Only positive coeffcients through lmer in R - r

I am performing mixed effect modeling using lme4. But as you would expect, I can get positive and negative fixed and random effects as coefficients. How do I put bounds on my final coefficients such that I get only positive coefficients?
I am also trying to use stan_lmer for Bayesian modeling.
Example:
lmer equation
If I check coef(fm1), I get the following output:
lmer output
I want to restrict the coefficients to be only positive. Please help.

Related

Multinomial logit with random effects does not converge using mblogit

I would like to estimate a random effects (RE) multinomial logit model.
I have been applying mblogit from the mclogit package. However, once I introduce RE into my model, it fails to converge.
Is there a workaround this?
For instance, I tried to adjust the fitting process of mblogit and increase the maximal number of iterations (maxit), but did not succeed to correctly write the syntax for the control function. Would this be the right approach? And if so, could you advise me how to implement it into my model which so far looks as follows:
meta.mblogit <- mblogit(Migration ~ ClimateHazard4 , weights = logNsquare,
data = meta.df, subset= Panel==1, random = ~1|StudyID,
)
Here, both variables (Migration and ClimateHazard4) are factor variables.
Or is there an alternative approach you could recommend me for an estimation of RE multinomial logit?
Thank you very much!

Does the function multinom() from R's nnet package fit a multinomial logistic regression, or a Poisson regression?

The documentation for the multinom() function from the nnet package in R says that it "[f]its multinomial log-linear models via neural networks" and that "[t]he response should be a factor or a matrix with K columns, which will be interpreted as counts for each of K classes." Even when I go to add a tag for nnet on this question, the description says that it is software for fitting "multinomial log-linear models."
Granting that statistics has wildly inconsistent jargon that is rarely operationally defined by whoever is using it, the documentation for the function even mentions having a count response and so seems to indicate that this function is designed to model count data. Yet virtually every resource I've seen treats it exclusively as if it were fitting a multinomial logistic regression. In short, everyone interprets the results in terms of logged odds relative to the reference (as in logistic regression), not in terms of logged expected count (as in what is typically referred to as a log-linear model).
Can someone clarify what this function is actually doing and what the fitted coefficients actually mean?
nnet::multinom is fitting a multinomial logistic regression as I understand...
If you check the source code of the package, https://github.com/cran/nnet/blob/master/R/multinom.R and https://github.com/cran/nnet/blob/master/R/nnet.R, you will see that the multinom function is indeed using counts (which is a common thing to use as input for a multinomial regression model, see also the MGLM or mclogit package e.g.), and that it is fitting the multinomial regression model using a softmax transform to go from predictions on the additive log-ratio scale to predicted probabilities. The softmax transform is indeed the inverse link scale of a multinomial regression model. The way the multinom model predictions are obtained, cf.predictions from nnet::multinom, is also exactly as you would expect for a multinomial regression model (using an additive log-ratio scale parameterization, i.e. using one outcome category as a baseline).
That is, the coefficients predict the logged odds relative to the reference baseline category (i.e. it is doing a logistic regression), not the logged expected counts (like a log-linear model).
This is shown by the fact that model predictions are calculated as
fit <- nnet::multinom(...)
X <- model.matrix(fit) # covariate matrix / design matrix
betahat <- t(rbind(0, coef(fit))) # model coefficients, with expicit zero row added for reference category & transposed
preds <- mclustAddons::softmax(X %*% betahat)
Furthermore, I verified that the vcov matrix returned by nnet::multinom matches that when I use the formula for the vcov matrix of a multinomial regression model, Faster way to calculate the Hessian / Fisher Information Matrix of a nnet::multinom multinomial regression in R using Rcpp & Kronecker products.
Is it not the case that a multinomial regression model can always be reformulated as a Poisson loglinear model (i.e. as a Poisson GLM) using the Poisson trick (glmnet e.g. uses the Poisson trick to fit multinomial regression models as a Poisson GLM)?

Subject specific prediction from heterogenous linear mixed effect model package (lcmm)

I am fitting a heterogeneous linear mixed effect model which is in the lcmm package in R. Currently, I am only getting the class-specific and weighted subject-specific prediction from the predictY function. But, I want a subject-specific prediction. Is there any way to construct a subject-specific prediction from this package? Any help is appreciated.
I have found the answer. Looks like PredictY gives the mean class-specific predictions and adding them with the multiplication of the random effects from each subject (ranef(model)) and the model design matrix for the random part will provide the subject-specific prediction.

Can I test autocorrelation from the generalized least squares model?

I am trying to use a generalized least square model (gls in R) on my panel data to deal with autocorrelation problem.
I do not want to have any lags for any variables.
I am trying to use Durbin-Watson test (dwtest in R) to check the autocorrelation problem from my generalized least square model (gls).
However, I find that the dwtest is not applicable over gls function while it is applicable to other functions such as lm.
Is there a way to check the autocorrelation problem from my gls model?
Durbin-Watson test is designed to check for presence of autocorrelation in standard least-squares models (such as one fitted by lm). If autocorrelation is detected, one can then capture it explicitly in the model using, for example, generalized least squares (gls in R). My understanding is that Durbin-Watson is not appropriate to then test for "goodness of fit" in the resulting models, as gls residuals may no longer follow the same distribution as residuals from the standard lm model. (Somebody with deeper knowledge of statistics should correct me, if I'm wrong).
With that said, function durbinWatsonTest from the car package will accept arbitrary residuals and return the associated test statistic. You can therefore do something like this:
v <- gls( ... )$residuals
attr(v,"std") <- NULL # get rid of the additional attribute
car::durbinWatsonTest( v )
Note that durbinWatsonTest will compute p-values only for lm models (likely due to the considerations described above), but you can estimate them empirically by permuting your data / residuals.

lmmlasso - how to specify a random intercept, and make a prediction?

I'm new to R and statistical modelling, and am looking to use the lmmlasso library in r to fit a mixed effects model, selecting only the best fixed effects out of ~300 possible variables.
For this model I'd like to include both a fixed intercept, a random effect, and a random intercept. Looking at the manual on CRAN, I've come across the following:
x: matrix of dimension ntot x p including the fixed-effects
covariables. An intercept has to be included in the first column as
(1,...,1).
z: random effects matrix of dimension ntot x q. It has to be a matrix,
even if q=1.
While it's obvious what I need to do for the fixed intercept I'm not quite sure how to include both a random intercept and effect. Is it exactly the same as the fixed matrix, where I include (1...1) in my first column?
In addition to this, I'm looking to validate the resulting model I get with another dataset. For lmmlasso is there a function similar to predict in lme4 that can be used to compute new predictions based on the output I get? Alternatively, is it viable/correct to construct a new model using lmer using the variables with non-zero coefficients returned by lmmlasso, and then use predict on the new model?
Thanks in advance.

Resources