Automatically writing scatterplots in ggplot2 to a folder - r

I have a large number of variables and would like to create scatterplots comparing all variables to a single variable. I have been able to do this in base R using lapply, but I cannot complete the same task in ggplot2 using lapply.
Below is an example dataset.
df <- data.frame("ID" = 1:16)
df$A <- c(1,2,3,4,5,6,7,8,9,10,11,12,12,14,15,16)
df$B <- c(5,6,7,8,9,10,13,15,14,15,16,17,18,18,19,20)
df$C <- c(11,12,14,16,10,12,14,16,10,12,14,16,10,12,14,16)
I define the variables I would like to generate scatterplots with, using the code below:
df_col_names <- df %>% select(A:C) %>% colnames(.)
Below is how I have been able to successfully complete the task of plotting all variables against variable A, using lapply in base R:
lapply(df_col_names, function(x) {
tiff(filename=sprintf("C:\\Documents\\%s.tiff", x),
width = 1000, height = 1000, res=200)
plot(df$A, df[[x]],
pch=19,
cex = 1.5,
ylab = x,
ylim = c(0, 20),
xlim = c(0, 20))
dev.off()
})
Below is my attempt at completing the task in ggplot2 without any success. It generates the tiff images, although they are empty.
lapply(df_col_names, function(x) {
tiff(filename=sprintf("C:\\Documents\\%s.tiff", x),
width = 1000, height = 1000, res=200)
ggplot(df) +
geom_point(data = df,
aes(x = A, y = df_col_names[[x]], size = 3)) +
geom_smooth(aes(x = A, y = df_col_names[[x]], size = 0), method = "lm", size=0.5) +
coord_fixed(ratio = 1, xlim = c(0, 20), ylim = c(0, 20)) +
guides(size = FALSE, color = FALSE) +
theme_bw(base_size = 14)
dev.off()
})

It works for me with ggsave. Also note that you are passing string column names to ggplot so use .data to refer to actual column values.
library(ggplot2)
lapply(df_col_names, function(x) {
ggplot(df) +
geom_point( aes(x = A, y = .data[[x]], size = 3)) +
geom_smooth(aes(x = A, y = .data[[x]], size = 0), method = "lm", size=0.5) +
coord_fixed(ratio = 1, xlim = c(0, 20), ylim = c(0, 20)) +
guides(size = FALSE, color = FALSE) +
theme_bw(base_size = 14) -> plt
ggsave(sprintf("%s.tiff", x), plt)
})

Related

How to write point values to a lineplot in R?

I have a dataframe of single column with multiple values. I was using basic rplot function like plot() and points(). I successfully plotted the lineplot but I was unable to write point values from the dataframe onto the plot field. Is there anyway to add data values onto the plot?
Below is the following code for test
> x = data.frame(A = rnorm(10))
> plot(x$A, type = "o", pch = 20)**
Sorry, I made an edit to make my question clearer.
Here below is the example plot for 10 random numbers
Plot lines, then add text:
#data
set.seed(1); x = data.frame(A = rnorm(10))
#base plot
plot(x$A, type = "o", pch = 20, ylim = range(x$A * 1.3))
text(x = seq_along(x$A), y = x$A + 0.3, labels = round(x$A, 2), srt = 90)
Or using ggplot with ggrepel for pretty labels:
#ggplot
library(ggplot2)
library(ggrepel) # pretty labels, avoid overlap:
ggplot(cbind(x = seq_along(x$A), x),
aes(x = x, y = A, label = round(A, 2))) +
geom_line() +
geom_point() +
geom_label_repel()
#geom_text_repel()
Probably this is more than what you are asking, but you can add labels to the values you have in your line plot using ggplot:
library(ggplot2)
x = data.frame(A = rnorm(10),
pos = runif(10, 0.1, 0.7))
ggplot(x) +
geom_point(aes(x = A),
y = 0) +
geom_line(aes(x = A),
y = 0) +
geom_segment(aes(x = A,
xend = A,
y = 0,
yend = pos),
linetype = 2) +
geom_label(aes(x = A,
y = pos,
label = round(A, 2)),
size = 3) +
scale_y_continuous(name = "",
limits = c(0, 0.8)) +
guides(y = "none") +
theme_bw()
You could make a base R "type b" equivalent.
The OP hasn't specified that every y value should be set to zero.
library(ggh4x)
#> Loading required package: ggplot2
set.seed(1)
x = data.frame(A = rnorm(10))
ggplot(x, aes(1:10, A)) +
geom_pointpath(shape = NA) +
geom_text(aes(label = round(A,2))) +
labs(x= "Index")
Created on 2022-05-27 by the reprex package (v2.0.1)

Create additional independent legends in ggplot2

I have been struggling with this for hours now. I have the following script:
library(ggplot2)
sims = replicate(1000, sample(c(0,0,0,0,1,1,1,2,2,2), size=3, replace=FALSE))
df = data.frame(x=colSums(sims == 0),
y=colSums(sims == 1))
df$count <- 1
total_counts = aggregate(count ~ ., df, FUN = sum)
min_count = min(total_counts$count)
max_count = max(total_counts$count)
p = (ggplot(df, aes(x=x, y=y))
+ geom_count(aes(color=..n.., size=..n..), alpha=0.8)
+ guides(color = 'legend', size=FALSE)
+ labs(color='Count')
+ scale_colour_gradient(limits = c(min_count, max_count),
breaks = round(seq(min_count, max_count, length.out=5)),
labels = round(seq(min_count, max_count, length.out=5)))
+ scale_size_continuous(range = c(3, 7.5))
)
So far so good. The problem is that I want to add two additional sets of points:
df2 = data.frame(x=c(0, 1, 2, 3),
y=c(1.5253165, 1.0291262, 0.4529617, 0))
df3 = data.frame(x=c(0, 1, 2, 3),
y=c(1.5, 1, 0.5, 0))
To get something like this:
p2 = (p
+ geom_point(data=df2, aes(x=x, y=y), alpha=0.4, color="red", size = 2.5)
+ geom_point(data=df3, aes(x=x, y=y), alpha=0.4, color="green", size = 2.5)
)
The problem is that I am not being capable of adding these new points to the legend. I would like the legend to be in a different "section". Namely, to have an empty string title (to differentiate these points from "Count" title), and to have strings instead of numbers in their labels ("Simulated means" and "Theoretical means", for example).
Is there any way to achieve this?
A trick I learned from #tjebo is that you can use the ggnewscale package to spawn additional legends. At what point in plot construction you call the new scale is important, so you first want to make a geom/stat layer and add the desired scale. Once these are declared, you can use new_scale_colour() and all subsequent geom/stat layers will use a new colour scale.
library(ggplot2)
#> Warning: package 'ggplot2' was built under R version 4.0.5
library(ggnewscale)
#> Warning: package 'ggnewscale' was built under R version 4.0.3
sims = replicate(1000, sample(c(0,0,0,0,1,1,1,2,2,2), size=3, replace=FALSE))
df = data.frame(x=colSums(sims == 0),
y=colSums(sims == 1))
df$count <- 1
total_counts = aggregate(count ~ ., df, FUN = sum)
min_count = min(total_counts$count)
max_count = max(total_counts$count)
df2 = data.frame(x=c(0, 1, 2, 3),
y=c(1.5253165, 1.0291262, 0.4529617, 0))
df3 = data.frame(x=c(0, 1, 2, 3),
y=c(1.5, 1, 0.5, 0))
ggplot(df, aes(x, y)) +
geom_count(aes(colour = after_stat(n), size = after_stat(n)),
alpha = 0.5) +
scale_colour_gradient(
limits = c(min_count, max_count),
breaks = round(seq(min_count, max_count, length.out = 5)),
labels = round(seq(min_count, max_count, length.out = 5)),
guide = "legend"
) +
new_scale_colour() +
geom_point(aes(colour = "Simulated means"),
data = df2, alpha = 0.4) +
geom_point(aes(colour = "Theoretical means"),
data = df3, alpha = 0.4) +
scale_colour_discrete(
name = ""
) +
scale_size_continuous(range = c(3, 7.5), guide = "none")
Created on 2021-04-22 by the reprex package (v1.0.0)
(P.S. sorry for reformatting your code, it just read more easily for myself this way)

ggforce facet_zoom error with ggplot2 on R

I have a data.frame in R 4.0.2 with a continuous variable in one column and two possible values of a categorical variable (variable 'type': known or novel) in another, which I use to color them differently (using a palette from ggsci 2.9 package). I represent an histogram (stat_bin) with ggplot2 3.3.2 and I want to use the facet_zoom function of ggforce 0.3.2 to zoom only the data belonging to one of the 'types' (using the option zoom.data, as it is done in the volcano example on http://cran.univ-paris1.fr/web/packages/ggforce/vignettes/Visual_Guide.html#contextual-zoom), however I get this error:
Error: Aesthetics must be either length 1 or the same as the data (2000): x
Reproducible example:
library(ggplot2)
library(ggsci)
library(ggforce)
testdata <- as.data.frame(sort(rnorm(1000)))
testdata$type <- "known"
testdata[501:1000,2] <- "novel"
# Working code
ggplot(testdata) +
stat_bin(aes(x=testdata[,1], fill = type), binwidth = 1, color="white") +
scale_fill_npg() + theme_light() +
facet_zoom(xlim = c(0, 4), ylim = c(0, 300), horizontal = TRUE, zoom.size = 0.3)
# Desired code
ggplot(testdata) +
stat_bin(aes(x=testdata[,1], fill = type), data = cbind(testdata, zoom = FALSE), binwidth = 1, color="white") +
stat_bin(aes(x=testdata[testdata$type == "novel",1]), data = cbind(testdata, zoom = TRUE), binwidth = 0.5) +
scale_fill_npg() + theme_light() +
facet_zoom(xlim = c(0, 4), ylim = c(0, 300), horizontal = TRUE, zoom.size = 0.3, zoom.data = zoom)
Thanks!
The issue is that you pass the whole dataset as data in the second stat_bin. Simply pass the subsetted df instead of trying to subset in aes():
BTW: I also renamed the first variable in your data as x.
library(ggplot2)
library(ggsci)
library(ggforce)
set.seed(42)
testdata <- data.frame(x = sort(rnorm(1000)))
testdata$type <- "known"
testdata[501:1000,2] <- "novel"
# Desired code
ggplot(testdata) +
stat_bin(aes(x = x, fill = type), data = cbind(testdata, zoom = FALSE), binwidth = 1, color="white") +
stat_bin(aes(x = x), data = cbind(testdata[testdata$type == "novel", ], zoom = TRUE), binwidth = 0.5) +
scale_fill_npg() + theme_light() +
facet_zoom(xlim = c(0, 4), ylim = c(0, 300), horizontal = TRUE, zoom.size = 0.3, zoom.data = zoom)
To only show the type == "novel" data in the zoomed plot, try this:
library(tidyverse)
library(ggsci)
library(ggforce)
testdata <- data.frame(values = sort(rnorm(1000)))
testdata$type <- "known"
testdata[501:1000,2] <- "novel"
# Desired code
ggplot(testdata) +
stat_bin(aes(x = values, fill = type),
binwidth = 1, color="white") +
scale_fill_npg() + theme_light() +
facet_zoom(zoom.data = ifelse(type == "novel", NA, FALSE),
xlim = c(0, 4), ylim = c(0, 300),
horizontal = TRUE)

Produce an inset in each facet of an R ggplot while preserving colours of the original facet content

I would like to produce a graphic combining four facets of a graph with insets in each facet showing a detail of the respective plot. This is one of the things I tried:
#create data frame
n_replicates <- c(rep(1:10,15),rep(seq(10,100,10),15),rep(seq(100,1000,100),15),rep(seq(1000,10000,1000),15))
sim_years <- rep(sort(rep((1:15),10)),4)
sd_data <- rep (NA,600)
for (i in 1:600) {
sd_data[i]<-rnorm(1,mean=exp(0.1 * sim_years[i]), sd= 1/n_replicates[i])
}
max_rep <- sort(rep(c(10,100,1000,10000),150))
data_frame <- cbind.data.frame(n_replicates,sim_years,sd_data,max_rep)
#do first basic plot
library(ggplot2)
plot1<-ggplot(data=data_frame, aes(x=sim_years,y=sd_data,group =n_replicates, col=n_replicates)) +
geom_line() + theme_bw() +
labs(title ="", x = "year", y = "sd")
plot1
#make four facets
my_breaks = c(2, 10, 100, 1000, 10000)
facet_names <- c(
`10` = "2, 3, ..., 10 replicates",
`100` = "10, 20, ..., 100 replicates",
`1000` = "100, 200, ..., 1000 replicates",
`10000` = "1000, 2000, ..., 10000 replicates"
)
plot2 <- plot1 +
facet_wrap( ~ max_rep, ncol=2, labeller = as_labeller(facet_names)) +
scale_colour_gradientn(name = "number of replicates", trans = "log",
breaks = my_breaks, labels = my_breaks, colours = rainbow(20))
plot2
#extract inlays (this is where it goes wrong I think)
library(ggpmisc)
library(tibble)
library(dplyr)
inset <- tibble(x = 0.01, y = 10.01,
plot = list(plot2 +
facet_wrap( ~ max_rep, ncol=2, labeller = as_labeller(facet_names)) +
coord_cartesian(xlim = c(13, 15),
ylim = c(3, 5)) +
labs(x = NULL, y = NULL, color = NULL) +
scale_colour_gradient(guide = FALSE) +
theme_bw(10)))
plot3 <- plot2 +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = inset, aes(npcx = x, npcy = y, label = plot)) +
annotate(geom = "rect",
xmin = 13, xmax = 15, ymin = 3, ymax = 5,
linetype = "dotted", fill = NA, colour = "black")
plot3
That leads to the following graphic:
As you can see, the colours in the insets are wrong, and all four of them appear in each of the facets even though I only want the corresponding inset of course. I read through a lot of questions here (to even get me this far) and also some examples in the ggpmisc user guide but unfortunately I am still a bit lost on how to achieve what I want. Except maybe to do it by hand extracting four insets and then combining them with plot2. But I hope there will be a better way to do this. Thank you for your help!
Edit: better graphic now thanks to this answer, but problem remains partially unsolved:
The following code does good insets, but unfortunately the colours are not preserved. As in the above version each inset does its own rainbow colours anew instead of inheriting the partial rainbow scale from the facet it belongs to. Does anyone know why and how I could change this? In comments I put another (bad) attempt at solving this, it preserves the colors but has the problem of putting all four insets in each facet.
library(ggpmisc)
library(tibble)
library(dplyr)
# #extract inlays: good colours, but produces four insets.
# fourinsets <- tibble(#x = 0.01, y = 10.01,
# x = c(rep(0.01, 4)),
# y = c(rep(10.01, 4)),
# plot = list(plot2 +
# facet_wrap( ~ max_rep, ncol=2) +
# coord_cartesian(xlim = c(13, 15),
# ylim = c(3, 5)) +
# labs(x = NULL, y = NULL, color = NULL) +
# scale_colour_gradientn(name = "number of replicates", trans = "log", guide = FALSE,
# colours = rainbow(20)) +
# theme(
# strip.background = element_blank(),
# strip.text.x = element_blank()
# )
# ))
# fourinsets$plot
library(purrr)
pp <- map(unique(data_frame$max_rep), function(x) {
plot2$data <- plot2$data %>% filter(max_rep == x)
plot2 +
coord_cartesian(xlim = c(12, 14),
ylim = c(3, 4)) +
labs(x = NULL, y = NULL) +
theme(
strip.background = element_blank(),
strip.text.x = element_blank(),
legend.position = "none",
axis.text=element_blank(),
axis.ticks=element_blank()
)
})
#pp[[2]]
inset_new <- tibble(x = c(rep(0.01, 4)),
y = c(rep(10.01, 4)),
plot = pp,
max_rep = unique(data_frame$max_rep))
final_plot <- plot2 +
geom_plot_npc(data = inset_new, aes(npcx = x, npcy = y, label = plot, vp.width = 0.3, vp.height =0.6)) +
annotate(geom = "rect",
xmin = 12, xmax = 14, ymin = 3, ymax = 4,
linetype = "dotted", fill = NA, colour = "black")
#final_plot
final_plot then looks like this:
I hope this clarifies the problem a bit. Any ideas are very welcome :)
Modifying off #user63230's excellent answer:
pp <- map(unique(data_frame$max_rep), function(x) {
plot2 +
aes(alpha = ifelse(max_rep == x, 1, 0)) +
coord_cartesian(xlim = c(12, 14),
ylim = c(3, 4)) +
labs(x = NULL, y = NULL) +
scale_alpha_identity() +
facet_null() +
theme(
strip.background = element_blank(),
strip.text.x = element_blank(),
legend.position = "none",
axis.text=element_blank(),
axis.ticks=element_blank()
)
})
Explanation:
Instead of filtering the data passed into plot2 (which affects the mapping of colours), we impose a new aesthetic alpha, where lines belonging to the other replicate numbers are assigned 0 for transparency;
Use scale_alpha_identity() to tell ggplot that the alpha mapping is to be used as-is: i.e. 1 for 100%, 0 for 0%.
Add facet_null() to override plot2's existing facet_wrap, which removes the facet for the inset.
Everything else is unchanged from the code in the question.
I think this will get you started although its tricky to get the size of the inset plot right (when you include a legend).
#set up data
library(ggpmisc)
library(tibble)
library(dplyr)
library(ggplot2)
# create data frame
n_replicates <- c(rep(1:10, 15), rep(seq(10, 100, 10), 15), rep(seq(100,
1000, 100), 15), rep(seq(1000, 10000, 1000), 15))
sim_years <- rep(sort(rep((1:15), 10)), 4)
sd_data <- rep(NA, 600)
for (i in 1:600) {
sd_data[i] <- rnorm(1, mean = exp(0.1 * sim_years[i]), sd = 1/n_replicates[i])
}
max_rep <- sort(rep(c(10, 100, 1000, 10000), 150))
data_frame <- cbind.data.frame(n_replicates, sim_years, sd_data, max_rep)
# make four facets
my_breaks = c(2, 10, 100, 1000, 10000)
facet_names <- c(`10` = "2, 3, ..., 10 replicates", `100` = "10, 20, ..., 100 replicates",
`1000` = "100, 200, ..., 1000 replicates", `10000` = "1000, 2000, ..., 10000 replicates")
Get overall plot:
# overall facet plot
overall_plot <- ggplot(data = data_frame, aes(x = sim_years, y = sd_data, group = n_replicates, col = n_replicates)) +
geom_line() +
theme_bw() +
labs(title = "", x = "year", y = "sd") +
facet_wrap(~max_rep, ncol = 2, labeller = as_labeller(facet_names)) +
scale_colour_gradientn(name = "number of replicates", trans = "log", breaks = my_breaks, labels = my_breaks, colours = rainbow(20))
#plot
overall_plot
which gives:
Then from the overall plot you want to extract each plot, see here. We can map over the list to extract one at a time:
pp <- map(unique(data_frame$max_rep), function(x) {
overall_plot$data <- overall_plot$data %>% filter(max_rep == x)
overall_plot + # coord_cartesian(xlim = c(13, 15), ylim = c(3, 5)) +
labs(x = NULL, y = NULL) +
theme_bw(10) +
theme(legend.position = "none")
})
If we look at one of these (I've removed the legend) e.g.
pp[[1]]
#pp[[2]]
#pp[[3]]
#pp[[4]]
Gives:
Then we want to add these inset plots into a dataframe so that each plot has its own row:
inset <- tibble(x = c(rep(0.01, 4)),
y = c(rep(10.01, 4)),
plot = pp,
max_rep = unique(data_frame$max_rep))
Then merge this into the overall plot:
overall_plot +
expand_limits(x = 0, y = 0) +
geom_plot_npc(data = inset, aes(npcx = x, npcy = y, label = plot, vp.width = 0.8, vp.height = 0.8))
Gives:
Here is a solution based on Z. Lin's answer, but using ggforce::facet_wrap_paginate() to do the filtering and keeping colourscales consistent.
First, we can make the 'root' plot containing all the data with no facetting.
library(ggpmisc)
library(tibble)
library(dplyr)
n_replicates <- c(rep(1:10,15),rep(seq(10,100,10),15),rep(seq(100,1000,100),15),rep(seq(1000,10000,1000),15))
sim_years <- rep(sort(rep((1:15),10)),4)
sd_data <- rep (NA,600)
for (i in 1:600) {
sd_data[i]<-rnorm(1,mean=exp(0.1 * sim_years[i]), sd= 1/n_replicates[i])
}
max_rep <- sort(rep(c(10,100,1000,10000),150))
data_frame <- cbind.data.frame(n_replicates,sim_years,sd_data,max_rep)
my_breaks = c(2, 10, 100, 1000, 10000)
facet_names <- c(
`10` = "2, 3, ..., 10 replicates",
`100` = "10, 20, ..., 100 replicates",
`1000` = "100, 200, ..., 1000 replicates",
`10000` = "1000, 2000, ..., 10000 replicates"
)
base <- ggplot(data=data_frame,
aes(x=sim_years,y=sd_data,group =n_replicates, col=n_replicates)) +
geom_line() +
theme_bw() +
scale_colour_gradientn(
name = "number of replicates",
trans = "log10", breaks = my_breaks,
labels = my_breaks, colours = rainbow(20)
) +
labs(title ="", x = "year", y = "sd")
Next, the main plot will be just the root plot with facet_wrap().
main <- base + facet_wrap(~ max_rep, ncol = 2, labeller = as_labeller(facet_names))
Then the new part is to use facet_wrap_paginate with nrow = 1 and ncol = 1 for every max_rep, which we'll use as insets. The nice thing is that this does the filtering and it keeps colour scales consistent with the root plot.
nmax_rep <- length(unique(data_frame$max_rep))
insets <- lapply(seq_len(nmax_rep), function(i) {
base + ggforce::facet_wrap_paginate(~ max_rep, nrow = 1, ncol = 1, page = i) +
coord_cartesian(xlim = c(12, 14), ylim = c(3, 4)) +
guides(colour = "none", x = "none", y = "none") +
theme(strip.background = element_blank(),
strip.text = element_blank(),
axis.title = element_blank(),
plot.background = element_blank())
})
insets <- tibble(x = rep(0.01, nmax_rep),
y = rep(10.01, nmax_rep),
plot = insets,
max_rep = unique(data_frame$max_rep))
main +
geom_plot_npc(data = insets,
aes(npcx = x, npcy = y, label = plot,
vp.width = 0.3, vp.height = 0.6)) +
annotate(geom = "rect",
xmin = 12, xmax = 14, ymin = 3, ymax = 4,
linetype = "dotted", fill = NA, colour = "black")
Created on 2020-12-15 by the reprex package (v0.3.0)

Making a specific quantile plot in R

I am very intrigued by the following visulization (Decile term)
And I wonder how it would be possible to do it in R.
There is of course histograms and density plots, but they do not make such a nice visualization. Especially, I would like to know if it possible to do it with ggplot/tidyverse.
edit in response to the comment
library(dplyr)
library(ggplot2)
someData <- data_frame(x = rnorm(1000))
ggplot(someData, aes(x = x)) +
geom_histogram()
this produces a histogram (see http://www.r-fiddle.org/#/fiddle?id=LQXazwMY&version=1)
But how I can get the coloful bars? How to implement the small rectangles? (The arrows are less relevant).
You have to define a number of breaks, and use approximate deciles that match those histogram breaks. Otherwise, two deciles will end up in one bar.
d <- data_frame(x = rnorm(1000))
breaks <- seq(min(d$x), max(d$x), length.out = 50)
quantiles <- quantile(d$x, seq(0, 1, 0.1))
quantiles2 <- sapply(quantiles, function(x) breaks[which.min(abs(x - breaks))])
d$bar <- as.numeric(as.character(cut(d$x, breaks, na.omit((breaks + dplyr::lag(breaks)) / 2))))
d$fill <- cut(d$x, quantiles2, na.omit((quantiles2 + dplyr::lag(quantiles2)) / 2))
ggplot(d, aes(bar, y = 1, fill = fill)) +
geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1])
Or with more distinct colors:
ggplot(d, aes(bar, y = 1, fill = fill)) +
geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1]) +
scale_fill_brewer(type = 'qual', palette = 3) # The only qual pallete with enough colors
Add some styling and increase the breaks to 100:
ggplot(d, aes(bar, y = 1, fill = fill)) +
geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1], size = 0.3) +
scale_fill_brewer(type = 'qual', palette = 3) +
theme_classic() +
coord_fixed(diff(breaks)[1], expand = FALSE) + # makes square blocks
labs(x = 'x', y = 'count')
And here is a function to make that last one:
decile_histogram <- function(data, var, n_breaks = 100) {
breaks <- seq(min(data[[var]]), max(data[[var]]), length.out = n_breaks)
quantiles <- quantile(data[[var]], seq(0, 1, 0.1))
quantiles2 <- sapply(quantiles, function(x) breaks[which.min(abs(x - breaks))])
data$bar <- as.numeric(as.character(
cut(data[[var]], breaks, na.omit((breaks + dplyr::lag(breaks)) / 2)))
)
data$fill <- cut(data[[var]], quantiles2, na.omit((quantiles2 + dplyr::lag(quantiles2)) / 2))
ggplot2::ggplot(data, ggplot2::aes(bar, y = 1, fill = fill)) +
ggplot2::geom_col(position = 'stack', col = 1, show.legend = FALSE, width = diff(breaks)[1], size = 0.3) +
ggplot2::scale_fill_brewer(type = 'qual', palette = 3) +
ggplot2::theme_classic() +
ggplot2::coord_fixed(diff(breaks)[1], expand = FALSE) +
ggplot2::labs(x = 'x', y = 'count')
}
Use as:
d <- data.frame(x = rnorm(1000))
decile_histogram(d, 'x')

Resources