'data.frame': 30 obs. of 17 variables:
#> $ X : int 1 2 3 4 5 6 7 8 9 10 ...
#> $ x1.time : chr "00:00:00" "00:01:00" "00:02:00" "00:03:00" ...
#> $ AI_1 : num 0.175 0.174 0.174 0.173 0.174 ...
#> $ AI_2 : num 0.174 0 0.857 0.514 0.141 ...
#> $ AI_3 : num 0.0261 0.0418 0.2767 0.2586 0.2088 ...
#> $ AI_4 : num 0 0 0 0 0 0 0 0 0 0 ...
#> $ AI_5 : num 0 0 0.00151 0.00155 0 ...
#> $ AI_6 : num 0.19 0.241 0.232 0.193 0.24 ...
#> $ AI_7 : num 0.14 0.166 0.327 0.222 0.161 ...
#> $ ID : chr "ID1" "ID1" "ID1" "ID1" ...
#> $ activity1: int 0 0 0 0 0 0 0 0 0 0 ...
#> $ activity2: int 0 1 0 0 0 1 0 0 1 1 ...
#> $ activity3: int 1 1 0 0 0 1 0 0 0 0 ...
#> $ activity4: int 1 1 1 1 1 1 1 1 1 1 ...
#> $ activity5: int 1 1 1 1 1 1 1 1 1 1 ...
#> $ activity6: int 0 0 0 0 0 0 0 0 0 0 ...
#> $ activity7: int 0 0 0 0 0 0 0 0 0 0 ...
Created on 2022-10-10 with reprex v2.0.2
Comparing just AI variables with .1, convert to numeric, set colnames and cbind.
res <- cbind(dat, ((dat[grep('^AI', names(dat))] <= .1)^1) |>
{\(.) `colnames<-`(., gsub('AI', 'activity', colnames(.)))}())
str(res)
# 'data.frame': 30 obs. of 16 variables:
# $ x1.time : chr "00:00:00" "00:01:00" "00:02:00" "00:03:00" ...
# $ AI_1 : num 0.175 0.174 0.174 0.173 0.174 ...
# $ AI_2 : num 0.174 0 0.857 0.514 0.141 ...
# $ AI_3 : num 0.0261 0.0418 0.2767 0.2586 0.2088 ...
# $ AI_4 : num 0 0 0 0 0 0 0 0 0 0 ...
# $ AI_5 : num 0 0 0.00151 0.00155 0 ...
# $ AI_6 : num 0.19 0.241 0.232 0.193 0.24 ...
# $ AI_7 : num 0.14 0.166 0.327 0.222 0.161 ...
# $ ID : chr "ID1" "ID1" "ID1" "ID1" ...
# $ activity_1: num 0 0 0 0 0 0 0 0 0 0 ...
# $ activity_2: num 0 1 0 0 0 1 0 0 1 1 ...
# $ activity_3: num 1 1 0 0 0 1 0 0 0 0 ...
# $ activity_4: num 1 1 1 1 1 1 1 1 1 1 ...
# $ activity_5: num 1 1 1 1 1 1 1 1 1 1 ...
# $ activity_6: num 0 0 0 0 0 0 0 0 0 0 ...
# $ activity_7: num 0 0 0 0 0 0 0 0 0 0 ...
dat <- structure(list(x1.time = c("00:00:00", "00:01:00", "00:02:00",
"00:03:00", "00:04:00", "00:05:00", "00:06:00", "00:07:00", "00:08:00",
"00:09:00", "00:10:00", "00:11:00", "00:12:00", "00:13:00", "00:14:00",
"00:15:00", "00:16:00", "00:17:00", "00:18:00", "00:19:00", "00:20:00",
"00:21:00", "00:22:00", "00:23:00", "00:24:00", "00:25:00", "00:26:00",
"00:27:00", "00:28:00", "00:29:00"), AI_1 = c(0.17532896077581,
0.174249939439765, 0.174170544792533, 0.172877357886967, 0.173679017353614,
0.174216799443538, 0.174514454250882, 0.174656389074666, 0.173377175454716,
0.173044040397703, 0.172476572884875, 0.174738790856458, 0.173833445732856,
0.174229265722835, 0.174392878820111, 0.174715890976243, 0.174241614289181,
0.173229751013599, 0.173579164085914, 0.173829069216696, 0.173499039975341,
0.174387946222767, 0.173802854581089, 0.174107580137568, 0.174113709936873,
0.173172609295233, 0.174509255493075, 0.173383120975257, 0.173398927511582,
0.173466516952908), AI_2 = c(0.173549588758752, 0, 0.85729795236214,
0.513925586220723, 0.140789239632585, 0.0989981552300843, 0.321625480480368,
0.62540390366724, 0.00714855410741877, 0, 0, 0, 0.212943798631015,
0, 0, 0.023650258664654, 0.00159158576982517, 0.0172670511608436,
0, 0, 0, 0.25653572767355, 0.41158598021939, 0.433889173147664,
0.442200975044019, 0.471931171507954, 0.415009919603445, 0.43364443321512,
0.449930874231746, 0.48397633182816), AI_3 = c(0.026069149474549,
0.0417747330978121, 0.276687600798659, 0.258591321128928, 0.208790296683244,
0.0300099278967508, 0.15234594700642, 0.26519848659315, 0.34220566727692,
0.352310255219813, 0.297621781376737, 0.292800000618149, 0.481566536382664,
0.337770306519177, 0.743182296874282, 0.256202127993172, 0.201340506649845,
0.200155318345632, 0.237126429055375, 0.234974163009848, 0.235808994849961,
0.302168675921402, 0.377936665388589, 0.416123299239618, 0.389279883023212,
0.357972848973051, 0.305268847437493, 0.290040891577408, 0.197384083463156,
0.258282654013295), AI_4 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00841646877382803,
0), AI_5 = c(0, 0, 0.0015062890214412, 0.00154798776365785, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0), AI_6 = c(0.190018331633492, 0.241159552783285, 0.231916111803065,
0.193196835220518, 0.240381778378367, 0.266125762332231, 0.339227319507121,
0.354841547583334, 0.277011867279295, 0.474462632995715, 0.516356521276347,
0.559477604383845, 0.374857636694405, 0.376675155204282, 0.516347133869462,
0.627633542885353, 0.565732682034457, 0.544148310829377, 0.545022418887296,
0.602327138107482, 0.529578366594453, 0.571672817412653, 0.51963881197827,
0.493590581088222, 0.487545798153711, 0.525272191616523, 0.586906227102549,
0.555446579214151, 0.578788883825157, 0.617822898150646), AI_7 = c(0.139608768263461,
0.165583663096789, 0.326959508587122, 0.221739297198209, 0.160657663051105,
0.107439748199699, 0.117594125364214, 0.133528520361788, 0.117950354159875,
0.131428192187155, 0.125355403562937, 0.119185646272255, 0.196285453922129,
0.167061057207379, 0.169855099745761, 0.141077126343563, 0.078433720675593,
0.0999303057993443, 0.0798045801131668, 0.0331137028671696, 0.0920945831761988,
0.0233052285173748, 0, 0, 0, 0.00876293044107867, 0, 0.109134564970416,
0.110323312017635, 0.117772975747077), ID = c("ID1", "ID1", "ID1",
"ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1",
"ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1",
"ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1", "ID1"
)), row.names = c(NA, 30L), class = "data.frame")

ggplot: Multi-panel/facet scatter plots separated by multiple variables (AND NOT by multiple categories within a variable) using one common y-axis

My dataframe loopsubset_created contains 30 observations of 45 variables. (Below you will find str(loopsubset_created) and a dput(loopsubset_created) sample).
Now I would like to create scatter plots of the PdKeyT-Variable (y) versus five of the band-value-variables (BLUE, GREEN, RED, SWIR1, SWIR2) (x) with
each variable in ONE panel
all panels aligned in ONE row
using the PdKeyTvariable as common y-axis.
In the end it should basically look like this: (I did this with ggscatter, but for flexibility reasons I would prefer basically using ggplot)
Here now my issue:When trying with ggplot, I do not find the right way for the above showed arrangement, as I cannot figure out the right code for separating/grouping by variables. I found hundreds of tutorials for facetting by multiple categorial values within a variable, but not by multiple variables.
With the following code
ggplot(loopsubset_created, aes(y = PdKeyT)) +
geom_point(aes(x = BLUE, col = "BLUE")) +
geom_point(aes(x = GREEN, col = "GREEN")) +
geom_point(aes(x = RED, col = "RED")) +
geom_point(aes(x = SWIR1, col = "SWIR1")) +
geom_point(aes(x = SWIR2, col = "SWIR2"))
I came to this basic result
Here the basic question:
Now, I would like to arrange the 5 layers seperately in one row according to the above depicted way
Anybody an idea for me?
Plus some information around the question:
Though the following aspects are not directly part of my question, I'd like to describe my final idea of the plot (in order to avoid that your advices may clash with further requirements):
Each panel should include
Spearman corr value and according p-value (as shown above) and
additionaly Pearson corr value and according p-value
Linear regression with conf. interval (as shown above) or other type of regression line (not shown)
Points should be couloured by variable (BLUE=bLue, RED= red; GREEN=green, SWIR1+2 by some other coulours, e.g. magenta and violet)
later on points and regressionlines should be subdived by ranges of PdKeyT (e.g. below -10, -10-to 30, and above 30) with using differnt brightness values of variable basic colours (blue, green, ...), analogouos to this:
All panels should use ONE common y-axis at the left as explained
And I would like to adpat the x-axes by the range of the respecitve variable (e.g. range for BLUE, GREEN and RED from 500 to 3000 and the SWIRs from 0 to 1500
edit 31.10.2021 referring to your answers:
Would it furtheron be possible with your respective approaches to limit the x-axes individually as depicted in the 'further requirements' of my question (B-G-R ranging from 500 to 3000, SWIRs from 0 to 1500) with using coord_cartesian(xlim = c(min,max))? I am asking because I read some discussions with issues on limiting axes depending on the 'faceting approach'. But I'd like to control the x-axes, because I'll have many of these plots stacked on top of each other (My sample mirrored the data of just one sampling point out of 300). And i would be glad if getting them aligned.
I'd meanwhile prefer to discrete points and reglines just by gray scale colors (for all bands the same) and rather discretely coloring the panels by theme(panel.background = element_rect(fill = "#xxxxxx"). Do you see an issue with that?
Finally some information and sample of my data
> str(loopsubset_created)
'data.frame': 30 obs. of 45 variables:
$ Site_ID : chr "A" "A" "A" "A" ...
$ Spot_Nr : chr "1" "1" "1" "1" ...
$ Transkt_Nr : chr "2" "2" "2" "2" ...
$ Point_Nr : chr "4" "4" "4" "4" ...
$ n : int 30 30 30 30 30 30 30 30 30 30 ...
$ rank : int 3 3 3 3 3 3 3 3 3 3 ...
$ Tile : chr "1008" "1008" "1008" "1008" ...
$ Date : int 20190208 20190213 20190215 20190218 20190223 20190228 20190302 20190305 20190315 20190320 ...
$ id : chr "22" "22" "22" "22" ...
$ Point_ID : chr "1022" "1022" "1022" "1022" ...
$ Site_Nr : chr "1" "1" "1" "1" ...
$ Point_x : num 356251 356251 356251 356251 356251 ...
$ Point_y : num 5132881 5132881 5132881 5132881 5132881 ...
$ Classification : num 7 7 7 7 7 7 7 7 7 7 ...
$ Class_Derived : chr "WW" "WW" "WW" "WW" ...
$ BLUE : num 1112 1095 944 1144 1141 ...
$ GREEN : num 1158 1178 1009 1288 1265 ...
$ RED : num 599 708 613 788 835 ...
$ REDEDGE1 : num 359 520 433 576 665 761 618 598 881 619 ...
$ REDEDGE2 : num 83 82 65 169 247 404 116 118 532 162 ...
$ REDEDGE3 : num 73 116 81 142 233 391 56 171 538 131 ...
$ BROADNIR : num 44 93 60 123 262 349 74 113 560 125 ...
$ NIR : num 37 70 66 135 215 313 110 135 504 78 ...
$ SWIR1 : num 187 282 184 225 356 251 240 216 507 197 ...
$ SWIR2 : num 142 187 155 197 281 209 192 146 341 143 ...
$ Quality.assurance.information: num 26664 10272 10272 10272 8224 ...
$ Q00_VAL : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q01_CS1 : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q02_CSS : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q03_CSH : num 1 0 0 0 0 0 0 0 1 0 ...
$ Q04_SNO : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q05_WAT : num 1 1 1 1 1 1 1 1 1 1 ...
$ Q06_AR1 : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q07_AR2 : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q08_SBZ : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q09_SAT : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q10_ZEN : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q11_IL1 : num 1 1 1 1 0 0 0 0 0 0 ...
$ Q12_IL2 : num 0 0 0 0 0 0 0 0 0 0 ...
$ Q13_SLO : num 1 1 1 1 1 1 1 1 1 1 ...
$ Q14_VAP : num 1 0 0 0 0 0 0 0 1 0 ...
$ Q15_WDC : num 0 0 0 0 0 0 0 0 0 0 ...
$ PdMax : int -7 -19 -20 -22 -24 -25 -26 -25 -21 -15 ...
$ PdMin : int -13 -23 -24 -26 -28 -29 -29 -28 -24 -20 ...
$ PdKeyT : int -10 -20 -22 -22 -27 -26 -26 -27 -22 -17 ...
loopsubset_created <- structure(list(Site_ID = c("A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A"), Spot_Nr = c("1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1"), Transkt_Nr = c("2", "2", "2", "2", "2", "2",
"2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2",
"2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2"), Point_Nr = c("4",
"4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4",
"4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4", "4",
"4", "4", "4"), n = c(30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L,
30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L, 30L), rank = c(3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), Tile = c("1008",
"1008", "1008", "1008", "1008", "1008", "1008", "1008", "1008",
"1008", "1008", "1008", "1008", "1008", "1008", "1008", "1008",
"1008", "1008", "1008", "1008", "1008", "1008", "1008", "1008",
"1008", "1008", "1008", "1008", "1008"), Date = c(20190208L,
20190213L, 20190215L, 20190218L, 20190223L, 20190228L, 20190302L,
20190305L, 20190315L, 20190320L, 20190322L, 20190325L, 20190330L,
20190401L, 20190416L, 20190419L, 20190421L, 20190501L, 20190506L,
20190524L, 20190531L, 20190603L, 20190620L, 20190625L, 20190630L,
20190705L, 20190710L, 20190809L, 20190814L, 20190903L), id = c("22",
"22", "22", "22", "22", "22", "22", "22", "22", "22", "22", "22",
"22", "22", "22", "22", "22", "22", "22", "22", "22", "22", "22",
"22", "22", "22", "22", "22", "22", "22"), Point_ID = c("1022",
"1022", "1022", "1022", "1022", "1022", "1022", "1022", "1022",
"1022", "1022", "1022", "1022", "1022", "1022", "1022", "1022",
"1022", "1022", "1022", "1022", "1022", "1022", "1022", "1022",
"1022", "1022", "1022", "1022", "1022"), Site_Nr = c("1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1",
"1", "1"), Point_x = c(356250.781, 356250.781, 356250.781, 356250.781,
356250.781, 356250.781, 356250.781, 356250.781, 356250.781, 356250.781,
356250.781, 356250.781, 356250.781, 356250.781, 356250.781, 356250.781,
356250.781, 356250.781, 356250.781, 356250.781, 356250.781, 356250.781,
356250.781, 356250.781, 356250.781, 356250.781, 356250.781, 356250.781,
356250.781, 356250.781), Point_y = c(5132880.701, 5132880.701,
5132880.701, 5132880.701, 5132880.701, 5132880.701, 5132880.701,
5132880.701, 5132880.701, 5132880.701, 5132880.701, 5132880.701,
5132880.701, 5132880.701, 5132880.701, 5132880.701, 5132880.701,
5132880.701, 5132880.701, 5132880.701, 5132880.701, 5132880.701,
5132880.701, 5132880.701, 5132880.701, 5132880.701, 5132880.701,
5132880.701, 5132880.701, 5132880.701), Classification = c(7,
7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 7, 7, 7), Class_Derived = c("WW", "WW", "WW",
"WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW",
"WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW", "WW",
"WW", "WW", "WW", "WW", "WW"), BLUE = c(1112, 1095, 944, 1144,
1141, 1010, 968, 1023, 1281, 1124, 1215, 1154, 1188, 1177, 1622,
1305, 1215, 2282, 2322, 2337, 2680, 2473, 1143, 1187, 1165, 1040,
1290, 1112, 1474, 1131), GREEN = c(1158, 1178, 1009, 1288, 1265,
1208, 1122, 1146, 1416, 1298, 1379, 1345, 1379, 1366, 1714, 1446,
1354, 2417, 2417, 2500, 2967, 2587, 1469, 1522, 1544, 1253, 1514,
1371, 1875, 1416), RED = c(599, 708, 613, 788, 835, 852, 726,
729, 1044, 816, 905, 908, 948, 970, 1206, 944, 935, 1648, 1741,
2004, 2109, 2032, 1241, 1290, 1419, 1206, 1424, 1339, 1969, 1321
), REDEDGE1 = c(359, 520, 433, 576, 665, 761, 618, 598, 881,
619, 722, 771, 829, 823, 937, 725, 759, 1327, 1395, 1756, 1718,
1753, 1533, 1528, 1683, 1335, 1605, 1499, 2016, 1592), REDEDGE2 = c(83,
82, 65, 169, 247, 404, 116, 118, 532, 162, 183, 218, 285, 200,
514, 182, 230, 568, 531, 1170, 780, 1101, 1192, 1174, 1250, 949,
1121, 1127, 1382, 1159), REDEDGE3 = c(73, 116, 81, 142, 233,
391, 56, 171, 538, 131, 205, 137, 321, 253, 503, 193, 214, 564,
527, 1192, 698, 1177, 1203, 1259, 1341, 1049, 1146, 1216, 1416,
1188), BROADNIR = c(44, 93, 60, 123, 262, 349, 74, 113, 560,
125, 121, 211, 325, 221, 480, 184, 178, 461, 435, 1067, 570,
1023, 961, 966, 964, 844, 764, 993, 1197, 834), NIR = c(37, 70,
66, 135, 215, 313, 110, 135, 504, 78, 115, 216, 197, 163, 462,
113, 165, 392, 349, 1006, 574, 1092, 1153, 1143, 1128, 961, 1033,
1027, 1164, 1086), SWIR1 = c(187, 282, 184, 225, 356, 251, 240,
216, 507, 197, 306, 260, 298, 290, 400, 190, 300, 275, 204, 678,
528, 1087, 1091, 1049, 1310, 935, 1199, 1169, 984, 1139), SWIR2 = c(142,
187, 155, 197, 281, 209, 192, 146, 341, 143, 271, 220, 246, 232,
387, 168, 217, 193, 173, 540, 374, 764, 766, 799, 869, 724, 827,
794, 745, 848), Quality.assurance.information = c(26664, 10272,
10272, 10272, 8224, 8224, 8224, 8224, 24616, 8224, 8224, 8224,
32, 8224, 8288, 24616, 8224, 8240, 48, 8208, 8240, 8192, 8192,
24648, 8192, 8192, 8192, 8192, 0, 8224), Q00_VAL = c(0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), Q01_CS1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
Q02_CSS = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Q03_CSH = c(1,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Q04_SNO = c(0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
0, 0, 0, 0, 0, 0), Q05_WAT = c(1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0,
0, 1), Q06_AR1 = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Q07_AR2 = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Q08_SBZ = c(0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), Q09_SAT = c(0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0), Q10_ZEN = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Q11_IL1 = c(1,
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), Q12_IL2 = c(0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0), Q13_SLO = c(1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 1), Q14_VAP = c(1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), Q15_WDC = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), PdMax = c(-7L, -19L, -20L,
-22L, -24L, -25L, -26L, -25L, -21L, -15L, -19L, -17L, -23L,
-22L, -4L, -7L, -8L, 55L, 57L, 47L, 67L, 44L, 21L, 18L, 13L,
16L, 16L, 9L, 12L, 11L), PdMin = c(-13L, -23L, -24L, -26L,
-28L, -29L, -29L, -28L, -24L, -20L, -22L, -22L, -26L, -26L,
-7L, -11L, -11L, 46L, 47L, 36L, 52L, 37L, 17L, 14L, 9L, 11L,
9L, 5L, 5L, 2L), PdKeyT = c(-10L, -20L, -22L, -22L, -27L,
-26L, -26L, -27L, -22L, -17L, -19L, -19L, -23L, -23L, -5L,
-9L, -9L, 54L, 53L, 40L, 60L, 43L, 20L, 15L, 13L, 15L, 13L,
7L, 9L, 6L)), row.names = 198:227, class = "data.frame")
Update:
To fulfill your last task me could make use of the code that is from Allan Cameron: adding another column to set the cuts mutate(range = cut(PdKeyT, c(-Inf, -10, 30, Inf), c("Low", "Mid", "High"))) %>% (this code was provided by Allan Cameron)
library(tidyverse)
library(ggpubr)
df_long_list <- loopsubset_created %>%
select(PdKeyT, BLUE, GREEN, RED, SWIR1, SWIR2) %>%
pivot_longer(
cols = -PdKeyT
) %>%
mutate(color = case_when(name=="BLUE" ~ "blue",
name=="GREEN" ~ "green",
name=="RED" ~ "red",
name=="SWIR1" ~ "magenta",
name=="SWIR2" ~ "violet"))%>%
mutate(range = cut(PdKeyT, c(-Inf, -10, 30, Inf), c("Low", "Mid", "High"))) %>%
group_split(name)
p <- ggplot()
for (i in 1:5) p <- p + geom_point(data=df_long_list[[i]], aes(value, PdKeyT, color=color, alpha=range))+
geom_smooth(data=df_long_list[[i]], aes(value, PdKeyT, group=range), method = lm, se=TRUE)+
theme(legend.position="none") +
stat_cor(data=df_long_list[[i]], aes(value, PdKeyT,
label=paste("Spearman",..r.label.., ..p.label.., sep = "~`,`~")), method="spearman",
# label.x.npc="left", label.y.npc="top", hjust=0) +
label.x = 3, label.y = 70)+
stat_cor(data=df_long_list[[i]], aes(value, PdKeyT,
label=paste("Pearson",..r.label.., ..p.label.., sep = "~`,`~")), method="pearson",
# label.x.npc="left", label.y.npc="top", hjust=0) +
label.x = 3, label.y = 65)+
facet_grid(.~name, scales = "free") +
theme_bw()+
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.margin = margin(120, 10, 120, 10),
panel.border = element_rect(fill = NA, color = "black"))
p
Here is how you could do it:
select all relevant columns
bring in long format
add color column to dataframe
make a list of dataframes with group_split
use a for loop to iterate over each of the 5 dataframes in the list
within the loop add stat_cor for pearson and spearman from ggpubr package
facet and do some formatting
library(tidyverse)
library(ggpubr)
df_long_list <- loopsubset_created %>%
select(PdKeyT, BLUE, GREEN, RED, SWIR1, SWIR2) %>%
pivot_longer(
cols = -PdKeyT
) %>%
mutate(color = case_when(name=="BLUE" ~ "blue",
name=="GREEN" ~ "green",
name=="RED" ~ "red",
name=="SWIR1" ~ "magenta",
name=="SWIR2" ~ "violet"))%>%
group_split(name)
p <- ggplot()
for (i in 1:5) p <- p + geom_point(data=df_long_list[[i]], aes(value, PdKeyT, color=color))+
geom_smooth(data=df_long_list[[i]], aes(value, PdKeyT), method = lm, se=TRUE)+
theme(legend.position="none") +
stat_cor(data=df_long_list[[i]], aes(value, PdKeyT,
label=paste("Spearman",..r.label.., ..p.label.., sep = "~`,`~")), method="spearman",
# label.x.npc="left", label.y.npc="top", hjust=0) +
label.x = 3, label.y = 70)+
stat_cor(data=df_long_list[[i]], aes(value, PdKeyT,
label=paste("Pearson",..r.label.., ..p.label.., sep = "~`,`~")), method="pearson",
# label.x.npc="left", label.y.npc="top", hjust=0) +
label.x = 3, label.y = 65)+
facet_grid(.~name, scales = "free_y") +
theme_bw()+
theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(),
plot.margin = margin(120, 10, 120, 10),
panel.border = element_rect(fill = NA, color = "black"))
p
To panel plots use facet_wrap or facet_grid. Also, generally ggplot2 works better when your data are in a long format. This allows you to assign a variable to an aesthetic rather than do it manually as you have.
library(ggplot2)
library(tidyr)
library(purrr)
library(dplyr)
library(tibble)
# lengthen your data so variable names are in a column
df <- loopsubset_created %>%
pivot_longer(cols = c(BLUE:RED, starts_with("SWIR")))
# get correlation coef and pvalue
r <- map(split(df, ~ name), ~ with(.x, c(cor(PdKeyT, value, method = "spearman"),
cor.test(PdKeyT, value, method = "spearman")$p.value))) %>%
bind_rows() %>%
rownames_to_column("i") %>% # first row is coef, second row is p value
pivot_longer(-i) %>%
mutate(lab = ifelse(i == 1,
# formatted so will be parsed by geom_text
sprintf("italic(R) == %0.5f", value),
sprintf("italic(p) == %0.5f", value)),
x = -Inf, # left of panel
y = Inf, # top of panel,
vjust = ifelse(i == 1, 0.75, 2)) # put p-value below
df %>%
ggplot(aes(x = value, y = PdKeyT, color = name)) +
geom_point() +
geom_text(data = r,
aes(x = x, y = y,
label = lab,
vjust = vjust),
size = 3,
parse = T,
inherit.aes = F) +
geom_smooth(method = "lm",
se = T,
formula = y ~ x,
show.legend = F) +
facet_grid(~ name,
scales = "free_x") +
labs(color = element_blank(),
x = "XLAB")
I think this fulfills most of your requirements, other than the correlation annotations. If, as you mention in your question, you wish to have 3 regressions per panel (one for each of the three ranges of PdkeyT) you would also need 3 correlation coefficients and p values per panel, which will be messy.
The reason why you have not seen tutorials for having different facets per variable is that this is not what facets are. Facets are a way of displaying data that have the same x and y axis but differ by some other categorical variable. They are not intended as a way of plotting different x variables against the same y variable. What you are describing is 5 distinct plots side-by-side, not facets.
Having said that, it is still possible to create the plot you are looking for with creative use of facets. You first need to shape the data into long format so that the values of the different x axis columns get stacked into a single column called value, and a new column called name is created to label each value according to which column it originally came from.
We can then use the new value column as our x axis variable, and facet according to the name column.
To make this look more authentic, we make some theme adjustments to ensure the facet strips resemble axis labels:
library(dplyr)
library(tidyr)
library(ggplot2)
loopsubset_created %>%
select(PdKeyT, BLUE, GREEN, RED, SWIR1, SWIR2) %>%
pivot_longer(-1) %>%
mutate(range = cut(PdKeyT, c(-Inf, -10, 30, Inf), c("Low", "Mid", "High"))) %>%
ggplot(aes(value, PdKeyT, color = name)) +
geom_point(aes(alpha = range)) +
geom_smooth(aes(group = range), size = 0.1,
method = "lm", formula = y ~ x, color = "black") +
labs(x = "") +
facet_grid(.~name, switch = "x", scales = "free_x") +
scale_color_manual(values = c("blue", "green", "red", "magenta", "violet")) +
theme_bw() +
theme(strip.placement = "outside",
strip.background = element_blank(),
plot.margin = margin(120, 10, 120, 10),
legend.position = "none")

How can I represent one column's values using multiple columns in R where one new column is conditional?

Looking at similar questions, I could not find one that matched my need.
If one does contain a solution, please share its link.
I have this dput-produced data:
structure(list(Player = c("Seth Lugo", "Jacob deGrom", "Rick Porcello",
"David Peterson", "Michael Wacha", "Seth Lugo", "Jacob deGrom",
"Rick Porcello", "David Peterson", "Steven Matz", "Seth Lugo",
"Jacob deGrom", "Rick Porcello", "David Peterson", "Seth Lugo",
"Jacob deGrom", "Rick Porcello", "Michael Wacha", "David Peterson",
"Jacob deGrom", "Seth Lugo", "Rick Porcello", "Robert Gsellman",
"Michael Wacha", "Ariel Jurado", "Jacob deGrom", "Rick Porcello",
"Seth Lugo", "Robert Gsellman", "David Peterson"), Date = structure(c(1601164800,
1601078400, 1601078400, 1600905600, 1600819200, 1600732800, 1600646400,
1600560000, 1600473600, 1600387200, 1600300800, 1600214400, 1600128000,
1599955200, 1599868800, 1599782400, 1599609600, 1599523200, 1599436800,
1599350400, 1599264000, 1599177600, 1599091200, 1599004800, 1598918400,
1598832000, 1598745600, 1598745600, 1598659200, 1598572800), tzone = "UTC", class = c("POSIXct",
"POSIXt")), DblHdr = c(0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 2), DateStr = c("09/27/2020",
"09/26/2020", "09/26/2020", "09/24/2020", "09/23/2020", "09/22/2020",
"09/21/2020", "09/20/2020", "09/19/2020", "09/18/2020", "09/17/2020",
"09/16/2020", "09/15/2020", "09/13/2020", "09/12/2020", "09/11/2020",
"09/09/2020", "09/08/2020", "09/07/2020", "09/06/2020", "09/05/2020",
"09/04/2020", "09/03/2020", "09/02/2020", "09/01/2020", "08/31/2020",
"08/30/2020", "08/30/2020", "08/29/2020", "08/28/2020"), Month = c("09",
"09", "09", "09", "09", "09", "09", "09", "09", "09", "09", "09",
"09", "09", "09", "09", "09", "09", "09", "09", "09", "09", "09",
"09", "09", "08", "08", "08", "08", "08"), Tm = c("NYM", "NYM",
"NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM",
"NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM",
"NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM", "NYM",
"NYM"), Opp = c("WSN", "WSN", "WSN", "WSN", "TBR", "TBR", "TBR",
"ATL", "ATL", "ATL", "PHI", "PHI", "PHI", "TOR", "TOR", "TOR",
"BAL", "BAL", "PHI", "PHI", "PHI", "PHI", "NYY", "BAL", "BAL",
"MIA", "NYY", "NYY", "NYY", "NYY"), Rslt = c("L 5-15", "L 3-4",
"L 3-5", "W 3-2", "L 5-8", "W 5-2", "L 1-2", "L 0-7", "W 7-2",
"L 2-15", "W 10-6", "W 5-4", "L 1-4", "L 3-7", "L 2-3", "W 18-1",
"W 7-6", "L 2-11", "L 8-9", "W 14-1", "W 5-1", "L 3-5", "W 9-7",
"W 9-4", "L 5-9", "L 3-5", "L 7-8", "L 2-5", "L 1-2", "W 4-3"
), W_L = c("L", "L", "L", "W", "L", "W", "L", "L", "W", "L",
"W", "W", "L", "L", "L", "W", "W", "L", "L", "W", "W", "L", "W",
"W", "L", "L", "L", "L", "L", "W"), temp = c("L 5", "L 3", "L 3",
"W 3", "L 5", "W 5", "L 1", "L 0", "W 7", "L 2", "W 10", "W 5",
"L 1", "L 3", "L 2", "W 18", "W 7", "L 2", "L 8", "W 14", "W 5",
"L 3", "W 9", "W 9", "L 5", "L 3", "L 7", "L 2", "L 1", "W 4"
), RS = c(5, 3, 3, 3, 5, 5, 1, 0, 7, 2, 10, 5, 1, 3, 2, 18, 7,
2, 8, 14, 5, 3, 9, 9, 5, 3, 7, 2, 1, 4), RA = c(15, 4, 5, 2,
8, 2, 2, 7, 2, 15, 6, 4, 4, 7, 3, 1, 6, 11, 9, 1, 1, 5, 7, 4,
9, 5, 8, 5, 2, 3), Rdiff = c(-10, -1, -2, 1, -3, 3, -1, -7, 5,
-13, 4, 1, -3, -4, -1, 17, 1, -9, -1, 13, 4, -2, 2, 5, -4, -2,
-1, -3, -1, 1), absV = c(10, 1, 2, 1, 3, 3, 1, 7, 5, 13, 4, 1,
3, 4, 1, 17, 1, 9, 1, 13, 4, 2, 2, 5, 4, 2, 1, 3, 1, 1), App_Dec = c("GS-2, L",
"GS-5", "GS-3, L", "GS-7, W", "GS-6, L", "GS-7, W", "GS-7, L",
"GS-7, L", "GS-6, W", "GS-3, L", "GS-2", "GS-2", "GS-6, L", "GS-5, L",
"GS-6, L", "GS-6, W", "GS-4", "GS-4, L", "GS-2", "GS-7, W", "GS-5, W",
"GS-6", "GS-2", "GS-3", "GS-4", "GS-6, L", "GS-5", "GS-4", "GS-4",
"GS-4"), IP = c(1.1, 5, 3, 7, 6, 6.1, 7, 7, 6, 2.2, 1.2, 2, 6,
5, 5.1, 6, 4, 4, 2, 7, 5, 6, 1.2, 3, 4, 6, 5, 3.2, 4, 4), H = c(5,
5, 8, 4, 6, 4, 4, 3, 3, 8, 8, 4, 6, 3, 7, 3, 10, 7, 3, 3, 4,
3, 4, 4, 9, 6, 4, 4, 4, 4), R = c(6, 3, 5, 1, 4, 2, 2, 1, 1,
6, 6, 3, 4, 2, 3, 1, 5, 5, 5, 1, 1, 2, 4, 2, 5, 4, 2, 1, 1, 3
), ER = c(6, 3, 3, 1, 4, 1, 2, 1, 1, 6, 6, 3, 4, 2, 3, 1, 5,
4, 5, 1, 1, 2, 4, 2, 5, 1, 2, 1, 1, 3), BB = c(2, 2, 1, 1, 0,
1, 2, 2, 4, 3, 0, 1, 2, 2, 1, 2, 0, 0, 4, 2, 2, 2, 4, 1, 0, 2,
2, 2, 0, 3), SO = c(1, 10, 3, 4, 4, 7, 14, 10, 10, 5, 3, 1, 5,
2, 5, 9, 3, 3, 3, 12, 8, 6, 0, 2, 2, 9, 2, 7, 4, 3), HR = c(0,
2, 1, 0, 2, 1, 1, 1, 1, 2, 4, 0, 1, 1, 0, 0, 0, 2, 1, 1, 1, 0,
0, 0, 1, 1, 0, 1, 1, 0), UER = c(0, 0, 2, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0),
Pit = c(38, 113, 67, 107, 66, 95, 112, 100, 102, 76, 52,
40, 94, 81, 91, 102, 66, 71, 70, 108, 81, 100, 52, 69, 84,
103, 86, 60, 57, 70), Str = c(24, 78, 42, 68, 45, 66, 70,
70, 62, 45, 30, 25, 66, 52, 60, 68, 45, 49, 37, 74, 50, 65,
22, 41, 53, 72, 55, 39, 33, 37), GSc = c(19, 53, 29, 68,
48, 65, 73, 75, 68, 20, 18, 36, 47, 53, 46, 69, 25, 33, 29,
77, 61, 62, 27, 44, 26, 57, 51, 54, 54, 42), BF = c(12, 22,
19, 26, 23, 24, 26, 26, 24, 18, 14, 11, 26, 20, 24, 23, 21,
20, 14, 26, 21, 23, 13, 15, 21, 27, 20, 16, 15, 18), AB = c(8,
20, 18, 24, 23, 23, 23, 23, 20, 15, 13, 9, 24, 18, 22, 21,
21, 20, 9, 24, 19, 21, 8, 13, 20, 25, 18, 14, 15, 15), H2B = c(2,
0, 1, 1, 1, 0, 2, 0, 2, 2, 1, 2, 1, 0, 2, 1, 1, 1, 1, 1,
0, 0, 1, 0, 2, 2, 2, 0, 1, 0), H3B = c(0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 0, 1, 0), IBB = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0),
HBP = c(1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0), SH = c(0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0), SF = c(1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0), GDP = c(0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1), SB = c(0, 1,
1, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0,
1, 0, 0, 0, 3, 0, 0, 0, 0), CS = c(0, 0, 0, 0, 1, 0, 1, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0), PO = c(0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), BK = c(0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0), WP = c(0, 1, 1, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 0, 0), ERA = c("40.5", "5.4", "9", "1.29", "6", "1.42",
"2.57", "1.29", "1.5", "20.25", "32.4", "13.5", "6", "3.6",
"5.0599999999999996", "1.5", "11.25", "9", "22.5", "1.29",
"1.8", "3", "21.6", "6", "11.25", "1.5", "3.6", "2.4500000000000002",
"2.25", "6.75"), WPA = c(-0.471, -0.087, -0.256, 0.34, -0.22,
0.18, 0.107, 0.219, 0.229, -0.358, -0.487, -0.186, -0.156,
0.036, -0.047, 0.049, -0.329, -0.321, -0.34, 0.193, 0.156,
0.07, -0.312, -0.042, -0.278, -0.271, 0.029, 0.02, 0.092,
-0.174), RE24 = c(-5.122, -0.193, -3.316, 2.931, -1.08, 1.509,
1.406, 2.406, 1.92, -4.641, -5.444, -1.919, -0.758, 0.679,
0.245, 2.215, -3.054, -3.054, -4.027, 2.406, 1.433, 0.92,
-3.788, -0.359, -2.812, -1.08, 0.707, 0.364, 1.166, -0.834
), aLI = c(1.45, 1.244, 0.974, 1.271, 0.965, 0.921, 0.955,
0.888, 1.066, 0.962, 0.767, 1.073, 0.941, 0.852, 1.353, 0.392,
0.857, 0.805, 0.904, 0.75, 1.037, 0.861, 1.232, 1.355, 0.914,
1.239, 1.213, 1.28, 0.748, 1.407)), row.names = c(NA, -30L
), class = c("tbl_df", "tbl", "data.frame"))
Desired output:
The numbers starting in the second column are the total absV values for each player for each column. The last column contains the sum of all the absV values for each player where absV > 5. Only a sample of the first 3 rows are shown, and the absV values are just filler numbers.
| Player | 1 | 2 | 3 | 4 | 5 | >5 |
| deGrom | 2 | 3 | 5 | 0 | 1 | 3 |
| Matz | 2 | 3 | 5 | 0 | 1 | 3 |
Code tried (I need help getting beyond the point shown). I would prefer if the code uses dplyr:
starter %>%
select(Player, absV) %>%
group_by(Player, absV) %>%
summarize(numG= n()) %>%
arrange(Player,absV)
To do this you to bifurcate your data with rows per player >5 and <=5, then rbind them together and thereafter pivot_wider. Follow this code
library(dplyr)
library(tidyr)
df <- starter %>% group_by(Player) %>%
mutate(row = row_number()) %>%
select(Player, absV, row) %>% arrange(Player)
df %>% filter(row <= 5) %>%
mutate(row = as.character(row)) %>%
rbind(df %>% filter(row > 5) %>%
summarise( absV = sum(absV)) %>%
mutate(row = ">5")) %>%
pivot_wider(id_cols = Player, names_from = row, values_from = absV)
# A tibble: 8 x 7
# Groups: Player [8]
Player `1` `2` `3` `4` `5` `>5`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Ariel Jurado 4 NA NA NA NA NA
2 David Peterson 1 5 4 1 1 NA
3 Jacob deGrom 1 1 1 17 13 2
4 Michael Wacha 3 9 5 NA NA NA
5 Rick Porcello 2 7 3 1 2 1
6 Robert Gsellman 2 1 NA NA NA NA
7 Seth Lugo 10 3 4 1 4 3
8 Steven Matz 13 NA NA NA NA NA
Note. Loading tidyverse package, at once, directly is advised.
Note-2 If you still want to sort absV before changing the data-format, add absV in arrange syntax beforehand joining them..
df <- starter %>% group_by(Player) %>%
arrange(Player, absV) %>%
mutate(row = row_number()) %>%
select(Player, absV, row)
df %>% filter(row <= 5) %>%
mutate(row = as.character(row)) %>%
rbind(df %>% filter(row > 5) %>%
summarise( absV = sum(absV)) %>%
mutate(row = ">5")) %>%
pivot_wider(id_cols = Player, names_from = row, values_from = absV)
#this will give the following diff output
# A tibble: 8 x 7
# Groups: Player [8]
Player `1` `2` `3` `4` `5` `>5`
<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Ariel Jurado 4 NA NA NA NA NA
2 David Peterson 1 1 1 4 5 NA
3 Jacob deGrom 1 1 1 2 13 17
4 Michael Wacha 3 5 9 NA NA NA
5 Rick Porcello 1 1 2 2 3 7
6 Robert Gsellman 1 2 NA NA NA NA
7 Seth Lugo 1 3 3 4 4 10
8 Steven Matz 13 NA NA NA NA NA
Additional Question in comments below
Follow this code to work out frequency of each absV
df %>% group_by(Player, absV) %>% mutate(freq = n()) %>% ungroup()
#check it
df %>% group_by(Player, absV) %>% mutate(freq = n()) %>% ungroup() %>% select(Player, absV, freq)
Player absV freq
<chr> <dbl> <int>
1 Seth Lugo 10 1
2 Jacob deGrom 1 3
3 Rick Porcello 2 2
4 David Peterson 1 3
5 Michael Wacha 3 1
6 Seth Lugo 3 2
7 Jacob deGrom 1 3
8 Rick Porcello 7 1
9 David Peterson 5 1
10 Steven Matz 13 1
# ... with 20 more rows
Using data.table
library(data.table)
dcast(setDT(starter), Player ~ rowid(Player), value.var = 'absV')

Split vector into balanced list (balancing sum of list elements)

Having a hard time figuring out an efficient solution to the following problem. The question is very verbose because I'm not sure if I'm making this problem harder than it can be.
Given a named vector
t <- c(2, 0, 0, 30, 0, 0, 10, 2000, 0, 20, 0, 40, 60, 10)
names(t) <- c(1, 0, 0, 2, 0, 0, 3, 4, 0, 5, 0, 6, 7, 8)
I want to split t into a list of 4 elements that's balanced based on the sum of the resulting list elements while keeping the order of elements, and only splitting on non-zero elements. Expected outcome
L[1] <- c(2, 0, 0, 30, 0, 0, 10) # sum = 42
L[2] <- c(2000, 0) # sum = 2000
L[3] <- c(20, 0, 40) # sum = 60
L[4] <- c(60, 10) # sum = 70
The error function I use is minimizing sd(rowSums(L)) or sd(sapply(L, sum))
Trying to split the vector using something like the following doesn't quite work
split(t, cut(cumsum(t), 4))
# $`(-0.17,544]`
# 1 0 0 2 0 0 3
# 2 0 0 30 0 0 10
# $`(544,1.09e+03]`
# named numeric(0)
# $`(1.09e+03,1.63e+03]`
# named numeric(0)
# $`(1.63e+03,2.17e+03]`
# 4 0 5 0 6 7 8
# 2000 0 20 0 40 60 10
I wrote a function to split the list the way that I wanted (see error function above)
break_at <- function(val, nchunks) {
nchunks <- nchunks - 1
nonzero <- val[val != 0]
all_groupings <- as.matrix(gtools::permutations(n = 2, r = length(nonzero), v = c(1, 0), repeats.allowed = TRUE))
all_groupings <- all_groupings[rowSums(all_groupings) == nchunks, ]
which_grouping <- which.min(
sapply(
1:nrow(all_groupings),
function(i) {
sd(
sapply(
split(
nonzero,
cumsum(all_groupings[i,])
),
sum
)
)
}
)
)
mark_breaks <- rep(0, length(val))
mark_breaks[names(val) %in% which(all_groupings[which_grouping,]==1)] <- 1
return(mark_breaks)
}
You can see the result is much better
break_at(t, 4)
# 0 0 0 0 0 0 0 1 0 1 0 0 1 0
split(t, cumsum(break_at(t, 4)))
# $`0`
# 1 0 0 2 0 0 3
# 2 0 0 30 0 0 10
# $`1`
# 4 0
# 2000 0
# $`2`
# 5 0 6
# 20 0 40
# $`3`
# 7 8
# 60 10
It works by using gtools::permutations(n = 2, r = length(nonzero), v = c(1, 0), repeats.allowed = TRUE) to look at all potential splits. See how the above works for r = 3
# [,1] [,2] [,3]
# [1,] 0 0 0
# [2,] 0 0 1
# [3,] 0 1 0
# [4,] 0 1 1
# [5,] 1 0 0
# [6,] 1 0 1
# [7,] 1 1 0
# [8,] 1 1 1
which I then filter, all_groupings[rowSums(all_groupings) == nchunks, ]. This only looks at potential splits that produce nchunks.
My issue is that this works horribly with my real data because of the number of permutations involved.
hard <- structure(c(2, 0, 1, 2, 0, 1, 1, 1, 5, 0, 0, 0, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 0, 0, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1,
1, 1, 2, 0, 2, 0, 1, 4, 0, 0, 0, 1, 3, 0, 0, 4, 0, 0, 0, 2, 0,
1, 1, 1, 3, 0, 0, 1, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 2, 0, 1, 6,
0, 0, 0, 0, 0, 1, 1, 1, 3, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0,
1, 1, 2, 0, 1, 2, 0, 1, 1, 4, 0, 0, 0, 1, 1, 3, 0, 0, 1, 2, 0,
1, 1, 2, 0, 1, 3, 0, 0, 1, 3, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 2, 0, 3,
0, 0, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 2, 0, 2, 0, 1, 3, 0, 0, 1,
1, 1, 1, 1, 2, 0, 1, 1, 1, 2, 0, 1, 2, 0, 1, 1, 1, 1, 1, 1, 2,
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2,
0, 1, 1, 1, 1, 1, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
1, 2, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 0, 8, 0, 0, 0, 0, 0, 0, 0,
1, 2, 0, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1,
3, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1,
1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 3, 0,
0, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1,
1, 1, 1, 2, 0, 1, 1, 1, 1, 5, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 0, 1, 1, 1, 1, 2, 0, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 2, 0, 1, 1, 2, 0, 1, 2, 0, 1, 8, 0, 0, 0, 0, 0, 0, 0, 2,
0, 1, 9, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 4, 0, 0, 0, 1, 1, 1,
1, 6, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 1, 3, 0, 0, 1, 1, 1, 3,
0, 0, 7, 0, 0, 0, 0, 0, 0, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 2, 0, 1, 1, 1, 1, 1, 1, 1), .Names = c("1", "0",
"2", "3", "0", "4", "5", "6", "7", "0", "0", "0", "0", "8", "9",
"10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20",
"21", "22", "23", "24", "0", "0", "25", "26", "27", "28", "29",
"30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "0",
"40", "41", "42", "43", "0", "44", "45", "46", "47", "48", "49",
"50", "51", "52", "0", "53", "0", "54", "55", "0", "0", "0",
"56", "57", "0", "0", "58", "0", "0", "0", "59", "0", "60", "61",
"62", "63", "0", "0", "64", "65", "66", "67", "68", "0", "69",
"70", "0", "71", "72", "73", "0", "74", "75", "0", "0", "0",
"0", "0", "76", "77", "78", "79", "0", "0", "80", "81", "82",
"83", "84", "85", "86", "87", "88", "0", "89", "90", "91", "0",
"92", "93", "0", "94", "95", "96", "0", "0", "0", "97", "98",
"99", "0", "0", "100", "101", "0", "102", "103", "104", "0",
"105", "106", "0", "0", "107", "108", "0", "0", "109", "110",
"111", "112", "0", "113", "114", "115", "116", "117", "118",
"119", "120", "121", "122", "123", "124", "125", "126", "127",
"128", "129", "130", "131", "0", "132", "133", "134", "0", "135",
"0", "0", "136", "137", "138", "0", "139", "140", "0", "141",
"142", "143", "144", "0", "145", "0", "146", "147", "0", "0",
"148", "149", "150", "151", "152", "153", "0", "154", "155",
"156", "157", "0", "158", "159", "0", "160", "161", "162", "163",
"164", "165", "166", "0", "167", "168", "169", "170", "171",
"172", "173", "174", "175", "176", "177", "178", "179", "180",
"181", "182", "183", "184", "185", "186", "0", "187", "188",
"189", "190", "191", "192", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "0", "193", "194", "195", "196", "197", "0", "198",
"199", "200", "201", "0", "202", "203", "204", "205", "0", "206",
"0", "0", "0", "0", "0", "0", "0", "207", "208", "0", "209",
"210", "211", "212", "213", "214", "215", "0", "216", "217",
"218", "219", "220", "221", "0", "222", "223", "224", "225",
"0", "0", "226", "227", "228", "229", "230", "231", "232", "233",
"234", "235", "236", "237", "238", "239", "240", "0", "241",
"242", "243", "244", "245", "246", "247", "248", "0", "249",
"250", "251", "252", "253", "254", "0", "255", "256", "257",
"258", "259", "260", "0", "0", "261", "262", "263", "264", "0",
"265", "266", "267", "268", "269", "270", "271", "272", "273",
"274", "0", "275", "276", "277", "278", "279", "280", "281",
"282", "0", "283", "284", "285", "286", "287", "0", "0", "0",
"0", "288", "0", "0", "0", "0", "0", "289", "290", "291", "292",
"293", "294", "295", "296", "297", "298", "299", "300", "301",
"302", "303", "304", "305", "306", "307", "308", "309", "310",
"311", "312", "313", "314", "315", "316", "317", "318", "319",
"320", "321", "0", "0", "0", "0", "0", "0", "0", "0", "0", "0",
"0", "0", "322", "323", "324", "325", "326", "327", "328", "329",
"330", "331", "332", "333", "334", "335", "336", "337", "338",
"339", "340", "341", "0", "342", "343", "344", "345", "346",
"0", "347", "0", "348", "349", "350", "351", "352", "353", "354",
"355", "356", "357", "358", "359", "360", "0", "361", "362",
"363", "0", "364", "365", "0", "366", "367", "0", "0", "0", "0",
"0", "0", "0", "368", "0", "369", "370", "0", "0", "0", "0",
"0", "0", "0", "0", "371", "0", "0", "372", "0", "0", "0", "373",
"374", "375", "376", "377", "0", "0", "0", "0", "0", "378", "0",
"0", "0", "0", "0", "379", "380", "0", "0", "381", "382", "383",
"384", "0", "0", "385", "0", "0", "0", "0", "0", "0", "386",
"387", "388", "0", "389", "390", "391", "392", "393", "394",
"395", "396", "397", "398", "399", "400", "401", "402", "0",
"403", "404", "405", "406", "407", "408", "409"))
I don't know if there are some analytical solutions. But if you treat it as a integer programming problem you could use the "SANN" heuristics implemented in optim. For example, consider some (sub-optimal) random split points to cut the vector t
> startpar <- sort(sample(length(t)-1, 3))
> startpar
[1] 5 6 9
> # result in a sub-optimal split
> split(t, cut(1:length(t), c(0, startpar, length(t)), labels = 1:4))
$`1`
1 0 0 2 0
2 0 0 30 0
$`2`
0
0
$`3`
3 4 0
10 2000 0
$`4`
5 0 6 7 8
20 0 40 60 10
The error function could be written as
> # from manual: A function to be minimized (or maximized)
> fn <- function(par, vec){
+ ind_vec <- cut(1:length(vec), c(0, par, length(vec)), labels = 1:4)
+ sd(unlist(lapply(split(vec, ind_vec), sum)))
+ }
> # evaluated at the starting parameters
> fn(startpar, t)
[1] 979.5625
The "SANN" heuristics (Simulated annealing) needs a method to generate a new candidate solution. There can be more sophisticated ways to select either the functions or the starting values, but the present choices still lead to the/an [edit:] near optimal solution (and maybe in acceptable time?).
> # from manual: For the "SANN" method it specifies a function to generate a new candidate point
> gr <- function(par, vec){
+ ind <- sample(length(par), 1)
+ par[ind] <- par[ind] + sample(-1:1, 1)
+ par[ind] <- max(c(par[ind], ifelse(ind == 1, 1, par[ind - 1] + 1)))
+ par[ind] <- min(c(par[ind], ifelse(ind == 3, length(vec) - 1, par[ind + 1] - 1)))
+ par
+ }
Applied to the toy data
> optimpar <- optim(startpar, fn, gr, method = "SANN", vec = t)$par
> split(t, cut(1:length(t), c(0, optimpar, length(t)), labels = 1:4))
$`1`
1 0 0 2
2 0 0 30
$`2`
0 0 3
0 0 10
$`3`
4
2000
$`4`
0 5 0 6 7 8
0 20 0 40 60 10
> fn(optimpar, t)
[1] 972.7329
>
Applied to the real data
> # use for "hard"
> startpar <- sort(sample(length(hard)-1, 3))
> optimpar <- optim(startpar, fn, gr, method = "SANN", vec = hard)
> optimpar
$par
[1] 146 293 426
$value
[1] 4.573474
...[output shortened]
[Edit] since my initial results were sub-optimal.
I'm sure you found a sufficient alternative yourself already, but for the sake of completeness: Regarding the present toy and real data examples a better choice for gr (I'll call it gr2 for later reference) would have a different sampling length (e.g. dependent on the length of the data) in order to generate the new candidate which will be less dependent from the incumbent (the current solution). For example
> gr2 <- function(par, vec){
+ ind <- sample(length(par), 1)
+ l <- round(log(length(vec), 2))
+ par[ind] <- par[ind] + sample(-l:l, 1)
+ par[ind] <- max(c(par[ind], ifelse(ind == 1, 1, par[ind - 1] + 1)))
+ par[ind] <- min(c(par[ind], ifelse(ind == 3, length(vec) - 1, par[ind + 1] - 1)))
+ par
+ }
For the real data resulting in
> set.seed(1337)
>
> startpar <- sort(sample(length(hard)-1, 3))
> opt <- optim(startpar, fn, gr2, method = "SANN", vec = hard)
> opt$value
[1] 4.5
> lapply(split(hard, cut(1:length(hard), c(0, opt$par, length(hard)), labels = 1:4)), sum)
$`1`
[1] 140
$`2`
[1] 141
$`3`
[1] 144
$`4`
[1] 150
And for the toy data resulting in
> startpar <- sort(sample(length(t)-1, 3))
> opt <- optim(startpar, fn, gr2, method = "SANN", vec = t)
> opt$value
[1] 971.4024
> split(t, cut(1:length(t), c(0, opt$par, length(t)), labels = 1:4))
$`1`
1 0 0 2 0 0 3
2 0 0 30 0 0 10
$`2`
4
2000
$`3`
0 5 0 6
0 20 0 40
$`4`
7 8
60 10
Regarding the optimality for the real data (using gr2), I ran a short simulation of 100 optimization runs from different starting parameters: Each of those runs terminated at a value of 4.5.
By using dynamic programming you can get the true optimum in O(N^2) time. The trick is to see that minimizing the standard deviation is the same as minimizing the sum of squares of rowSums. Since the error contributions of each subvector are independent, we can reduce the search-space of
possible splits by ignoring extensions of suboptimal splits of subvectors.
If for instance (3, 5) is a better split for V[1:7] than (2, 4), then
every split of V starting with (3, 5, 8,...) is better than every split starting with
(2, 4, 8, ...).
So if we for each 1 < k < len(V) find the best 2-group split of 'V[1:k]',
we can find the best into 3-group split of each V[1:k] by only considering extensions of the optimal 2-group splits of the subvectors V[1:k]. In general we find the best (n+1)-group spilt by extending the optimal n-group splits.
The balanced.split function below takes in a vector of values and the number of splits and returns a list of subvectors. This yields the a solution with row sums 140,141,144,150 on the hard set.
balanced.split <- function(all.values, n.splits) {
nonzero.idxs <- which(all.values!=0)
values <- all.values[nonzero.idxs]
cumsums = c(0, cumsum(values))
error.table <- outer(cumsums, cumsums, FUN='-')**2
# error.table[i, j] = error contribution of segment
# values[i:(j-1)]
# Iteratively find best i splits
index.matrix <- array(dim=c(n.splits-1, ncol(error.table)))
cur.best.splits <- error.table[1, ]
for (i in 1:(n.splits-1)){
error.sums <- cur.best.splits + error.table
index.matrix[i, ] <- apply(error.sums, 2, which.min)
# index.matrix[i, k] = last split of optimal (i+1)-group
# split of values[1:k]
cur.best.splits <- apply(error.sums, 2, min)
# cur.best.splits[k] = minimal error function
# of (i+1)-group split of values[1:k]
}
# Trace best splits
cur.idx <- ncol(index.matrix)
splits <- vector("numeric", n.splits-1)
for (i in (n.splits-1):1) {
cur.idx = index.matrix[i, cur.idx]
splits[i] <- cur.idx
}
# Split values vector
splits <- c(1, nonzero.idxs[splits], length(all.values)+1)
chunks <- list()
for (i in 1:n.splits)
chunks[[i]] <- all.values[splits[i]:(splits[i+1]-1)]
return(chunks)
}
Below is more detailed code for the same algorithm
# Matrix containing the error contribution of
# subsegments [i:j]
.makeErrorTable <- function(values) {
cumsums = c(0, cumsum(values))
return(outer(cumsums, cumsums, FUN='-')**2)
}
# Backtrace the optimal split points from an index matrix
.findPath <- function(index.matrix){
nrows <- nrow(index.matrix)
cur.idx <- ncol(index.matrix)
path <- vector("numeric", nrows)
for (i in nrows:1) {
cur.idx = index.matrix[i, cur.idx]
path[i] <- cur.idx
}
return(path)
}
.findSplits <- function(error.table, n.splits) {
n.diffs <- nrow(error.table)
max.val <- error.table[1, n.diffs]
# Table used to backtrace the optimal path
idx.table <- array(dim=c(n.splits-1, n.diffs))
cur.best.splits <- error.table[1, ]
for (i in 1:(n.splits-1)){
error.sums <- cur.best.splits + error.table
idx.table[i, ] <- apply(error.sums, 2, which.min)
cur.best.splits <- apply(error.sums, 2, min)
}
return(.findPath(idx.table))
}
# Split values at given split points
.splitChunks <- function(values, splits) {
splits <- c(1, splits, length(values)+1)
chunks <- list()
for (i in 1:(length(splits)-1))
chunks[[i]] <- values[splits[i]:(splits[i+1]-1)]
return(chunks)
}
#' Main function that splits all.values into n.splits
#' chunks, minimizing sd(sum(chunk))
balanced.split <- function(all.values, n.splits) {
nonzero.idxs <- which(all.values!=0)
values <- all.values[nonzero.idxs]
error.table <- .makeErrorTable(values)
splits <- .findSplits(error.table, n.splits)
full.splits <- nonzero.idxs[splits]
return(.splitChunks(all.values, full.splits))
}
The following solution is "split[ting] t into a list of 4 elements that's balanced based on the sum of the resulting list elements while keeping the order of elements, and only splitting on non-zero elements.".
It's not producing your exact expected output though, but to my understanding your optimization rules were not requirements but just things you've tried to get those balanced lists. And it should be efficient :).
t <- c(2, 0, 0, 30, 0, 0, 10, 2000, 0, 20, 0, 40, 60, 10)
groups <- cut(cumsum(t),
breaks=quantile(cumsum(t),
probs=seq(0, 1, 0.25)),
include.lowest =TRUE)
lapply(unique(groups),function(x) t[groups==x])
# [[1]]
# [1] 2 0 0 30 0 0
#
# [[2]]
# [1] 10
#
# [[3]]
# [1] 2000 0 20 0
#
# [[4]]
# [1] 40 60 10
On your hard data, the results are quite well "balanced" :
t2 <- as.numeric(hard)
groups <- cut(cumsum(t2),
breaks=quantile(cumsum(t2),
probs=seq(0, 1, 0.25)),
include.lowest =TRUE)
L2 <- lapply(unique(groups),function(x) t2[groups==x])
sapply(L2,sum)
# [1] 144 145 149 137
To compare with 138 143 144 150 using currently chosen solution.

Resources