I'm studying linear algebra and I discovered that linear transformations are often used in video games.
I tried to calculate the associated matrix with the transformation that translates a point (x y z) by a vector (x y z) and I came to the conclusion that that transformation is not linear because, given p1, p2 and a translation vector v ∊ V:
T(v1 + v2) = v1 + v2 + p ≠ T(v1) + T(v2)
I navigated online and I found that 3D coordinates (x y z) are translated in a vector (x y z 1) but, given v1 and v2 ∊ V:
v1 + v2 = (x1 + x2, y1 + y2, z1 + z2, 2)
V is not even a vector space
My question is: why do I get these wrong results?
Thanks for all.
In the vector with homogeneous coordinate format, (x y z 1),
(x/1 y/1 z/1) are 3D cartesian coordinates, and 1 is the scaling factor.
We divide the first three values by the scaling factor to get the vector in cartesian coordinate format, (x y z). Homogeneous coordinates can be useful for efficient arbitrary precision with rational coordinates, and eloquent algebra with nice properties like linearity here.
When we want to translate a point by adding a vector, that's natural with cartesian coordinates. With all point/vector coordinates in cartesian format,
addition of a vector, v, to a point, p1, is a translation, T1, to some point, p2, such that
T1(p1) = p1 + v = p2
You are correct that something like T1 isn't linear.
When we want to translate a point by multiplying a matrix, it's more natural to think in homogeneous coordinates. This matrix, A, would be the identity matrix, but its last column is the vector, v, in homogeneous form. With points in homogeneous format, we can represent the transform, T2, as
T2(p1) = A * p1 = p2
With T2, we do have a linear transform.
Your results after not wrong: The translation of a point by a vector is not a linear transformation.
Translating a point by a vector is an affine transformation and it's done in an affine space. An affine space can be loosely defined as a set of points together with a vector space, where you can add a vector to a point and get another point as a result. Adding points to points is not allowed.
One way to construct an affine space is by taking a projective space whose elements are represented with homogeneous coordinates. These concepts come from the beautiful field of projective geometry, but a full explanation does not fit in a stack overflow post.
A more direct way to construct an affine space is by taking a vector space and adding one extra bit of information: take vectors of the form (x y z 1) as the points, and vectors of the form (x y z 0) as the vectors. Note that the points do not form a vector space, but the vectors do, and that if you add a vector to a point, the result is another point.
With this representation of points and vectors, translation of a point p by a vector can be written as a matrix multiplication T*p. The matrix T for translating by vector (x y z 0) is:
1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1
Note that this is still not a linear transform because points do not form a vector space.
Related
I have been trying to figure out whether the following problem has a solution. Almost having given up, I would like to ask whether someone can confirm that there is no solution, or maybe give me a hint.
We have two vectors v and w in 3D space and know that the ratio of their magnitudes is ||v|| / ||w|| = 0.8019.
in 3D space an observer would see that they form an angle of 27.017 degrees.
on the other side, an observer in 2D (only seeing the x and z axis), observes an angle of 7.125 degrees between the vectors.
From their view, the vector coordinates are v = (x: 2, z: 1) and w = (x: 3, z: 2).
Is there somehow a way that the 2D observer can calculate the actual angle between these vectors in 3D space?
I would be more than happy for any input. All my tries have failed so far and I just want to know whether there could be a possible solution.
I have solved this problem and get that the values of y1 and y2 are given by this function:
eq1: 0.6439*y2^(2)-y1^(2)=9.785.
Therefore real angle can practically any value, the factor that would narrow this problem down to an actual solution would be the information about where the observer is in the 3d space so that he sees the angle of 27.017º, however, if this is the whole problem, then I can share my solution and process.
Some graphs that I created from my calculations:
The side view of the vectors is directly from the point of view of the x and z axis of the graph, therefore the coordinates of the (x1,z1) and (x2,z2) points(terminal points of the vectors), appear authentic, and not augmented, hence you can use them in your calculations to calculate the coordinates of z1 and z2, which you need to calculate the angle.
V = (x1, y1, z1) V = (2, y1, 1)
W = (x2, y2, z2) W = (3, y2, 2)
Since ||v|| / ||w|| = 0.8019
∴Then sqrt((x1^2)+(y1^2)+(z1^2))/sqrt((x2^2)+(y2^2)+(z2^2)) = 0.8019
∴(x1^2)+(y1^2)+(z1^2)/(x2^2)+(y2^2)+(z2^2) = 0.6430
∴4+(y1^2)+1/9+(y2^2)+4 = 0.6430
∴5+(y1^2) = 8.359 + 0.6430(y2^2)
∴13.359 = 0.6430(y2^2)-(y1^2)
This gives you therefore a function that calculates the other value of y given the some input y.
You can then graph this function using Geogebra.
For all the pairs of values on the curve, together with the fixed values of x and z for both of the vectors you can calculate that the ratio between the magnitudes of the two vectors is equal to 0.8019.
This problem has therefore infinitely many solutions for the angle as there are infinitely many values of z1 and z2 that satisfy the ratio; ||v|| / ||w|| = 0.8019.
Therefore the answer to this problem can be expressed as:
∀Θº∈R:Θº≥0
I need to store 3D normal vectors, that is vectors (x, y, z) such that x^2 + y^2 + z^2 = 1. But due to space constraints I can only use 2 floats to store it.
So by storing only x and y, the third component can be computed as sqrt(1 - x^2 - y^2), i.e. one square root, two products and two subtractions.
What would be the most efficient way to store the vectors, so that reading them is as fast as possible, and if possible without bias towards one spatial direction?
Edit
Now using the values (a, b) with a = x - y and b = x + y.
You could satisfy your space constraint by storing the vectors via spherical coordinates. As is well known, each point on the unit sphere, i.e., each unit vector, has at least one pair of spherical coordinates characterizing it.
Or if you want something convoluted: The complex square function maps the unit disk to a double cover of it. So you could use the left half-disk for the upper half-sphere and the right half-disk for the lower half-sphere.
SphereFromDisk(a,b)
a2=a*a; b2=b*b; r2=a2+b2; // assert r2 <= 1
x = a2 - b2;
y = 2*a*b
z = sqrt(1-r2*r2)
if(a<0 or (a=0 and b<0) z=-z
return (x,y,z)
I'm getting ellipses as level curves of a fit dataset. After selecting a particular ellipse, I would like to report it as a center point, semi-major and minor axes lengths, and a rotation angle. In other words, I would like to transform (using mathematica) my ellipse equation from the form:
Ax^2 + By^2 + Cx + Dy + Exy + F = 0
to a more standard form:
((xCos[alpha] - ySin[alpha] - h)^2)/(r^2) + ((xSin[alpha] + yCos[alpha] - k)^2)/(s^2) = 1
where (h,k) is the center, alpha is the rotation angle, and r and s are the semi-axes
The actual equation I'm attempting to transform is
1.68052 x - 9.83173 x^2 + 4.89519 y - 1.19133 x y - 9.70891 y^2 + 6.09234 = 0
I know the center point is the fitted maximum, which is:
{0.0704526, 0.247775}
I posted a version of this answer on Math SE since it benefits a lot from proper mathematical typesetting. The example there is simpler as well, and there are some extra details.
The following description follows the German Wikipedia article Hauptachsentransformation. Its English counterpart, according to inter-wiki links, is principal component analysis. I find the former article a lot more geometric than the latter. The latter has a strong focus on statistical data, though, so it might be useful for you nevertheless.
Rotation
Your ellipse is described as
[A E/2] [x] [x]
[x y] * [E/2 B] * [y] + [C D] * [y] + F = 0
First you identify the rotation. You do this by identifying the eigenvalues and eigenvectors of this 2×2 matrix. These eigenvectors will form an orthogonal matrix describing your rotation: its entries are the Sin[alpha] and Cos[alpha] from your formula.
With your numbers, you get
[A E/2] [-0.74248 0.66987] [-10.369 0 ] [-0.74248 -0.66987]
[E/2 B] = [-0.66987 -0.74248] * [ 0 -9.1715] * [ 0.66987 -0.74248]
The first of the three factors is the matrix formed by the eigenvectors, each normalized to unit length. The central matrix has the eigenvalues on the diagonal, and the last one is the transpose of the first. If you multiply the vector (x,y) with that last matrix, then you will change the coordinate system in such a way that the mixed term vanishes, i.e. the x and y axes are parallel to the main axes of your ellipse. This is just what happens in your desired formula, so now you know that
Cos[alpha] = -0.74248 (-0.742479398678 with more accuracy)
Sin[alpha] = 0.66987 ( 0.669868899516)
Translation
If you multiply the row vector [C D] in the above formula with the first of the three matrices, then this effect will exactly cancel the multiplication of (x, y) by the third matrix. Therefore in that changed coordinate system, you use the central diagonal matrix for the quadratic term, and this product for the linear term.
[-0.74248 0.66987]
[1.68052, 4.89519] * [-0.66987 -0.74248] = [-4.5269 -2.5089]
Now you have to complete the square independently for x and y, and you end up with a form from which you can read the center coordinates.
-10.369x² -4.5269x = -10.369(x + 0.21829)² + 0.49408
-9.1715y² -2.5089y = -9.1715(y + 0.13677)² + 0.17157
h = -0.21829 (-0.218286476695)
k = -0.13677 (-0.136774259156)
Note that h and k describe the center in the already rotated coordinate system; to obtain the original center you'd multiply again with the first matrix:
[-0.74248 0.66987] [-0.21829] [0.07045]
[-0.66987 -0.74248] * [-0.13677] = [0.24778]
which fits your description.
Scaling
The completed squares above contributed some more terms to the constant factor F:
6.09234 + 0.49408 + 0.17157 = 6.7580
Now you move this to the right side of the equation, then divide the whole equation by this number so that you get the = 1 from your desired form. Then you can deduce the radii.
1 -10.369
-- = ------- = 1.5344
r² -6.7580
1 -9.1715
-- = ------- = 1.3571
s² -6.7580
r = 0.80730 (0.807304599162099)
s = 0.85840 (0.858398019487315)
Verifying the result
Now let's check that we didn't make any mistakes. With the parameters we found, you can piece together the equation
((-0.74248*x - 0.66987*y + 0.21829)^2)/(0.80730^2)
+ (( 0.66987*x - 0.74248*y + 0.13677)^2)/(0.85840^2) = 1
Move the 1 to the left side, and multiply by -6.7580, and you should end up with the original equation. Expanding that (with the extra precision versions printed in parentheses), you'll get
-9.8317300000 x^2
-1.1913300000 x y
+1.6805200000 x
-9.7089100000 y^2
+4.8951900000 y
+6.0923400000
which is a perfect match for your input.
If you have h and k, you can use Lagrange Multipliers to maximize / minimize the function (x-h)^2+(y-k)^2 subject to the constraint of being on the ellipse. The maximum distance will be the major radius, the minimum distance the minor radius, and alpha will be how much they are rotated from horizontal.
I have three vertices which make up a plane/polygon in 3D Space, v0, v1 & v2.
To calculate barycentric co-ordinates for a 3D point upon this plane I must first project both the plane and point into 2D space.
After trawling the web I have a good understanding of how to calculate barycentric co-ordinates in 2D space, but I am stuck at finding the best way to project my 3D points into a suitable 2D plane.
It was suggested to me that the best way to achieve this was to "drop the axis with the smallest projection". Without testing the area of the polygon formed when projected on each world axis (xy, yz, xz) how can I determine which projection is best (has the largest area), and therefore is most suitable for calculating the most accurate barycentric co-ordinate?
Example of computation of barycentric coordinates in 3D space as requested by the OP. Given:
3D points v0, v1, v2 that define the triangle
3D point p that lies on the plane defined by v0, v1 and v2 and inside the triangle spanned by the same points.
"x" denotes the cross product between two 3D vectors.
"len" denotes the length of a 3D vector.
"u", "v", "w" are the barycentric coordinates belonging to v0, v1 and v2 respectively.
triArea = len((v1 - v0) x (v2 - v0)) * 0.5
u = ( len((v1 - p ) x (v2 - p )) * 0.5 ) / triArea
v = ( len((v0 - p ) x (v2 - p )) * 0.5 ) / triArea
w = ( len((v0 - p ) x (v1 - p )) * 0.5 ) / triArea
=> p == u * v0 + v * v1 + w * v2
The cross product is defined like this:
v0 x v1 := { v0.y * v1.z - v0.z * v1.y,
v0.z * v1.x - v0.x * v1.z,
v0.x * v1.y - v0.y * v1.x }
WARNING - Almost every thing I know about using barycentric coordinates, and using matrices to solve linear equations, was learned last night because I found this question so interesting. So the following may be wrong, wrong, wrong - but some test values I have put in do seem to work.
Guys and girls, please feel free to rip this apart if I screwed up completely - but here goes.
Finding barycentric coords in 3D space (with a little help from Wikipedia)
Given:
v0 = (x0, y0, z0)
v1 = (x1, y1, z1)
v2 = (x2, y2, z2)
p = (xp, yp, zp)
Find the barycentric coordinates:
b0, b1, b2 of point p relative to the triangle defined by v0, v1 and v2
Knowing that:
xp = b0*x0 + b1*x1 + b2*x2
yp = b0*y0 + b1*y1 + b2*y2
zp = b0*z0 + b1*z1 + b2*z2
Which can be written as
[xp] [x0] [x1] [x2]
[yp] = b0*[y0] + b1*[y1] + b2*[y2]
[zp] [z0] [z1] [z2]
or
[xp] [x0 x1 x2] [b0]
[yp] = [y0 y1 y2] . [b1]
[zp] [z0 z1 z2] [b2]
re-arranged as
-1
[b0] [x0 x1 x2] [xp]
[b1] = [y0 y1 y2] . [yp]
[b2] [z0 z1 z2] [zp]
the determinant of the 3x3 matrix is:
det = x0(y1*z2 - y2*z1) + x1(y2*z0 - z2*y0) + x2(y0*z1 - y1*z0)
its adjoint is
[y1*z2-y2*z1 x2*z1-x1*z2 x1*y2-x2*y1]
[y2*z0-y0*z2 x0*z2-x2*z0 x2*y0-x0*y2]
[y0*z1-y1*z0 x1*z0-x0*z1 x0*y1-x1*y0]
giving:
[b0] [y1*z2-y2*z1 x2*z1-x1*z2 x1*y2-x2*y1] [xp]
[b1] = ( [y2*z0-y0*z2 x0*z2-x2*z0 x2*y0-x0*y2] . [yp] ) / det
[b2] [y0*z1-y1*z0 x1*z0-x0*z1 x0*y1-x1*y0] [zp]
If you need to test a number of points against the triangle, stop here. Calculate the above 3x3 matrix once for the triangle (dividing it by the determinant as well), and then dot product that result to each point to get the barycentric coords for each point.
If you are only doing it once per triangle, then here is the above multiplied out (courtesy of Maxima):
b0 = ((x1*y2-x2*y1)*zp+xp*(y1*z2-y2*z1)+yp*(x2*z1-x1*z2)) / det
b1 = ((x2*y0-x0*y2)*zp+xp*(y2*z0-y0*z2)+yp*(x0*z2-x2*z0)) / det
b2 = ((x0*y1-x1*y0)*zp+xp*(y0*z1-y1*z0)+yp*(x1*z0-x0*z1)) / det
That's quite a few additions, subtractions and multiplications - three divisions - but no sqrts or trig functions. It obviously does take longer than the pure 2D calcs, but depending on the complexity of your projection heuristics and calcs, this might end up being the fastest route.
As I mentioned - I have no idea what I'm talking about - but maybe this will work, or maybe someone else can come along and correct it.
Update: Disregard, this approach does not work in all cases
I think I have found a valid solution to this problem.
NB: I require a projection to 2D space rather than working with 3D Barycentric co-ordinates as I am challenged to make the most efficient algorithm possible. The additional overhead incurred by finding a suitable projection plane should still be smaller than the overhead incurred when using more complex operations such as sqrt or sin() cos() functions (I guess I could use lookup tables for sin/cos but this would increase the memory footprint and defeats the purpose of this assignment).
My first attempts found the delta between the min/max values on each axis of the polygon, then eliminated the axis with the smallest delta. However, as suggested by #PeterTaylor there are cases where dropping the axis with the smallest delta, can yeild a straight line rather than a triangle when projected into 2D space. THIS IS BAD.
Therefore my revised solution is as follows...
Find each sub delta on each axis for the polygon { abs(v1.x-v0.x), abs(v2.x-v1.x), abs(v0.x-v2.x) }, this results in 3 scalar values per axis.
Next, multiply these scaler values to compute a score. Repeat this, calculating a score for each axis. (This way any 0 deltas force the score to 0, automatically eliminating this axis, avoiding triangle degeneration)
Eliminate the axis with the lowest score to form the projection, e.g. If the lowest score is in the x-axis, project onto the y-z plane.
I have not had time to unit test this approach but after preliminary tests it seems to work rather well. I would be eager to know if this is in-fact the best approach?
After much discussion there is actually a pretty simple way to solve the original problem of knowing which axis to drop when projecting to 2D space. The answer is described in 3D Math Primer for Graphics and Game Development as follows...
"A solution to this dilemma is to
choose the plane of projection so as
to maximize the area of the projected
triangle. This can be done by
examining the plane normal; the
coordinate that has the largest
absolute value is the coordinate that
we will discard. For example, if the
normal is [–1, 0, 0], then we would
discard the x values of the vertices
and p, projecting onto the yz plane."
My original solution which involved computing a score per axis (using sub deltas) is flawed as it is possible to generate a zero score for all three axis, in which case the axis to drop remains undetermined.
Using the normal of the collision plane (which can be precomputed for efficiency) to determine which axis to drop when projecting into 2D is therefore the best approach.
To project a point p onto the plane defined by the vertices v0, v1 & v2 you must calculate a rotation matrix. Let us call the projected point pd
e1 = v1-v0
e2 = v2-v0
r = normalise(e1)
n = normalise(cross(e1,e2))
u = normalise(n X r)
temp = p-v0
pd.x = dot(temp, r)
pd.y = dot(temp, u)
pd.z = dot(temp, n)
Now pd can be projected onto the plane by setting pd.z=0
Also pd.z is the distance between the point and the plane defined by the 3 triangles. i.e. if the projected point lies within the triangle, pd.z is the distance to the triangle.
Another point to note above is that after rotation and projection onto this plane, the vertex v0 lies is at the origin and v1 lies along the x axis.
HTH
I'm not sure that the suggestion is actually the best one. It's not too hard to project to the plane containing the triangle. I assume here that p is actually in that plane.
Let d1 = sqrt((v1-v0).(v1-v0)) - i.e. the distance v0-v1.
Similarly let d2 = sqrt((v2-v0).(v2-v0))
v0 -> (0,0)
v1 -> (d1, 0)
What about v2? Well, you know the distance v0-v2 = d2. All you need is the angle v1-v0-v2. (v1-v0).(v2-v0) = d1 d2 cos(theta). Wlog you can take v2 as having positive y.
Then apply a similar process to p, with one exception: you can't necessarily take it as having positive y. Instead you can check whether it has the same sign of y as v2 by taking the sign of (v1-v0)x(v2-v0) . (v1-v0)x(p-v0).
As an alternative solution, you could use a linear algebra solver on the matrix equation for the tetrahedral case, taking as the fourth vertex of the tetrahedron v0 + (v1-v0)x(v2-v0) and normalising if necessary.
You shouldn't need to determine the optimal area to find a decent projection.
It's not strictly necessary to find the "best" projection at all, just one that's good enough, and that doesn't degenerate to a line when projected into 2D.
EDIT - algorithm deleted due to degenerate case I hadn't thought of
This is a maths problem I am not exactly sure how to do. The vector is not aligned to an axis, so just rotating 90 degrees around x, y or z won't necessarily give me the other axes.
I can think of a couple of different scenarios you might be asking about.
Given: A pre-existing coordinate system
In a 2D system, your axes/basis are always [1,0] and [0,1] -- x and y axes.
In a 3D system, your axes/basis are always [1,0,0], [0,1,0], and [0,0,1] -- x, y, and z.
Given: One axis in an arbitrary-basis 2D coordinate system
If you have one axis in an arbitrary-basis 2D coordinate system, the other axis is the orthogonal vector.
To rotate a vector orthogonally counter-clockwise:
[x_new, y_new] = [ -y_old, x_old]
To rotate a vector orthogonally clockwise:
[x_new, y_new] = [ y_old, -x_old]
To summarize:
Given: x-axis = [ a, b]
Then: y-axis = [-b, a]
Given: y-axis = [ c, d]
Then: x-axis = [ d, -c]
Given: Two axes in an arbitrary-basis 3D coordinate system
To do this, find the cross product.
[a,b,c] x [d,e,f] = [ b*f - c*e, c*d - a*f, a*e - b*d ]
Following these three guidelines:
(x axis) x (y axis) = (z axis)
(y axis) x (z axis) = (x axis)
(z axis) x (x axis) = (y axis)
Given: One axis in an arbitrary-basis 3D coordinate system
There is not enough information to find the unique solution this problem. This is because, if you look at the second case (One axis in an arbitrary-basis 2D coordinate system), you first need to find an orthogonal vector. However, there are an infinite amount of possible orthogonal vectors to a single axis in 3D space!
You can, however, find one of the possible solutions.
One way to find an arbitrary one of these orthogonal vectors by finding any vector [d,e,f] where:
[a,b,c] = original axis
[d,e,f] = arbitrary orthogonal axis (cannot be [0,0,0])
a*d + b*e + c*f = 0
For example, if your original axis is [2,3,4], you'd solve:
2 * d + 3 * e + 4 * f = 0
That is, any value of [d,e,f] that satisfies this is a satisfactory orthogonal vector (as long as it's not [0,0,0]). One could pick, for example, [3,-2,0]:
2 * 3 + 3 *-2 + 4 * 0 = 0
6 + -6 + 0 = 0
As you can see, one "formula" that works to is [d,e,f] = [b,-a,0]...but there are many other ones that can work as well; there are, in fact, an infinite!
Once you find your two axes [a,b,c] and [d,e,f], you can reduce this back to the previous case (case 3), using [a,b,c] and [d,e,f] as your x and y axes (or whatever axes you need them to be, for your specific problem).
Normalization
Note that, as you continually do dot products and cross products, your vectors will begin to grow larger and larger. Depending on what you want, this might not be desired. For example, you might want your basis vectors (your coordinate axes) to all be the same size/length.
To turn any vector (except for [0,0,0]) into a unit vector (a vector with a length of 1, in the same direction as the original vector):
r = [a,b,c]
v = Sqrt(a^2 + b^2 + c^2) <-- this is the length of the original vector
r' = [ a/v , b/v , c/v ]
Where r' represents the unit vector of r -- a vector with length of 1 that points in the same direction as r does. An example:
r = [1,2,3]
v = Sqrt(1^2 + 2^2 + 3^2) = Sqrt(13) = 3.60555 <-- this is the length of the original vector
r' = [0.27735, 0.55470, 0.83205]
Now, if I wanted, for example, a vector in the same direction of r with a length of 5, I'd simply multiply out r' * 5, which is [a' * 5, b' * 5, c' * 5].
Having only one axis isn't enough, since there are still an infinite number of axes that can be in the perpendicular plane.
If you manage to get another axis though, you can use the cross product to find the third.
If you have one vector (x,y,z) you can get one perpendicular vector to it as (y,-x,0) (dot-product is xy-yx+0*z = 0)
Then you take the cross-product of both to get the remaining perpendicular vector:
(x,y,z) × (y,-x,0) = (0y+zx, yz-0x, -x²-y²) = (zx, yz, -x²-y²)
Are you talking about a typical 3coordinate system like the one used in a 3D engine?
With just a vector you can't find the other two, the only information you will have it the plane on which they lay.. but they can be at any angle also if they're perpendicular with the only one vector you have.