One of the variables in my data frame is a factor denoting whether an amount was gained or spent. Every event has a "gain" value; there may or may not be a corresponding "spend" amount. Here is an image with the observations overplotted:
Adding some random jitter helps visually, however, the "spend" amounts are divorced from their corresponding gain events:
I'd like to see the blue circles "bullseyed" in their gain circles (where the "id" are equal), and jittered as a pair. Here are some sample data (three days) and code:
library(ggplot2)
ccode<-c(Gain="darkseagreen",Spend="darkblue")
ef<-data.frame(
date=as.Date(c("2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-01","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-02","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03","2021-03-03")),
site=c("Castle","Temple","Temple","Temple","Temple","Temple","Palace","Palace","Castle","Castle","Castle","Temple","Temple","Palace","Palace","Castle","Castle","Castle","Castle","Castle","Temple","Temple","Palace","Castle","Temple","Temple","Temple","Temple","Temple","Palace","Palace","Castle","Castle","Castle","Temple","Temple","Palace","Palace","Castle","Castle","Castle","Castle","Castle","Temple","Temple","Palace"),
id=c("C123","T101","T93","T94","T95","T96","P102","P96","C126","C127","C128","T100","T98","P100","P98","C129","C130","C131","C132","C133","T104","T99","P99","C123","T101","T93","T94","T95","T96","P102","P96","C126","C127","C128","T100","T98","P100","P98","C129","C130","C131","C132","C133","T104","T99","P99"),
gainspend=c("Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Gain","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend","Spend"),
amount=c(6,14,34,31,3,10,6,14,2,16,16,14,1,1,15,11,8,7,2,10,15,4,3,NA,NA,4,5,NA,NA,NA,NA,NA,NA,2,NA,1,NA,3,NA,NA,2,NA,NA,2,NA,3))
#▼ 3 day, points centered
ggplot(ef,aes(date,site)) +
geom_point(aes(size=amount,color=gainspend),alpha=0.5) +
scale_color_manual(values=ccode) +
scale_size_continuous(range=c(1,15),breaks=c(5,10,20))
#▼ 3 day, jitted
ggplot(ef,aes(date,site)) +
geom_point(aes(size=amount,color=gainspend),alpha=0.5,position=position_jitter(w=0,h=0.2)) +
scale_color_manual(values=ccode) +
scale_size_continuous(range=c(1,15),breaks=c(5,10,20))
My main idea is the old "add jitter manually" approach. I'm wondering if a nicer approach could be something like plotting little pie charts as points a la package scatterpie.
In this case you could add a random number for the amount of jitter to each ID so points within groups will be moved the same amount. This takes doing work outside of ggplot2.
First, draw the "jitter" to add for each ID. Since a categorical axis is 1 unit wide, I choose numbers between -.3 and .3. I use dplyr for this work and set the seed so you will get the same results.
library(dplyr)
set.seed(16)
ef2 = ef %>%
group_by(id) %>%
mutate(jitter = runif(1, min = -.3, max = .3)) %>%
ungroup()
Then the plot. I use a geom_blank() layer so that the categorical site axis is drawn before I add the jitter. I convert site to be numeric from a factor and add the jitter on; this only works for factors so luckily categorical axes in ggplot2 are based on factors.
Now paired ID's move together.
ggplot(ef2, aes(x = date, y = site)) +
geom_blank() +
geom_point(aes(size = amount, color = gainspend,
y = as.numeric(factor(site)) + jitter),
alpha=0.5) +
scale_color_manual(values = ccode) +
scale_size_continuous(range = c(1, 15), breaks = c(5, 10, 20))
#> Warning: Removed 15 rows containing missing values (geom_point).
Created on 2021-09-23 by the reprex package (v2.0.0)
You can add some jitter by id outside the ggplot() call.
jj <- data.frame(id = unique(ef$id), jtr = runif(nrow(ef), -0.3, 0.3))
ef <- merge(ef, jj, by = 'id')
ef$sitej <- as.numeric(factor(ef$site)) + ef$jtr
But you need to make site integer/numeric to do this. So when it comes to making the plot, you need to manually add axis labels with scale_y_continuous(). (Update: the geom_blank() trick from aosmith above is a better solution!)
ggplot(ef,aes(date,sitej)) +
geom_point(aes(size=amount,color=gainspend),alpha=0.5) +
scale_color_manual(values=ccode) +
scale_size_continuous(range=c(1,15),breaks=c(5,10,20)) +
scale_y_continuous(breaks = 1:3, labels= sort(unique(ef$site)))
This seems to work, but there are still a few gain/spend circles without a partner--perhaps there is a problem with the id variable.
Perhaps someone else has a better approach!
I have to admit that it has been a while since I used ggplot, but this seems a bit silly. Either I am missing something fundamental when trying to make a density plot, or there is a bug in ggplot2 (v3.3.2)
test <- data.frame(Time=rnorm(100),Age=rnorm(100))
ggplot(test,aes(y=Time,x=Age)) +
geom_density(aes(y=Time,x=Age))
produces
ggplot(test,aes(y=Time,x=Age)) +
geom_density(aes(y=Time,x=Age))
Error: geom_density requires the following missing aesthetics: y
how could the 'y' aesthetic be missing??
There are two cases when using geom_density(). It depends which stat layer you're specifying:
The standard case is the stat density which makes the geom_density() function compute its y values based on the frequency distribution of the given x values. In this case you must NOT proved a y aesthetic because those are computed behind the curtain.
Then there is a second case, which is yours, and which you have to specify explicitly by changing the stat to identity: This is needed if, for some reason, you've precalculated values which you want to feed directly into the density function.
Your problem arises, if you're mixing case 1) and 2). But I agree, the error message is not really clear, it could be mentioned to make sure that the used stat is the desired one.
library(ggplot2)
test <- data.frame(time = rnorm(100), age = rnorm(100))
#if you want to use precalculated y values you have to change the used stat to identity:
ggplot(test) +
geom_density(aes(x = age, y = time),
stat = "identity")
# compared to the case with the default value of stat: stat = "density"
ggplot(test) +
geom_density(aes(x = age))
Created on 2020-08-04 by the reprex package (v0.3.0)
If you want to plot the two variables in the graphic you need to "melt" it first.
test <- data.frame(Time=rnorm(100),Age=rnorm(100))
dt <- data.table(test)
dt_melt <- melt.data.table(dt)
ggplot(dt_melt,aes(x=value, fill=variable)) + geom_density(alpha=0.25)
How can I plot the relative proportions of two groups using a fill aesthetic in ggplot2?
I am asking this question here because several other answers on this topic seem incorrect (ex1, ex2, and ex3), but Cross Validated seems to have functionally banned R specific questions (CV meta). ..density.. is conceptually related to, but distinct from proportions (ex4 and ex5). So the correct answer does not seem to involve density.
Example:
set.seed(1200)
test <- data.frame(
test1 = factor(sample(letters[1:2], 100, replace = TRUE,prob=c(.25,.75)),ordered=TRUE,levels=letters[1:2]),
test2 = factor(sample(letters[3:8], 100, replace = TRUE),ordered=TRUE,levels=letters[3:8])
)
ggplot(test, aes(test2)) + geom_bar(aes(y = ..density.., group=test1, fill=test1) ,position="dodge")
#For example, the plotted data shows level a x c as being slightly in excess of .15, but a manual calculation shows a value of .138
counts <- with(test,table(test1,test2))
counts/matrix(rowSums(counts),nrow=2,ncol=6)
The answer that seems to yield an output that is correct resorts to a solution that doesn't use ggplot2 (calculating it outside of ggplot2) or requires that a panel be used rather than a fill aesthetic.
Edit: Digging into stat_bin yields that the function ultimately called is bin, but bin only gets passed the values in the x aes. Without rewriting stat_bin (or making another stat_) the hack that was applied in the above referenced answer can be generalized to the fill aes in the absence of the group aes with the following code for the y aes: y = ..count../sapply(fill, FUN=function(x) sum(count[fill == x])). This just replaces PANEL (the hidden column that is present at the end of StatBin) with fill). Presumably other hidden variables could get the same treatment.
This is an aweful hack, but it seems to do what you want...
ggplot(test, aes(test2)) + geom_bar(aes(y = ..count../rep(c(sum(..count..[1:6]), sum(..count..[7:12])), each=6),
group=test1, fill=test1) ,position="dodge") +
scale_y_continuous(name="proportion")
I am trying to write a code that I wrote with a basic graphics package in R to ggplot.
The graph I obtained using the basic graphics package is as follows:
I was wondering whether this type of graph is possible to create in ggplot2. I think we could create this kind of graph by using panels but I was wondering is it possible to use faceting for this kind of plot. The major difficulty I encountered is that maximum and minimum have common lengths whereas the observed data is not continuous data and the interval is quite different.
Any thoughts on arranging the data for this type of plot would be very helpful. Thank you so much.
Jdbaba,
From your comments, you mentioned that you'd like for the geom_point to have just the . in the legend. This is a feature that is yet to be implemented to be used directly in ggplot2 (if I am right). However, there's a fix/work-around that is given by #Aniko in this post. Its a bit tricky but brilliant! And it works great. Here's a version that I tried out. Hope it is what you expected.
# bind both your data.frames
df <- rbind(tempcal, tempobs)
p <- ggplot(data = df, aes(x = time, y = data, colour = group1,
linetype = group1, shape = group1))
p <- p + geom_line() + geom_point()
p <- p + scale_shape_manual("", values=c(NA, NA, 19))
p <- p + scale_linetype_manual("", values=c(1,1,0))
p <- p + scale_colour_manual("", values=c("#F0E442", "#0072B2", "#D55E00"))
p <- p + facet_wrap(~ id, ncol = 1)
p
The idea is to first create a plot with all necessary attributes set in the aesthetics section, plot what you want and then change settings manually later using scale_._manual. You can unset lines by a 0 in scale_linetype_manual for example. Similarly you can unset points for lines using NA in scale_shape_manual. Here, the first two values are for group1=maximum and minimum and the last is for observed. So, we set NA to the first two for maximum and minimum and set 0 to linetype for observed.
And this is the plot:
Solution found:
Thanks to Arun and Andrie
Just in case somebody needs the solution of this sort of problem.
The code I used was as follows:
library(ggplot2)
tempcal <- read.csv("temp data ggplot.csv",header=T, sep=",")
tempobs <- read.csv("temp data observed ggplot.csv",header=T, sep=",")
p <- ggplot(tempcal,aes(x=time,y=data))+geom_line(aes(x=time,y=data,color=group1))+geom_point(data=tempobs,aes(x=time,y=data,colour=group1))+facet_wrap(~id)
p
The dataset used were https://www.dropbox.com/s/95sdo0n3gvk71o7/temp%20data%20observed%20ggplot.csv
https://www.dropbox.com/s/4opftofvvsueh5c/temp%20data%20ggplot.csv
The plot obtained was as follows:
Jdbaba