There are two matrices:
Matrix with 2 columns: node name and node degree (k1):
Matrix with 1 column: degrees (ms):
I need to split 1st matrix into multiple matrices, where every matrix has nodes of same degree. Then, write matrices to csv-files. But my code is not working. How can i do this correctly?
k1<-read.csv2("VandD.csv", header = FALSE)
fnk1<-as.matrix(k1)
ms<-read.csv2("mas.csv", header = FALSE)
massive<-as.matrix(ms)
wlk<-1
varbl<-1
rtt<-list()
for (wlk in 1:384) {
rtt<-NULL
stepen<-massive[wlk]
for (varbl in 1:2154) {
if(fnk1[varbl,2]==stepen){
kapa<-fnk1[varbl,1]
rtt<-append(rtt,kapa)
}
}
namef<-paste("reslt",stepen,".csv",sep = "")
write.csv2(rtt, file=namef)
}
k1
V1 V2
1 UC7Ucs42FZy3uYzjrqzOIHsw 81
2 UCyWDmyZRjrGHeKF-ofFsT5Q 81
3 UCIZP6nCTyU9VV0zIhY7q1Aw 81
4 UCqk3CdGN_j8IR9z4uBbVPSg 81
5 UCjWzQkWu0l1yAhcBoavokng 81
6 UCRXiA3h1no_PFkb1JCP0yMA 81
7 UC2w9SdXpwq2Uq-MV4W4A8kw 81
8 UCdJqTQJZleoxZFReiyNvn8w 81
9 UC2Qw1dzXDBAZPwS7zm37g8g 81
10 UCTOovOHTf4efJOmGvJBxIQQ 81
ms
V1
1 81
2 82
3 83
4 84
5 85
6 86
7 87
8 88
9 89
10 90
Seems you need split
split(k1,k1$v2)
We can use group_split
library(dplyr)
k1 %>%
group_split(v2)
Related
Suppose, I have a dataframe, df, and I want to create a new column called "c" based on the addition of two existing columns, "a" and "b". I would simply run the following code:
df$c <- df$a + df$b
But I also want to do this for many other columns. So why won't my code below work?
# Reproducible data:
martial_arts <- data.frame(gym_branch=c("downtown_a", "downtown_b", "uptown", "island"),
day_boxing=c(5,30,25,10),day_muaythai=c(34,18,20,30),
day_bjj=c(0,0,0,0),day_judo=c(10,0,5,0),
evening_boxing=c(50,45,32,40), evening_muaythai=c(50,50,45,50),
evening_bjj=c(60,60,55,40), evening_judo=c(25,15,30,0))
# Creating a list of the new column names of the columns that need to be added to the martial_arts dataframe:
pattern<-c("_boxing","_muaythai","_bjj","_judo")
d<- expand.grid(paste0("martial_arts$total",pattern))
# Creating lists of the columns that will be added to each other:
e<- names(martial_arts %>% select(day_boxing:day_judo))
f<- names(martial_arts %>% select(evening_boxing:evening_judo))
# Writing a function and using mapply:
kick_him <- function(d,e,f){d <- rowSums(martial_arts[ , c(e, f)], na.rm=T)}
mapply(kick_him,d,e,f)
Now, mapply produces the correct results in terms of the addition:
> mapply(ff,d,e,f)
Var1 <NA> <NA> <NA>
[1,] 55 84 60 35
[2,] 75 68 60 15
[3,] 57 65 55 35
[4,] 50 80 40 0
But it doesn't add the new columns to the martial_arts dataframe. The function in theory should do the following
martial_arts$total_boxing <- martial_arts$day_boxing + martial_arts$evening_boxing
...
...
martial_arts$total_judo <- martial_arts$day_judo + martial_arts$evening_judo
and add four new total columns to martial_arts.
So what am I doing wrong?
The assignment is wrong here i.e. instead of having martial_arts$total_boxing as a string, it should be "total_boxing" alone and this should be on the lhs of the Map/mapply. As the OP already created the 'martial_arts$' in 'd' dataset as a column, we are removing the prefix part and do the assignment
kick_him <- function(e,f){rowSums(martial_arts[ , c(e, f)], na.rm=TRUE)}
martial_arts[sub(".*\\$", "", d$Var1)] <- Map(kick_him, e, f)
-check the dataset now
> martial_arts
gym_branch day_boxing day_muaythai day_bjj day_judo evening_boxing evening_muaythai evening_bjj evening_judo total_boxing total_muaythai total_bjj total_judo
1 downtown_a 5 34 0 10 50 50 60 25 55 84 60 35
2 downtown_b 30 18 0 0 45 50 60 15 75 68 60 15
3 uptown 25 20 0 5 32 45 55 30 57 65 55 35
4 island 10 30 0 0 40 50 40 0 50 80 40 0
I have some dataframe. Here is a small expample:
a <- rnorm(100, 5, 2)
b <- rnorm(100, 10, 3)
c <- rnorm(100, 15, 4)
df <- data.frame(a, b, c)
And I have a character variable vect <- "c('a','b')"
When I try to calculate sum of vars using command
df$d <- df[vect]
which must be an equivalent of
df$d <- df[c('a','b')]
But, as a reslut I have got an error
[.data.frame(df, vect) :undefined columns selected
You're assumption that
vect <- "c('a','b')"
df$d <- df[vect]
is equivalent to
df$d <- df[c('a','b')]
is incorrect.
As #Karthik points out, you should remove the quotation marks in the assignment to vect
However, from your question it sounds like you want to then sum the elements specified in vect and then assign to d. To do this you need to slightly change your code
vect <- c('a','b')
df$d <- apply(X = df[vect], MARGIN = 1, FUN = sum)
This does elementwise sum on the columns in df specified by vect. The MARGIN = 1 specifies that we want to apply the sum rowise rather than columnwise.
EDIT:
As #ThomasIsCoding points out below, if for some reason vect has to be a string, you can parse a string to an R expression using str2lang
vect <- "c('a','b')"
parsed_vect <- eval(str2lang(vect))
df$d <- apply(X = df[parsed_vect], MARGIN = 1, FUN = sum)
Perhaps you can try
> df[eval(str2lang(vect))]
a b
1 8.1588519 9.0617818
2 3.9361214 13.2752377
3 5.5370983 8.8739725
4 8.4542050 8.5704234
5 3.9044461 13.2642793
6 5.6679639 12.9529061
7 4.0183808 6.4746806
8 3.6415608 11.0308990
9 4.5237453 7.3255129
10 6.9379168 9.4594150
11 5.1557935 11.6776181
12 2.3829337 3.5170335
13 4.3556430 7.9706624
14 7.3274615 8.1852829
15 -0.5650641 2.8109197
16 7.1742283 6.8161200
17 3.3412044 11.6298940
18 2.5388981 10.1289533
19 3.8845686 14.1517643
20 2.4431608 6.8374837
21 4.8731053 12.7258259
22 6.9534912 6.5069513
23 4.4394807 14.5320225
24 2.0427553 12.1786148
25 7.1563978 11.9671603
26 2.4231207 6.1801862
27 6.5830372 0.9814878
28 2.5443326 9.8774632
29 1.1260322 9.4804636
30 4.0078436 12.9909014
31 9.3599808 12.2178596
32 3.5362245 8.6758910
33 4.6462337 8.6647953
34 2.0698037 7.2750532
35 7.0727970 8.9386798
36 4.8465248 8.0565347
37 5.6084462 7.5676308
38 6.7617479 9.5357666
39 5.2138482 13.6822924
40 3.6259103 13.8659939
41 5.8586547 6.5087016
42 4.3490281 9.5367522
43 7.5130701 8.1699117
44 3.7933813 9.3241308
45 4.9466813 9.4432584
46 -0.3730035 6.4695187
47 2.0646458 10.6511916
48 4.6027309 4.9207746
49 5.9919348 7.1946723
50 6.0148330 13.4702419
51 5.5354452 9.0193366
52 5.2621651 12.8856488
53 6.8580210 6.3526151
54 8.0812166 14.4659778
55 3.6039030 5.9857886
56 9.8548553 15.9081336
57 3.3675037 14.7207681
58 3.9935336 14.3186175
59 3.4308085 10.6024579
60 3.9609624 6.6595521
61 4.2358603 10.6600581
62 5.1791856 9.3241118
63 4.6976289 13.2833055
64 5.1868906 7.1323826
65 3.1810915 12.8402472
66 6.0258287 9.3805249
67 5.3768112 6.3805096
68 5.7072092 7.1130150
69 6.5789349 8.0092541
70 5.3175820 17.3377234
71 9.7706112 10.8648956
72 5.2332127 12.3418373
73 4.7626124 13.8816910
74 3.9395911 6.5270785
75 6.4394724 10.6344965
76 2.6803695 10.4501753
77 3.5577834 8.2323369
78 5.8431140 7.7932460
79 2.8596818 8.9581837
80 2.7365174 10.2902512
81 4.7560973 6.4555758
82 4.6519084 8.9786777
83 4.9467471 11.2818536
84 5.6167284 5.2641380
85 9.4700525 2.9904731
86 4.7392906 11.3572521
87 3.1221908 6.3881556
88 5.6949432 7.4518023
89 5.1435241 10.8912283
90 2.1628966 10.5080671
91 3.6380837 15.0594135
92 5.3434709 7.4034042
93 -0.1298439 0.4832707
94 7.8759390 2.7411723
95 2.0898649 9.7687250
96 4.2131549 9.3175228
97 5.0648105 11.3943350
98 7.7225193 11.4180456
99 3.1018895 12.8890257
100 4.4166832 10.4901303
I got the following dataframe called nodes_df:
x y node_demand
1 2 62 3
2 80 25 14
3 36 88 1
4 57 23 14
5 33 17 19
6 76 43 2
7 77 85 14
8 94 6 6
10 59 72 6
. . . .
. . . .
. . . .
. . . .
45 60 84 8
46 35 100 5
47 38 2 1
48 9 9 7
50 1 58 2
I have to split this dataframe between hubs and clients.
hubs <- nodes_df[keep <- sample(1:total_nodes, requested_hubs, replace = FALSE),]
client_nodes <- nodes_df[-keep, ]
I need to randomly select 1 row at a time from clients_nodes and calculate the total node_demand, I need to keep adding rows until random_clients$node_demand exceedes 120.
random_clients <- client_nodes[sample(nrow(client_nodes), size = 1, replace = FALSE),]
I created the following variables and while loop
node_demand <- c(0)
cumulative_demand <- cumsum(node_demand)
client_nodes <- nodes_df[-keep, ]
last_node <- cumsum(cumulative_demand) >= max_supply_capacity
condition = TRUE
while(condition){
random_clients <- client_nodes[sample(nrow(client_nodes), size = 1, replace = FALSE),]
node_demand <- c(node_demand,random_clients$node_demand)
cumulative_demand <- cumsum(node_demand)
if(cumulative_demand <= max_supply_capacity){
condition == FALSE
}
}
The loop doesn't stop and I get the following return value:
cumulative_demand
[1] 0 14 20 26 27 35 49 50 68 79 97 100 101 104 109 118
[17] 119 137 150 164 178 185 188 191 208 209 219 222 227 246 252 272 (it carries on and on)
I am not sure why the loop doesn't stop despite the condition cumulative_demand <= max_supply_capacity being met.
Anybody could show me how to fix it?
I managed to fix it :).
I had to use ifelse() so R could evaluate the condition of a vector. The normal if() statement wouldn't work in this case
while(TRUE){
random_clients <- client_nodes[sample(nrow(client_nodes), size = 1, replace = FALSE),]
node_demand <- c(node_demand,random_clients$node_demand)
cumulative_demand <- cumsum(node_demand)
last_node <- (cumulative_demand <= max_supply_capacity)
ifelse(last_node == FALSE,break,next)
}
I had to use and ifelse() instead of an if() statement as shown in the problem description.
I am new to R. I have a data frame like following
>df=data.frame(Id=c("Entry_1","Entry_1","Entry_1","Entry_2","Entry_2","Entry_2","Entry_3","Entry_4","Entry_4","Entry_4","Entry_4"),Start=c(20,20,20,37,37,37,68,10,10,10,10),End=c(50,50,50,78,78,78,200,94,94,94,94),Pos=c(14,34,21,50,18,70,101,35,2,56,67),Hits=c(12,34,17,89,45,87,1,5,6,3,26))
Id Start End Pos Hits
Entry_1 20 50 14 12
Entry_1 20 50 34 34
Entry_1 20 50 21 17
Entry_2 37 78 50 89
Entry_2 37 78 18 45
Entry_2 37 78 70 87
Entry_3 68 200 101 1
Entry_4 10 94 35 5
Entry_4 10 94 2 6
Entry_4 10 94 56 3
Entry_4 10 94 67 26
For each entry I would like to iterate the data.frame in 3 different modes. For an example, for Entry_1 mode_1 =seq(20,50,3)and mode_2=seq(21,50,3) and mode_3=seq(22,50,3). I would like sum all the Values in Column "Hits" whose corresponding values in Column "Pos" that falls in mode_1 or_mode_2 or mode_3 and generate a data.frame like follow:
Id Mode_1 Mode_2 Mode_3
Entry_1 0 17 34
Entry_2 87 89 0
Entry_3 1 0 0
Entry_4 26 8 0
I tried the following code:
mode_1=0
mode_2=0
mode_3=0
mode_1_sum=0
mode_2_sum=0
mode_3_sum=0
for(i in dim(df)[1])
{
if(df$Pos[i] %in% seq(df$Start[i],df$End[i],3))
{
mode_1_sum=mode_1_sum+df$Hits[i]
print(mode_1_sum)
}
mode_1=mode_1_sum+counts
print(mode_1)
ifelse(df$Pos[i] %in% seq(df$Start[i]+1,df$End[i],3))
{
mode_2_sum=mode_2_sum+df$Hits[i]
print(mode_2_sum)
}
mode_2_sum=mode_2_sum+counts
print(mode_2)
ifelse(df$Pos[i] %in% seq(df$Start[i]+2,df$End[i],3))
{
mode_3_sum=mode_3_sum+df$Hits[i]
print(mode_3_sum)
}
mode_3_sum=mode_3_sum+counts
print(mode_3_sum)
}
But the above code only prints 26. Can any one guide me how to generate my desired output, please. I can provide much more details if needed. Thanks in advance.
It's not an elegant solution, but it works.
m <- 3 # Number of modes you want
foo <- ((df$Pos - df$Start)%%m + 1) * (df$Start < df$Pos) * (df$End > df$Pos)
tab <- matrix(0,nrow(df),m)
for(i in 1:m) tab[foo==i,i] <- df$Hits[foo==i]
aggregate(tab,list(df$Id),FUN=sum)
# Group.1 V1 V2 V3
# 1 Entry_1 0 17 34
# 2 Entry_2 87 89 0
# 3 Entry_3 1 0 0
# 4 Entry_4 26 8 0
-- EXPLANATION --
First, we find the indices of df$Pos That are both bigger than df$Start and smaller than df$End. These should return 1 if TRUE and 0 if FALSE. Next, we take the difference between df$Pos and df$Start, we take mod 3 (which will give a vector of 0s, 1s and 2s), and then we add 1 to get the right mode. We multiply these two things together, so that the values that fall within the interval retain the right mode, and the values that fall outside the interval become 0.
Next, we create an empty matrix that will contain the values. Then, we use a for-loop to fill in the matrix. Finally, we aggregate the matrix.
I tried looking for a quicker solution, but the main problem I cannot work around is the varying intervals for each row.
The conversion of probe ids to entrez ids is quite straight forward
i1<-c("246653_at", "246897_at", "251347_at", "252988_at", "255528_at", "256535_at", "257203_at", "257582_at", "258807_at", "261509_at", "265050_at", "265672_at")
select(ath1121501.db, i1, "ENTREZID", "PROBEID")
PROBEID ENTREZID
1 246653_at 833474
2 246897_at 832631
3 251347_at 825272
4 252988_at 829998
5 255528_at 827380
6 256535_at 840223
7 257203_at 821955
8 257582_at 841494
9 258807_at 819558
10 261509_at 843504
11 265050_at 841636
12 265672_at 817757
But Iam unsure how to do it for a long list of lists resulting from a clustering and store it as a list of ENTREZ ids instead of probe ids again:
For instance:
[[1]]
247964_at 248684_at 249126_at 249214_at 250223_at 253620_at 254907_at 259897_at 261256_at 267126_s_at
28 40 44 45 54 95 108 152 171 229
[[2]]
248230_at 250869_at 259765_at 265948_at 266221_at
33 64 151 216 221
[[3]]
245385_at 247282_at 248967_at 250180_at 250881_at 251073_at 53874_at 256093_at 257054_at 260007_at
5 22 42 52 65 67 101 117 125 155
261868_s_at 263136_at 267497_at
181 195 232
It should be something like
[[1]]
"835761","834904","834356","834281","831256","829175","826721","843479","837084","816891","816892"
and similarly for other list of lists.