Why is DGLM in R not Recognizing my Objects? - r

I am trying to run the double generalized linear model (DGLM) in R on my traits of interest. I have made a function that extracts the components of interest from dglm with the arguments accepting a column (cT) of my Phenotypic object (Phenos), the snp (i) from my genotypic object (Geno), and PCA's (covar) to control with population structure.
my.pdglm <- function(cT=NULL, i=NULL, Phenos=NULL, Geno=NULL, covar=NULL)
The body of my p.dglm function is this as follows
my.pdglm <- function(cT=NULL, i=NULL, Phenos=NULL, Geno=NULL, covar=NULL) {
y <- Phenos[,cT]
model <- dglm(y ~ Geno[, i] + covar[, 2] + covar[, 3] + covar[, 4] + covar[, 5] + covar[,6] + covar[,7] + covar[, 8], ~ Geno[, i], family = gaussian(link = "identity"))
P.mean <- summary(model)$coef[2, 4] # Extarct p values for mean part
P.disp <- pchisq(q = anova(model)$Adj.Chisq[2], df = anova(model)$DF[2], lower.tail = FALSE)
s.model <- summary(model$dispersion.fit)
beta <- s.model$coef[2, 1] # Extarct cofficients
se <- s.model$coef[2, 2] # Extract standard errors
out <- data.frame(Beta = beta, SE = se, P.mean = P.mean, P.disp = P.disp,
stringsAsFactors = FALSE) # Save all the extracted
return(out)
}
When I try and run this function, I keep getting the following error using this as an example:
my.pdglm(cT=3, i=9173, Phenos=SP_Zm_NULL, Geno=t(Geno), covar=Zm_covar_FULL)
[1] "--------- Fitting DGLM model for SNP 9173 out of 41611 ----------"
Error in eval(predvars, data, env) : object 'y' not found
Called from: eval(predvars, data, env)
When I print(y) as a quality control step, it usually prints, but dglm is not recognizing it. The only way I get my function to work is if I run my function with the exact arguments named as the arguments themselves. Can anyone help me with this? This has been holding me up for a while.

Related

Dummies not included in summary

I want to create a function which will perform panel regression with 3-level dummies included.
Let's consider within model with time effects :
library(plm)
fit_panel_lr <- function(y, x) {
x[, length(x) + 1] <- y
#adding dummies
mtx <- matrix(0, nrow = nrow(x), ncol = 3)
mtx[cbind(seq_len(nrow(mtx)), 1 + (as.integer(unlist(x[, 2])) - min(as.integer(unlist(x[, 2])))) %% 3)] <- 1
colnames(mtx) <- paste0("dummy_", 1:3)
#converting to pdataframe and adding dummy variables
x <- pdata.frame(x)
x <- cbind(x, mtx)
#performing panel regression
varnames <- names(x)[3:(length(x))]
varnames <- varnames[!(varnames == names(y))]
form <- paste0(varnames, collapse = "+")
x_copy <- data.frame(x)
form <- as.formula(paste0(names(y), "~", form,'-1'))
params <- list(
formula = form, data = x_copy, model = "within",
effect = "time"
)
pglm_env <- list2env(params, envir = new.env())
model_plm <- do.call("plm", params, envir = pglm_env)
model_plm
}
However, if I use data :
data("EmplUK", package="plm")
dep_var<-EmplUK['capital']
df1<-EmplUK[-6]
In output I will get :
> fit_panel_lr(dep_var, df1)
Model Formula: capital ~ sector + emp + wage + output + dummy_1 + dummy_2 +
dummy_3 - 1
<environment: 0x000001ff7d92a3c8>
Coefficients:
sector emp wage output
-0.055179 0.328922 0.102250 -0.002912
How come that in formula dummies are considered and in coefficients are not ? Is there any rational explanation or I did something wrong ?
One point why you do not see the dummies on the output is because they are linear dependent to the other data after the fixed-effect time transformation. They are dropped so what is estimable is estimated and output.
Find below some (not readily executable) code picking up your example from above:
dat <- cbind(EmplUK, mtx) # mtx being the dummy matrix constructed in your question's code for this data set
pdat <- pdata.frame(dat)
rhs <- paste(c("emp", "wage", "output", "dummy_1", "dummy_2", "dummy_3"), collapse = "+")
form <- paste("capital ~" , rhs)
form <- formula(form)
mod <- plm(form, data = pdat, model = "within", effect = "time")
detect.lindep(mod$model) # before FE time transformation (original data) -> nothing offending
detect.lindep(model.matrix(mod)) # after FE time transformation -> dummies are offending
The help page for detect.lindep (?detect.lindep is included in package plm) has some more nice examples on linear dependence before and after FE transformation.
A suggestion:
As for constructing dummy variables, I suggest to use R's factor with three levels and not have the dummy matrix constructed yourself. Using a factor is typically more convinient and less error prone. It is converted to the binary dummies (treatment style) by your typical estimation function using the model.frame/model.matrix framework.

How should I call model.frame in R?

I am trying to write my own modeling function in R, one which takes a formula, some data, and maybe some extra context, like weights; after calling model.frame to extract the necessary numeric data, it will perform a fit. My first pass looked like:
my_modfunc <- function(formula,data,weights=NULL) {
mf <- model.frame(formula,data=data,weights=weights)
wt <- model.weights(mf)
# do some fitting here...
}
# make fake data to test it
set.seed(1234)
data <- data.frame(x1=rnorm(50),x2=rnorm(50),y=rnorm(50),w=runif(50))
# call it:
my_modfunc(y ~ x1 + x2,data=data,weights=w)
This fails, I get the error:
Error in model.frame.default(formula, data = data, weights = weights) :
invalid type (closure) for variable '(weights)'
Similarly, if I call
my_modfunc(y ~ x1 + x2,data=data,weights='w')
I get the same error. I suspect there is some problem with environment, quoting, and so on.
Cutting and pasting the source for lm, I could rewrite my function as
# based on lm
weird_modfunc <- function(formula,data,weights=NULL ) {
cl <- match.call() # what?
mf <- match.call(expand.dots = FALSE) # what??
m <- match(c("formula", "data", "weights"), names(mf), 0L)
mf <- mf[c(1L, m)] # ??
mf$drop.unused.levels <- TRUE # ??
mf[[1L]] <- quote(stats::model.frame) ## ???
mf <- eval(mf, parent.frame())
wt <- as.vector(model.weights(mf))
# do some fitting here...
}
# this runs without error:
weird_modfunc(y ~ x1 + x2,data=data,weights=w)
# this fails with the same error as above about variable lengths.
weird_modfunc(y ~ x1 + x2,data=data,weights='w')
The problem is that this contains multiple somewhat mystical incantations that I do not know how to interpret, modify or maintain.
What is the right way to call model.frame? Bonus points for making my function accept both weights=w and weights='w'
Welcome to the joys of non-standard evaluation. I suggest you base your function on the lm approach. It constructs a call to model.frame and evaluates it. That's necessary, because model.frame does non-standard evaluation, i.e., it accepts/expects a symbol for the weights parameter. Furthermore, it also ensures correct scoping regarding the formula's environment.
weird_modfunc <- function(formula,data,weights=NULL ) {
#cl not needed, lm only adds this call to the return object
mf <- match.call(expand.dots = FALSE)
message("Call with ellipses not expanded: ")
#note that there are no ellipses in the function arguments for now,
#but you might want to change that later
print(mf)
#turn weights into symbol if character is passed
if (is.character(mf$weights)) mf$weights <- as.symbol(mf$weights)
m <- match(c("formula", "data", "weights"), names(mf), 0L)
message("Position of formula, data and weights in the call:")
print(m)
mf <- mf[c(1L, m)]
message("New call that only contains what is needed:")
print(mf)
mf$drop.unused.levels <- TRUE
message("Call with argument added:")
print(mf)
mf[[1L]] <- quote(stats::model.frame)
message("Change call to a call to model.frame:")
print(mf)
mf <- eval(mf, parent.frame()) #evaluate call
wt <- as.vector(model.weights(mf))
# do some fitting here...
message("Return value:")
wt
}
# this runs without error:
weird_modfunc(y ~ x1 + x2,data=data,weights=w)
#Call with ellipses not expanded:
#weird_modfunc(formula = y ~ x1 + x2, data = data, weights = w)
#Position of formula, data and weights in the call
#[1] 2 3 4
#New call that only contains what is needed:
#weird_modfunc(formula = y ~ x1 + x2, data = data, weights = w)
#Call with argument added:
#weird_modfunc(formula = y ~ x1 + x2, data = data, weights = w,
# drop.unused.levels = TRUE)
#Change call to a call to model.frame:
#stats::model.frame(formula = y ~ x1 + x2, data = data, weights = w,
# drop.unused.levels = TRUE)
#Return value:
# [1] 0.35299850 0.98095832 0.53888276 0.44403386 0.94936678 0.45248337 0.19062580 0.99160915 0.54845545 0.76881577 0.91342167 0.68211200 0.40725142
#[14] 0.40759230 0.14608279 0.19666771 0.19220934 0.40841440 0.34822131 0.83454285 0.19840001 0.86180531 0.39718531 0.15325377 0.33928338 0.36718044
#[27] 0.42737908 0.18633690 0.65801660 0.92041138 0.73389406 0.88231927 0.95334653 0.19490154 0.47261674 0.38605066 0.37416586 0.02785566 0.92935521
#[40] 0.41052928 0.95584022 0.27215284 0.51724649 0.97830984 0.36969649 0.31043044 0.03420963 0.66756585 0.92091638 0.04498960
#this runs without error too:
weird_modfunc(y ~ x1 + x2,data=data,weights='w')
Here is a simpler version but there might be problems (well, more than usual with non-standard evaluation):
my_modfunc <- function(formula,data,weights=NULL) {
weights <- substitute(weights)
if (!is.symbol(weights)) weights <- as.symbol(weights)
#substitute the symbol into the call:
mf <- eval(substitute(model.frame(formula,data=data,weights=weights)))
wt <- model.weights(mf)
# do some fitting here...
wt
}
my_modfunc(y ~ x1 + x2,data=data,weights=w)
#works
my_modfunc(y ~ x1 + x2,data=data,weights="w")
#works

Function lipsitz.test {generalhoslem} is not working for object clm{ordinal}

I am now tring to test the goodness of fit of an ordianl model using lipsitz.test {generalhoslem}. According to the document, the function can deal with both polr and clm. However, when I try to use clm in the lipsitz.testfunction, an error occurs. Here is an example
library("ordinal")
library(generalhoslem)
data("wine")
fm1 <- clm(rating ~ temp * contact, data = wine)
lipsitz.test(fm1)
Error in names(LRstat) <- "LR statistic" :
'names' attribute [1] must be the same length as the vector [0]
In addition: Warning message:
In lipsitz.test(fm1) :
n/5c < 6. Running this test when n/5c < 6 is not recommended.
Is there any solution to fix this? Thanks a lot.
I'm not sure if this is off-topic and should be on CrossValidated. It's partly a problem with the coding of the test and partly about the statistics of the test itself.
There are two problems. I've just spotted a bug in the code when using clm and will push a fix to CRAN (corrected code below).
There does however appear to be a more fundamental problem with the example data. Basically, the Lipsitz test requires fitting a new model with dummy variables of the groupings. When fitting the new model with this example, the model fails and so some of the coefficients are not calculated. If using polr, the new model gets the warning that it is rank-deficient; if using clm, the new model gets a message that two coefficients are not fitted due to singularities. I think this example data set is just unsuitable for this kind of analysis.
The corrected code is below and I have used a larger example dataset on which the test runs.
lipsitz.test <- function (model, g = NULL) {
oldmodel <- model
if (class(oldmodel) == "polr") {
yhat <- as.data.frame(fitted(oldmodel))
} else if (class(oldmodel) == "clm") {
predprob <- oldmodel$model[, 2:ncol(oldmodel$model)]
yhat <- predict(oldmodel, newdata = predprob, type = "prob")$fit
} else warning("Model is not of class polr or clm. Test may fail.")
formula <- formula(oldmodel$terms)
DNAME <- paste("formula: ", deparse(formula))
METHOD <- "Lipsitz goodness of fit test for ordinal response models"
obs <- oldmodel$model[1]
if (is.null(g)) {
g <- round(nrow(obs)/(5 * ncol(yhat)))
if (g < 6)
warning("n/5c < 6. Running this test when n/5c < 6 is not recommended.")
}
qq <- unique(quantile(1 - yhat[, 1], probs = seq(0, 1, 1/g)))
cutyhats <- cut(1 - yhat[, 1], breaks = qq, include.lowest = TRUE)
dfobs <- data.frame(obs, cutyhats)
dfobsmelt <- melt(dfobs, id.vars = 2)
observed <- cast(dfobsmelt, cutyhats ~ value, length)
if (g != nrow(observed)) {
warning(paste("Not possible to compute", g, "rows. There might be too few observations."))
}
oldmodel$model <- cbind(oldmodel$model, cutyhats = dfobs$cutyhats)
oldmodel$model$grp <- as.factor(vapply(oldmodel$model$cutyhats,
function(x) which(observed[, 1] == x), 1))
newmodel <- update(oldmodel, . ~ . + grp, data = oldmodel$model)
if (class(oldmodel) == "polr") {
LRstat <- oldmodel$deviance - newmodel$deviance
} else if (class(oldmodel) == "clm") {
LRstat <- abs(-2 * (newmodel$logLik - oldmodel$logLik))
}
PARAMETER <- g - 1
PVAL <- 1 - pchisq(LRstat, PARAMETER)
names(LRstat) <- "LR statistic"
names(PARAMETER) <- "df"
structure(list(statistic = LRstat, parameter = PARAMETER,
p.value = PVAL, method = METHOD, data.name = DNAME, newmoddata = oldmodel$model,
predictedprobs = yhat), class = "htest")
}
library(foreign)
dt <- read.dta("http://www.ats.ucla.edu/stat/data/hsbdemo.dta")
fm3 <- clm(ses ~ female + read + write, data = dt)
lipsitz.test(fm3)
fm4 <- polr(ses ~ female + read + write, data = dt)
lipsitz.test(fm4)

Out sample-rolling window-forecasts R

I am trying to use a rolling window using linear regression. I don't know how I should store the output from forecast into a variable, which I could use for plotting ant etc.
predict.1 <- function(P){
results <- rep(0, P)
for( i in 0:2){
y1<-window(y,start=1937+i,end=1966+i)
x1<-window(ll,start=1937+i,end=1966+i)
dx2<-window(ll,start=1937+i,end=1966+i)
in.sample<-data.frame(y1,x1,x2)
names(in.sample)<-c("Outcome","Predictor1","Predictor2")
x1.pred<-window(x1,start=1967+i,end=1967+i)
x2.pred<-window(x2,start=1967+i,end=1967+i)
out.sample<-data.frame(x1.pred,x2.pred)
new.data<-out.sample
names(new.data)<-c("Predictor1","Predictor2")
results[i]<-predict(lm(Outcome~Predictor1+Predictor2,data=in.sample),new.data,se.fit=TRUE)
}
results
}
I receive this message:
Warning messages:
1: In results[i] <- predict(lm(Outcome ~ Predictor1 + Predictor2, data = in.sample), :
number of items to replace is not a multiple of replacement length
2: In results[i] <- predict(lm(Outcome ~ Predictor1 + Predictor2, data = in.sample), :
number of items to replace is not a multiple of replacement length.
I don't know how to overcome the problem.

formula error inside function

I want use survfit() and basehaz() inside a function, but they do not work. Could you take a look at this problem. Thanks for your help. The following code leads to the error:
library(survival)
n <- 50 # total sample size
nclust <- 5 # number of clusters
clusters <- rep(1:nclust,each=n/nclust)
beta0 <- c(1,2)
set.seed(13)
#generate phmm data set
Z <- cbind(Z1=sample(0:1,n,replace=TRUE),
Z2=sample(0:1,n,replace=TRUE),
Z3=sample(0:1,n,replace=TRUE))
b <- cbind(rep(rnorm(nclust),each=n/nclust),rep(rnorm(nclust),each=n/nclust))
Wb <- matrix(0,n,2)
for( j in 1:2) Wb[,j] <- Z[,j]*b[,j]
Wb <- apply(Wb,1,sum)
T <- -log(runif(n,0,1))*exp(-Z[,c('Z1','Z2')]%*%beta0-Wb)
C <- runif(n,0,1)
time <- ifelse(T<C,T,C)
event <- ifelse(T<=C,1,0)
mean(event)
phmmd <- data.frame(Z)
phmmd$cluster <- clusters
phmmd$time <- time
phmmd$event <- event
fmla <- as.formula("Surv(time, event) ~ Z1 + Z2")
BaseFun <- function(x){
start.coxph <- coxph(x, phmmd)
print(start.coxph)
betahat <- start.coxph$coefficient
print(betahat)
print(333)
print(survfit(start.coxph))
m <- basehaz(start.coxph)
print(m)
}
BaseFun(fmla)
Error in formula.default(object, env = baseenv()) : invalid formula
But the following function works:
fit <- coxph(fmla, phmmd)
basehaz(fit)
It is a problem of scoping.
Notice that the environment of basehaz is:
environment(basehaz)
<environment: namespace:survival>
meanwhile:
environment(BaseFun)
<environment: R_GlobalEnv>
Therefore that is why the function basehaz cannot find the local variable inside the function.
A possible solution is to send x to the top using assign:
BaseFun <- function(x){
assign('x',x,pos=.GlobalEnv)
start.coxph <- coxph(x, phmmd)
print(start.coxph)
betahat <- start.coxph$coefficient
print(betahat)
print(333)
print(survfit(start.coxph))
m <- basehaz(start.coxph)
print(m)
rm(x)
}
BaseFun(fmla)
Other solutions may involved dealing with the environments more directly.
I'm following up on #moli's comment to #aatrujillob's answer. They were helpful so I thought I would explain how it solved things for me and a similar problem with the rpart and partykit packages.
Some toy data:
N <- 200
data <- data.frame(X = rnorm(N),W = rbinom(N,1,0.5))
data <- within( data, expr = {
trtprob <- 0.4 + 0.08*X + 0.2*W -0.05*X*W
Trt <- rbinom(N, 1, trtprob)
outprob <- 0.55 + 0.03*X -0.1*W - 0.3*Trt
Outcome <- rbinom(N,1,outprob)
rm(outprob, trtprob)
})
I want to split the data to training (train_data) and testing sets, and train the classification tree on train_data.
Here's the formula I want to use, and the issue with the following example. When I define this formula, the train_data object does not yet exist.
my_formula <- Trt~W+X
exists("train_data")
# [1] FALSE
exists("train_data", envir = environment(my_formula))
# [1] FALSE
Here's my function, which is similar to the original function. Again,
badFunc <- function(data, my_formula){
train_data <- data[1:100,]
ct_train <- rpart::rpart(
data= train_data,
formula = my_formula,
method = "class")
ct_party <- partykit::as.party(ct_train)
}
Trying to run this function throws an error similar to OP's.
library(rpart)
library(partykit)
bad_out <- badFunc(data=data, my_formula = my_formula)
# Error in is.data.frame(data) : object 'train_data' not found
# 10. is.data.frame(data)
# 9. model.frame.default(formula = Trt ~ W + X, data = train_data,
# na.action = function (x) {Terms <- attr(x, "terms") ...
# 8. stats::model.frame(formula = Trt ~ W + X, data = train_data,
# na.action = function (x) {Terms <- attr(x, "terms") ...
# 7. eval(expr, envir, enclos)
# 6. eval(mf, env)
# 5. model.frame.rpart(obj)
# 4. model.frame(obj)
# 3. as.party.rpart(ct_train)
# 2. partykit::as.party(ct_train)
# 1. badFunc(data = data, my_formula = my_formula)
print(bad_out)
# Error in print(bad_out) : object 'bad_out' not found
Luckily, rpart() is like coxph() in that you can specify the argument model=TRUE to solve these issues. Here it is again, with that extra argument.
goodFunc <- function(data, my_formula){
train_data <- data[1:100,]
ct_train <- rpart::rpart(
data= train_data,
## This solved it for me
model=TRUE,
##
formula = my_formula,
method = "class")
ct_party <- partykit::as.party(ct_train)
}
good_out <- goodFunc(data=data, my_formula = my_formula)
print(good_out)
# Model formula:
# Trt ~ W + X
#
# Fitted party:
# [1] root
# | [2] X >= 1.59791: 0.143 (n = 7, err = 0.9)
##### etc
documentation for model argument in rpart():
model:
if logical: keep a copy of the model frame in the result? If
the input value for model is a model frame (likely from an earlier
call to the rpart function), then this frame is used rather than
constructing new data.
Formulas can be tricky as they use lexical scoping and environments in a way that is not always natural (to me). Thank goodness Terry Therneau has made our lives easier with model=TRUE in these two packages!

Resources