Fastest way to hadamard multiply all matrix columns with another matrix - r

Here's what I want to do: I have two matrices A and B of dimensions N x k1 and N x k2. I now want to pointwise multiply each column of the matrix A with B.
Implementation one does this in a for loop.
For speed optimization purposes, I considered to vectorize the entire operation - but it turns out vectorization (as I have implemented it, via kronecker products) did not improve my runtime for larger problems.
Does anyone have a suggestion how to differently implement this operation, having runtime in mind?
The code below starts with a small example, then implements a loop-based and vectorized solution, then benchmarks on a larger problem.
# toy example:
N <- 5
k1 <- 2
k2 <- 3
A <- matrix(rnorm(N*k1), N, k1)
B <- matrix(rnorm(N*k2), N, k2)
colmat_prod <- function(x, y){
k2 <- ncol(y)
k1 <- ncol(x)
res <- array(NA, c(N, k2 , k1))
for(i in 1:k1){
res[, ,i] <- x[,i] * y
}
res
}
colmat_prod_vec <- function(x, y){
k1 <- ncol(x)
res_vec <- c(x) * (rep(1, k1) %x% y)
res_vec
}
colmat_prod(A, B)
colmat_prod_vec(A, B)
# > colmat_prod(A, B)
# , , 1
#
# [,1] [,2] [,3]
# [1,] 1.95468879 0.55206339 0.24713400
# [2,] -0.02678564 -0.03762645 -0.03144102
# [3,] 0.30964437 0.26912771 -0.49451656
# [4,] -1.40719543 0.77245522 -0.47236888
# [5,] -1.71485558 0.98348809 0.16569915
#
# , , 2
#
# [,1] [,2] [,3]
# [1,] 1.60358991 0.45290242 0.20274409
# [2,] -0.21009808 -0.29513001 -0.24661348
# [3,] 0.04069121 0.03536681 -0.06498577
# [4,] -2.89562745 1.58950383 -0.97200734
# [5,] -1.59504293 0.91477425 0.15412217
#
# > colmat_prod_vec(A, B)
# [,1] [,2] [,3]
# [1,] 1.95468879 0.55206339 0.24713400
# [2,] -0.02678564 -0.03762645 -0.03144102
# [3,] 0.30964437 0.26912771 -0.49451656
# [4,] -1.40719543 0.77245522 -0.47236888
# [5,] -1.71485558 0.98348809 0.16569915
# [6,] 1.60358991 0.45290242 0.20274409
# [7,] -0.21009808 -0.29513001 -0.24661348
# [8,] 0.04069121 0.03536681 -0.06498577
# [9,] -2.89562745 1.58950383 -0.97200734
# [10,] -1.59504293 0.91477425 0.15412217
# speed:
N <- 10000
k1 <- 1000
k2 <- 9
A1 <- matrix(rnorm(N*k1), N, k1)
B1 <- matrix(rnorm(N*k2), N, k2)
library(microbenchmark)
microbenchmark(colmat_prod(A1, B1),
colmat_prod_vec(A1, B1),
times = 10)
#Unit: seconds
#expr min lq mean median uq max neval
#colmat_prod(A1, B1) 1.981737 2.179122 2.769812 2.32343 2.680407 4.96276 10
#colmat_prod_vec(A1, B1) 9.779629 9.955576 10.291264 10.21356 10.380702 11.70494 10

You can try apply(A, 2, '*', B) and to come the the same like colmat_prod use array(apply(A, 2, '*', B), c(dim(B), ncol(A))):
identical(array(apply(A, 2, '*', B), c(dim(B), ncol(A))), colmat_prod(A, B))
#[1] TRUE
Another option is to use rep for the columns of A:
array(A[,rep(seq_len(ncol(A)), each=ncol(B))] * as.vector(B), c(dim(B), ncol(A)))
Timings:
library(microbenchmark)
microbenchmark(colmat_prod(A1, B1),
colmat_prod_vec(A1, B1),
array(apply(A1, 2, '*', B1), c(dim(B1), ncol(A1))),
array(A1[,rep(seq_len(ncol(A1)), each=ncol(B1))] * as.vector(B1), c(dim(B1), ncol(A1))),
times = 10)
#Unit: milliseconds
# expr min lq mean median uq max neval cld
# colmat_prod(A1, B1) 831.5437 857.0305 910.5694 878.6842 999.5354 1025.0915 10 c
# colmat_prod_vec(A1, B1) 981.9241 1010.9482 1174.1700 1162.7004 1319.3478 1444.6158 10 d
# array(apply(A1, 2, "*", B1), c(dim(B1), ncol(A1))) 716.1469 725.7862 765.4987 732.2520 789.3843 907.4417 10 b
# array(A1[, rep(seq_len(ncol(A1)), each = ncol(B1))] * as.vector(B1), c(dim(B1), ncol(A1))) 404.8460 406.2848 430.4043 428.2685 458.9400 462.0634 10 a

Related

Operations in a matrix with (i,j) values with no for or while loops

I need to write a function in R that receives as input an integer number n>1, and generates an output matrix P, where P_{i,j} = min (i,j) for(i,j)=1,...,n. This function must not have for nor while loops.
So far I have tried with the following code.
mat <- function(n){
m <- matrix(0,nrow = n,ncol = n)
if(row(m) >= col(m)){
col(m)
}
else{
row(m)
}
}
I know that with the if conditions, row(m) and col(m) I should be capable to look over the matrix, however, I don't know how to set that for that conditions I can have the min of row(m) and col(m) in the (i,j) position. I know I won't achieve the latter with the conditions I have above, but so far is the closest I've been.
An example is the following.
If n=3, then the result should be:
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 2 2
[3,] 1 2 3
Try pmin, row and col
f1 <- function(n = 3) {
mat <- matrix(nrow = n, ncol = n)
pmin(row(mat), col(mat))
}
f1()
# [,1] [,2] [,3]
#[1,] 1 1 1
#[2,] 1 2 2
#[3,] 1 2 3
Or use outer and pmin which is more effiecient
f2 <- function(n = 3) {
idx <- sequence(n)
outer(idx, idx, pmin)
}
benchmark
library(microbenchmark)
n <- 10000
b <- microbenchmark(
f1 = f1(n),
f2 = f2(n),
times = 10
)
library(ggplot2)
autoplot(b)
b
#Unit: seconds
# expr min lq mean median uq max neval cld
# f1 5.554471 5.908210 5.924173 5.950610 5.996274 6.058502 10 b
# f2 1.272793 1.298099 1.354428 1.309208 1.464950 1.495362 10 a

R_Extract the row and column of the element in use when using apply function

How to extract the row and column of the element in use when using apply function? For example, say I want to apply a function for each element of the matrix where row and column number of the selected element are also variables in the function. A simple reproducible example is given below
mymatrix <- matrix(1:12, nrow=3, ncol=4)
I want a function which does the following
apply(mymatrix, c(1,2), function (x) sum(x, row_number, col_number))
where row_number and col_number are the row and column number of the selected element in mymatrix. Note that my function is more complicated than sum, so a robust solution is appreciated.
I'm not entirely sure what you're trying to do but I would use a for loop here.
Pre-allocate the return matrix and this will be very fast
ret <- mymatrix
for (i in 1:nrow(mymatrix))
for (j in 1:ncol(mymatrix))
ret[i, j] <- sum(mymatrix[i, j], i, j)
# [,1] [,2] [,3] [,4]
#[1,] 3 7 11 15
#[2,] 5 9 13 17
#[3,] 7 11 15 19
Benchmark analysis 1
I was curious so I ran a microbenchmark analysis to compare methods; I used a bigger 200x300 matrix.
mymatrix <- matrix(1:600, nrow = 200, ncol = 300)
library(microbenchmark)
res <- microbenchmark(
for_loop = {
ret <- mymatrix
for (i in 1:nrow(mymatrix))
for (j in 1:ncol(mymatrix))
ret[i, j] <- sum(mymatrix[i, j], i, j)
},
expand_grid_mapply = {
newResult<- mymatrix
grid1 <- expand.grid(1:nrow(mymatrix),1:ncol(mymatrix))
newResult[]<-
mapply(function(row_number, col_number){ sum(mymatrix[row_number, col_number], row_number, col_number) },row_number = grid1$Var1, col_number = grid1$Var2 )
},
expand_grid_apply = {
newResult<- mymatrix
grid1 <- expand.grid(1:nrow(mymatrix),1:ncol(mymatrix))
newResult[]<-
apply(grid1, 1, function(x){ sum(mymatrix[x[1], x[2]], x[1], x[2]) })
},
double_sapply = {
sapply(1:ncol(mymatrix), function (x) sapply(1:nrow(mymatrix), function (y) sum(mymatrix[y,x],x,y)))
}
)
res
#Unit: milliseconds
# expr min lq mean median uq max
# for_loop 41.42098 52.72281 56.86675 56.38992 59.1444 82.89455
# expand_grid_mapply 126.98982 161.79123 183.04251 182.80331 196.1476 332.94854
# expand_grid_apply 295.73234 354.11661 375.39308 375.39932 391.6888 562.59317
# double_sapply 91.80607 111.29787 120.66075 120.37219 126.0292 230.85411
library(ggplot2)
autoplot(res)
Benchmark analysis 2 (with expand.grid outside of microbenchmark)
grid1 <- expand.grid(1:nrow(mymatrix),1:ncol(mymatrix))
res <- microbenchmark(
for_loop = {
ret <- mymatrix
for (i in 1:nrow(mymatrix))
for (j in 1:ncol(mymatrix))
ret[i, j] <- sum(mymatrix[i, j], i, j)
},
expand_grid_mapply = {
newResult<- mymatrix
newResult[]<-
mapply(function(row_number, col_number){ sum(mymatrix[row_number, col_number], row_number, col_number) },row_number = grid1$Var1, col_number = grid1$Var2 )
},
expand_grid_apply = {
newResult<- mymatrix
newResult[]<-
apply(grid1, 1, function(x){ sum(mymatrix[x[1], x[2]], x[1], x[2]) })
}
)
res
#Unit: milliseconds
# expr min lq mean median uq max
# for_loop 39.65599 54.52077 60.87034 59.19354 66.64983 95.7890
# expand_grid_mapply 130.33573 167.68201 194.39764 186.82411 209.33490 400.9273
# expand_grid_apply 296.51983 373.41923 405.19549 403.36825 427.41728 597.6937
That's not how apply works: You cannot access the current index (row, col index) from inside [lsvm]?apply-family.
You will have to create the current row and col index before applying. ?expand.grid.
mymatrix <- matrix(1:12, nrow=3, ncol=4)
newResult<- mymatrix
grid1 <- expand.grid(1:nrow(mymatrix),1:ncol(mymatrix))
newResult[]<-
mapply(function(row_number, col_number){ sum(mymatrix[row_number, col_number], row_number, col_number) },row_number = grid1$Var1, col_number = grid1$Var2 )
newResult
# [,1] [,2] [,3] [,4]
#[1,] 3 7 11 15
#[2,] 5 9 13 17
#[3,] 7 11 15 19
If you want to use apply
newResult[]<-
apply(grid1, 1, function(x){ sum(mymatrix[x[1], x[2]], x[1], x[2]) })
This is my thought with outer() function.
The third argument FUN can be any two-argument function.
mymatrix <- matrix(1:12, nrow = 3, ncol = 4)
nr <- nrow(mymatrix)
nc <- ncol(mymatrix)
mymatrix + outer(1:nr, 1:nc, FUN = "+")
[,1] [,2] [,3] [,4]
[1,] 3 7 11 15
[2,] 5 9 13 17
[3,] 7 11 15 19
With #Maurits Evers' benchmark code :
Unit: microseconds
expr min lq mean median uq max
for_loop 19963.203 22427.1630 25308.168 23811.855 25017.031 158341.678
outer 848.247 949.3515 1054.944 1011.457 1059.217 1463.956
In addition, I try to complete your original idea with apply(X, c(1,2), function (x)) :
(It's a little slower than other answers)
mymatrix <- matrix(1:12, nrow = 3, ncol = 4)
n <- 1 # n = index of data
nr <- nrow(mymatrix)
apply(mymatrix, c(1,2), function (x) {
row_number <- (n-1) %% nr + 1 # convert n to row number
col_number <- (n-1) %/% nr + 1 # convert n to column number
res <- sum(x, row_number, col_number)
n <<- n + 1
return(res)
})
[,1] [,2] [,3] [,4]
[1,] 3 7 11 15
[2,] 5 9 13 17
[3,] 7 11 15 19

R performance power function

Anyone has a tip how to speed up the code below? Particularly with avoiding the for-loops?
J <- 10000
I <- 10000
Y <- matrix(0,J,I)
X <- runif(I,0,1)
P <- runif(I,0,1)
Z <- matrix(runif(n = J*I,0,1),J,I)
K <- matrix(runif(n = J*I,0,1),J,I)
for(j in 1:J){
for (i in 1:I){
Y[j,i] <- X[i]^(Z[j,i])*P[i]^(K[j,i])
}
}
Thanks!
I think t(X^t(Z)*P^t(K)) would lead to the same result and much faster. Here is a reproducible example with a 5 X 5 matrix and performance evaluation.
set.seed(543)
### Original Code
J <- 5
I <- 5
Y <- matrix(0,J,I)
X <- runif(I,0,1)
P <- runif(I,0,1)
Z <- matrix(runif(n = J*I,0,1),J,I)
K <- matrix(runif(n = J*I,0,1),J,I)
for(j in 1:J){
for (i in 1:I){
Y[j,i] <- X[i]^(Z[j,i])*P[i]^(K[j,i])
}
}
# View the result
Y
# [,1] [,2] [,3] [,4] [,5]
# [1,] 0.8244760 0.7717289 0.3884273 0.30937614 0.6807137
# [2,] 0.8878758 0.3761184 0.2819624 0.08388850 0.5299624
# [3,] 0.9559749 0.7813653 0.2048310 0.05117558 0.4069641
# [4,] 0.9317235 0.6614524 0.1619824 0.08777542 0.3037913
# [5,] 0.9507279 0.5434549 0.3950076 0.08050582 0.3244810
### A solution without for loop
Y2 <- t(X^t(Z)*P^t(K))
# View the result
Y2
# [,1] [,2] [,3] [,4] [,5]
# [1,] 0.8244760 0.7717289 0.3884273 0.30937614 0.6807137
# [2,] 0.8878758 0.3761184 0.2819624 0.08388850 0.5299624
# [3,] 0.9559749 0.7813653 0.2048310 0.05117558 0.4069641
# [4,] 0.9317235 0.6614524 0.1619824 0.08777542 0.3037913
# [5,] 0.9507279 0.5434549 0.3950076 0.08050582 0.3244810
identical(Y, Y2)
# [1] TRUE
### Performance evaluation
library(microbenchmark)
perf <- microbenchmark(
m1 = { Y <- matrix(0,J,I)
for(j in 1:J){
for (i in 1:I){
Y[j,i] <- X[i]^(Z[j,i])*P[i]^(K[j,i])
}
}},
m2 = {Y2 <- t(X^t(Z)*P^t(K))},
times = 100L
)
# View the result
perf
# Unit: microseconds
# expr min lq mean median uq max neval cld
# m1 3649.287 3858.250 4107.31032 3932.017 4112.965 6240.644 100 b
# m2 13.365 14.907 21.66753 15.422 26.731 60.658 100 a

R_Finding the closest match from number of vectors

I have the following vectors
> X <- c(1,1,3,4)
> a <- c(1,1,2,2)
> b <- c(2,1,4,3)
> c <- c(2,1,4,6)
I want to compare each element of X with corresponding elements of a,b and c and finally I need a class assigned to each row of X. for eg.
The first element of X is 1 and it has a match in corresponding element vector a, then I need to assign a class as '1-1' (no matter from which vector it got the match)
The second element of X is 1 and it also has match (in fact 3) so, again the class is '1-1'
The third element of X is 3 and it doesn't have a match then I should look for next integer value, which is 4 and there is 4 (in b and c). So the class should be '3-4'
The fourth element of X is 4 and it doesn't have a match. Also there is no 5 (next integer) then it should look for the previous integer which is 3 and there is 3. So the class should be '4-3'
Actually I have thousand of rows for each vector and I have to do this for each row. Any suggestion to do it in a less complicated way. I would prefer to use base functions of R.
Based on rbatt's comment and answer I realized my original answer was quite lacking. Here's a redo...
match_nearest <- function( x, table )
{
dist <- x - table
tgt <- which( dist < 0, arr.ind=TRUE, useNames=F )
dist[tgt] <- abs( dist[tgt] + .5 )
table[ cbind( seq_along(x), max.col( -dist, ties.method="first" ) ) ]
}
X <- c(1,1,3,4)
a <- c(1,1,2,2)
b <- c(2,1,4,3)
c <- c(2,1,4,6)
paste(X, match_nearest(X, cbind(a,b,c) ), sep="-")
## [1] "1-1" "1-1" "3-4" "4-3"
Compared to the original answer and rbatt's we find neither was correct!
set.seed(1)
X <- rbinom(n=1E4, size=10, prob=0.5)
a <- rbinom(n=1E4, size=10, prob=0.5)
b <- rbinom(n=1E4, size=10, prob=0.5)
c <- rbinom(n=1E4, size=10, prob=0.5)
T <- current_solution(X,a,b,c)
R <- rbatt_solution(X,a,b,c)
all.equal( T, R )
## [1] "195 string mismatches"
# Look at mismatched rows...
mismatch <- head( which( T != R ) )
cbind(X,a,b,c)[mismatch,]
## X a b c
## [1,] 4 6 3 3
## [2,] 5 7 4 7
## [3,] 5 8 3 9
## [4,] 5 7 7 4
## [5,] 4 6 3 7
## [6,] 5 7 4 2
T[mismatch]
## [1] "4-3" "5-4" "5-3" "5-4" "4-3" "5-4"
R[mismatch]
## [1] "4-6" "5-7" "5-8" "5-7" "4-6" "5-7"
and needlessly slow...
library(microbenchmark)
bm <- microbenchmark( current_solution(X,a,b,c),
previous_solution(X,a,b,c),
rbatt_solution(X,a,b,c) )
print(bm, order="median")
## Unit: milliseconds
## expr min lq median uq max neval
## current_solution(X, a, b, c) 7.088 7.298 7.996 8.268 38.25 100
## rbatt_solution(X, a, b, c) 33.920 38.236 46.524 53.441 85.50 100
## previous_solution(X, a, b, c) 83.082 93.869 101.997 115.961 135.98 100
Looks like the current_solution is getting it right; but without an expected output ...
Here's the functions...
current_solution <- function(X,a,b,c) {
paste(X, match_nearest(X, cbind(a,b,c) ), sep="-")
}
# DO NOT USE... it is wrong!
previous_solution <- function(X,a,b,c) {
dat <- rbind(X,a,b,c)
v <- apply(dat,2, function(v) {
v2 <- v[1] - v
v2[v2<0] <- abs( v2[v2<0]) - 1
v[ which.min( v2[-1] ) + 1 ]
})
paste("X", v, sep="-")
}
# DO NOT USE... it is wrong!
rbatt_solution <- function(X,a,b,c) {
mat <- cbind(X,a,b,c)
diff.signed <- mat[,"X"]-mat[,c("a","b","c")]
diff.break <- abs(diff.signed) + sign(diff.signed)*0.5
min.ind <- apply(diff.break, 1, which.min)
ind.array <- matrix(c(1:nrow(mat),min.ind), ncol=2)
match.value <- mat[,c("a","b","c")][ind.array]
ref.class <- paste(X, match.value, sep="-")
ref.class
}
This solution should provide the output you want. Also, it is ~ 3x faster than Thell's solution, because the differences are vectorized and are not calculated row-wise with apply.
I compare times for the two approaches below. Note that if you want the "class" as another column in a data.frame, just uncomment the last line of my function. I commented it out to make the calculation times between the two answers more comparable (creating a data.frame is quite slow).
# Example data from Thell, plus 1 more
X1 <- c(1,1,3,4,7,1, 5)
a1 <- c(1,1,2,2,2,2, 9)
b1 <- c(2,1,4,3,3,3, 3)
c1 <- c(2,1,4,6,6,6, 7)
# Random example data, much larger
# X1 <- rbinom(n=1E4, size=10, prob=0.5)
# a1 <- rbinom(n=1E4, size=10, prob=0.5)
# b1 <- rbinom(n=1E4, size=10, prob=0.5)
# c1 <- rbinom(n=1E4, size=10, prob=0.5)
My answer:
rbTest <- function(){
mat <- cbind(X1,a1,b1,c1)
diff.signed <- mat[,"X1"]-mat[,c("a1","b1","c1")] # differences (with sign)
diff.break <- abs(diff.signed) + sign(diff.signed)*0.5 # penalize for differences that are negative by adding 0.5 to them (break ties by preferring higher integer)
min.ind <- apply(diff.break, 1, which.min) # index of smallest difference (prefer larger integers when there is a tie)
ind.array <- matrix(c(1:nrow(mat),min.ind), ncol=2) # array index format
match.value <- mat[,c("a1","b1","c1")][ind.array] # value of the smallest difference (value of the match)
ref.class <- paste(X1, match.value, sep="-") # the 'class' in the format 'ref-match'
ref.class
# data.frame(class=ref.class, mat)
}
Thell answer:
thTest <- function(){
dat <- rbind(X1,a1,b1,c1)
apply(dat,2, function(v) {
# Get distance
v2 <- v[1] - v
# Prefer values >= v[1]
v2[v2<0] <- abs( v2[v2<0]) - 1
# Obtain and return nearest v excluding v[1]
v[ which.min( v2[-1] ) + 1 ]
})
}
Benchmark on large matrix (10,000 rows)
# > microbenchmark(rbTest(), thTest())
# Unit: milliseconds
# expr min lq median uq max neval
# rbTest() 47.95451 52.01729 59.36161 71.94076 103.1314 100
# thTest() 167.49798 180.69627 195.02828 204.19916 315.0610 100
Benchmark on small matrix (7 rows)
# > microbenchmark(rbTest(), thTest())
# Unit: microseconds
# expr min lq median uq max neval
# rbTest() 108.299 112.3550 115.4225 119.4630 146.722 100
# thTest() 147.727 152.2015 155.9005 159.3115 235.898 100
Example output (small matrix):
# > rbTest()
# [1] "1-1" "1-1" "3-4" "4-3" "7-6" "1-2" "5-7" "6-1"
# > thTest()
# [1] 1 1 4 3 6 2 7

The diag() function in R

Is there a way to use the diag() function in a Matrix without using the built-in function or iteration?
M<-matrix(1:9, ncol=3) # make a matrix
q5b<-function(M){ #function
}
I know that M[1,1], M[2,2], and M[3,3] will give me the same output as diag(M). However, I can't think of a way to do this without a for loop.
My thought process was I should have a condition where row index == column index in the Matrix then print that value. I appreciate any suggestions.
You can use the functions row and col to find the indices where the column number is identical to the row number:
row(M) == col(M)
# [,1] [,2] [,3]
# [1,] TRUE FALSE FALSE
# [2,] FALSE TRUE FALSE
# [3,] FALSE FALSE TRUE
M[row(M) == col(M)]
# [1] 1 5 9
Just subset based on another matrix:
> diag(M)
[1] 1 5 9
> M[matrix(rep(sequence(ncol(M)), 2), ncol = 2)]
[1] 1 5 9
The above would run into a problem in a non-square matrix, so we modify it as below.
As your function, one answer for question 5b could be:
q5b <- function(M) {
A <- sequence(ncol(M))[sequence(min(nrow(M), ncol(M)))]
M[cbind(A, A)]
}
Update: Benchmarks are always fun
library(microbenchmark)
fun1 <- function(M) diag(M)
fun2 <- function(M) M[row(M) == col(M)]
fun3 <- function(M) {
A <- sequence(ncol(M))[sequence(min(nrow(M), ncol(M)))]
M[cbind(A, A)]
}
set.seed(1)
M <- matrix(rnorm(1000*1000), ncol = 1000)
microbenchmark(fun1(M), fun2(M), fun3(M), times = 100)
# Unit: microseconds
# expr min lq median uq max neval
# fun1(M) 4654.825 4747.408 4822.8865 4912.690 5877.866 100
# fun2(M) 53270.266 54813.606 55059.0695 55749.062 200384.531 100
# fun3(M) 66.284 82.321 118.8835 129.361 191.155 100

Resources