Looping through functions in R - r

I'm trying to write a loop in R that should do the following:
Calculate the square root of a given positive number using Newtons method. My idea is something like this:
delta <- 0.0000001
x <- input_value
#DO:
x.new = 0.5*(x + mu/x)
x = x.new
#UNTIL:
abs(xˆ2 - mu) < delta
It's meant as a quick way to find the root(s) of a given number.
Does anyone has any ideas as to how to make a loop that does this in R?

This is how I ended up solving my issue:
# PROGRAM
find_roots <- function(f, a, b, delta = 0.00005, n = 1000) {
require(numDeriv) # Package for calculating f'(x)
x_0 <- a # Set start value to supplied lower bound
k <- n # Initialize for iteration results
for (i in 1:n) {
dx <- genD(func = f, x = x_0)$D[1] # First-order derivative f'(x0)
x_1 <- x_0 - (f(x_0) / dx) # Calculate next value x_1
k[i] <- x_1 # Store x_1
# Once the difference between x0 and x1 becomes sufficiently small, output the results.
if (abs(x_1 - x_0) < delta) {
root.approx <- tail(k, n=1)
res <- list('root approximation' = root.approx, 'iterations' = k)
return(res)
}
# If Newton-Raphson has not yet reached convergence set x1 as x0 and continue
x_0 <- x_1
}
print('Too many iterations in method')
}
#Example of it working:
func1 <- function(x) {
x^2 + 3*x + 1
}
# Check out the magic
newton.raphson(func1, 2,3)

Related

Trying to simulate Poisson samples using inverse CDF method but my R function produces wrong results

I wrote some R code for simulating random samples from a Poisson distribution, based on the description of an algorithm (see attached image). But my code does not seem to work correctly, because the generated random samples are of a different pattern compared with those generated by R's built-in rpois() function. Can anybody tell me what I did wrong and how to fix my function?
r.poisson <- function(n, l=0.5)
{
U <- runif(n)
X <- rep(0,n)
p=exp(-l)
F=p
for(i in 1:n)
{
if(U[i] < F)
{
X[i] <- i
} else
{
p=p*l/(i+1)
F=F+p
i=i+1
}
}
return(X)
}
r.poisson(50)
The output is very different from rpois(50, lambda = 0.5). The algorithm I followed is:
(Thank you for your question. Now I know how a Poisson random variable is simulated.)
You had a misunderstanding. The inverse CDF method (with recursive computation) you referenced is used to generate a single Poisson random sample. So you need to fix this function to produce a single number. Here is the correct function, commented to help you follow each step.
rpois1 <- function (lambda) {
## step 1
U <- runif(1)
## step 2
i <- 0
p <- exp(-lambda)
F <- p
## you need an "infinite" loop
## no worry, it will "break" at some time
repeat {
## step 3
if (U < F) {
X <- i
break
}
## step 4
i <- i + 1
p <- lambda * p / i ## I have incremented i, so it is `i` not `i + 1` here
F <- F + p
## back to step 3
}
return(X)
}
Now to get n samples, you need to call this function n times. R has a nice function called replicate to repeat a function many times.
r.poisson <- function (n, lambda) {
## use `replicate()` to call `rpois1` n times
replicate(n, rpois1(lambda))
}
Now we can make a reasonable comparison with R's own rpois.
x1 <- r.poisson(1000, lambda = 0.5)
x2 <- rpois(1000, lambda = 0.5)
## set breaks reasonably when making a histogram
xmax <- max(x1, x2) + 0.5
par(mfrow = c(1, 2))
hist(x1, main = "proof-of-concept-implementation", breaks = seq.int(-0.5, xmax))
hist(x2, main = "R's rpois()", breaks = seq.int(-0.5, xmax))
Remark:
Applaud jblood94 for exemplifying how to seek vectorization opportunity of an R loop, without converting everything to C/C++. R's rpois is coded in C, that is why it is fast.
A vectorized version will run much faster than a non-vectorized function using replicate. The idea is to iteratively drop the uniform random samples as i is incremented.
r.poisson1 <- function(n, l = 0.5) {
U <- runif(n)
i <- 0L
X <- integer(n)
p <- exp(-l)
F <- p
idx <- 1:n
while (length(idx)) {
bln <- U < F
X[idx[bln]] <- i
p <- l*p/(i <- i + 1L)
F <- F + p
idx <- idx[!bln]
U <- U[!bln]
}
X
}
#Zheyuan Li's non-vectorized functions:
rpois1 <- function (lambda) {
## step 1
U <- runif(1)
## step 2
i <- 0
p <- exp(-lambda)
F <- p
## you need an "infinite" loop
## no worry, it will "break" at some time
repeat {
## step 3
if (U < F) {
X <- i
break
}
## step 4
i <- i + 1
p <- lambda * p * i
F <- F + p
## back to step 3
}
return(X)
}
r.poisson2 <- function (n, lambda) {
## use `replicate()` to call `rpois1` n times
replicate(n, rpois1(lambda))
}
Benchmark:
microbenchmark::microbenchmark(r.poisson1(1e5),
r.poisson2(1e5, 0.5),
rpois(1e5, 0.5))
#> Unit: milliseconds
#> expr min lq mean median uq max neval
#> r.poisson1(1e+05) 3.063202 3.129151 3.782200 3.225402 3.734600 18.377700 100
#> r.poisson2(1e+05, 0.5) 217.631002 244.816601 269.692648 267.977001 287.599251 375.910601 100
#> rpois(1e+05, 0.5) 1.519901 1.552300 1.649026 1.579551 1.620451 7.531401 100

Derivative of a function with matrices and vectors for Newton-Raphson method

I've tried to find roots of nonlinear equation by using a Newton-Raphson method.
The problem I stuck in is that I don't get the right first derivative of following equation:
y is the target variable for my prediction, X is a matrix of the predictor variables, Theta is a smoothing parameter.
I need to get the arg min of Q.
For that I want to use this approach of Newton-Raphson:
newton.raphson <- function(f, a, b, tol = 1e-5, n = 1000) {
require(numDeriv) # Package for computing f'(x)
x0 <- a # Set start value to supplied lower bound
k <- n # Initialize for iteration results
# Check the upper and lower bounds to see if approximations result in 0
fa <- f(a)
if (fa == 0.0) {
return(a)
}
fb <- f(b)
if (fb == 0.0) {
return(b)
}
for (i in 1:n) {
dx <- genD(func = f, x = x0)$D[1] # First-order derivative f'(x0)
x1 <- x0 - (f(x0) / dx) # Calculate next value x1
k[i] <- x1 # Store x1
if (abs(x1 - x0) < tol) {
root.approx <- tail(k, n=1)
res <- list('root approximation' = root.approx, 'iterations' = k)
return(res)
}
# If Newton-Raphson has not yet reached convergence set x1 as x0 and continue
x0 <- x1
}
print('Too many iterations in method')
Thanks in advance for your help!

Finding the root of positive number using newton-raphson-method, R

So I have the following function, which finds the root of a function using Newton-raphson method. I think my issue is relatively simple: I want the function to find the square root of a given positive number, using the newton raphson medthod. Help?
# FUNCTION:
newton <- function(f, delta = 0.0000001, x_0 = 2, n=1000){
h = 0.0000001
i = 1; x1 = x_0
p = numeric(n)
while (i <= n) { #while i is less than or equal to n(1000), continue iterations
df.dx = (f(x_0 + h) - f(x_0)) / h #
x1 = (x_0 - (f(x_0) / df.dx)) # output of original guess minus (f(x)/f´(x)) (formula for root finding)
p[i] = x1 # counts iteration so we don't exceed 1000
i = i+1 # same as ^
if (abs(x1 - x_0) < delta) break # if output is less than delta: end iteration. Otherwise continue. (x1-x_0=if new value is below our threshold, stop)
x_0 = x1
}
return(p[1: (i-1)]) #
}
############## TEST ###############
func1 <- function(x){
x^5 - 7
}
newton(func1)
#VARIABLES are
#f = the function we input
#delta = the accuracy threashold we are willing to accept
#x_0 = our initial guess
#n = the number of iterations
#h = the distance from X1 to X0,this value much little ,the root much #closed.
#abs is a sys
A possible solution :
newton <- function(f, delta = 0.0000001, x_0 = 2, n=1000){
h = 0.0000001
i = 1; x1 = x_0
p = numeric(n)
while (i <= n) { #while i is less than or equal to n(1000), continue iterations
df.dx = (f(x_0 + h) - f(x_0)) / h #
x1 = (x_0 - (f(x_0) / df.dx)) # output of original guess minus (f(x)/f´(x)) (formula for root finding)
p[i] = x1 # counts iteration so we don't exceed 1000
i = i+1 # same as ^
if (abs(x1 - x_0) < delta) break # if output is less than delta: end iteration. Otherwise continue. (x1-x_0=if new value is below our threshold, stop)
x_0 = x1
}
return(list(result = x1, iterations = p[1:i-1]))
}
nthrootsub <- function(input, nth, x){ x^nth - input}
nthroot <- function(input, nth) {newton(function(x) nthrootsub(input, nth, x))}
############## TEST ###############
10^(1/5)
#[1] 1.584893
nthroot(10,5)
#$result
#[1] 1.584893
#$iterations
#[1] 1.725000 1.605878 1.585435 1.584894 1.584893 1.584893

R - finding roots for a cartesian product of function parameters

Given a function f(x,c,d) of x that also depends on some parameters c and d. I would like to find the zeroes for a cartesian product of certain values c_1,...,c_n and d_1,...,d_m of the parameters, i.e. an x_ij such that f(x_ij,c_i,d_j)=0 for i=1,...,n and j=1,...,m. Although not that crucial I am applying a Newton-Raphson algorithm for the root finding:
newton.raphson <- function(f, a, b, tol = 1e-5, n = 1000){
require(numDeriv) # Package for computing f'(x)
x0 <- a # Set start value to supplied lower bound
k <- n # Initialize for iteration results
# Check the upper and lower bounds to see if approximations result in 0
fa <- f(a)
if (fa == 0.0){
return(a)
}
fb <- f(b)
if (fb == 0.0) {
return(b)
}
for (i in 1:n) {
dx <- genD(func = f, x = x0)$D[1] # First-order derivative f'(x0)
x1 <- x0 - (f(x0) / dx) # Calculate next value x1
k[i] <- x1 # Store x1
# Once the difference between x0 and x1 becomes sufficiently small, output the results.
if (abs(x1 - x0) < tol) {
root.approx <- tail(k, n=1)
res <- list('root approximation' = root.approx, 'iterations' = k)
return(res)
}
# If Newton-Raphson has not yet reached convergence set x1 as x0 and continue
x0 <- x1
}
print('Too many iterations in method')
}
The actual function that I am interest is more complicated, but the following example illustrates my problem.
test.function <- function(x=1,c=1,d=1){
return(c*d-x)
}
Then for any given c_i and d_j I can easily calculate the zero by
newton.raphson(function(x) test.function(x,c=c_i,d=d_j),0,1)[1]
which here is obviously just the product c_i*d_j.
Now I tried to define a function that finds for two given vectors (c_1,...,c_n) and (d_1,...,d_m) the zeroes for all combinations. For this, I tried to define
zeroes <- function(ci=1,dj=1){
x<-newton.raphson(function(x) test.function(x,c=ci,d=dj),0,1)[1]
return(as.numeric(x))
}
and then use the outer-function, e.g.
outer(c(1,2),c(1,2,3),FUN=zeroes)
Unfortunately, this did not work. I got an error message
Error during wrapup: dims [product 6] do not match the length of object [1]
There might be also a much better solution to my problem. I am happy for any input.

Markowitz model / portfolio optimization using local search in R

I am taking baby steps to use metaheuristics for solving constrained optimization problems. I am trying to solve basic Markowitz Mean-Variance optimization model (given below) using NMOFpackage in R.
Min
lambda * [sum{i=1 to N}sum{j = 1 to N}w_i*w_i*Sigma_ij] - (1-lambda) * [sum{i=1 to N}(w_i*mu_i)]
subject to
sum{i=1 to N}{w_i} = 1
0 <= w_i <= 1; i = 1,...,N
where, lambda takes values between 0 and 1, N is number of assets.
Following is my code (Based on Book: Numerical Methods and Optimization in Finance):
library(NMOF)
na <- dim(fundData)[2L]
ns <- dim(fundData)[1L]
Sigma <- cov(fundData)
winf <- 0.0
wsup <- 1.0
m <- colMeans(fundData)
resample <- function(x,...) x[sample.int(length(x),...)]
data <- list(R = t(fundData),
m = m,
na = dim(fundData)[2L],
ns = dim(fundData)[1L],
Sigma = Sigma,
eps = 0.5/100,
winf = winf,
wsup = wsup,
nFP = 100)
w0 <- runif(data$na); w0 <- w0/sum(w0)
OF <- function(w,data){
wmu <- crossprod(w,m)
res <- crossprod(w, data$Sigma)
res <- tcrossprod(w,res)
result <- res - wmu
}
neighbour <- function(w, data){
toSell <- w > data$winf
toBuy <- w < data$wsup
i <- resample(which(toSell), size = 1L)
j <- resample(which(toBuy), size = 1L)
eps <- runif(1) * data$eps
eps <- min(w[i] - data$winf, data$wsup - w[j], eps)
w[i] <- w[i] - eps
w[j] <- w[j] + eps
w
}
algo <- list(x0 = w0, neighbour = neighbour, nS = 5000L)
system.time(sol1 <- LSopt(OF, algo, data))
I am not sure how to include lambda in the objective function (OF). The above code does not include lambda in OF. I tried using for loop but it resulted in following error:
OF <- function(w,data){
lambdaSeq <- seq(.001,0.999, length = data$nFP)
for(lambda in lambdaSeq){
wmu <- crossprod(w,m)
res <- crossprod(w, data$Sigma)
res <- tcrossprod(w,res)
result <- lambda*res - (1-lambda)*wmu
}
}
Error:
Local Search.
Initial solution:
| | 0%
Error in if (xnF <= xcF) { : argument is of length zero
Timing stopped at: 0.01 0 0.03
It would be nice if someone could help me in this regard.
P.S: I am also aware that this can be solved using quadratic programming. This is just an initiation to include other constraints.
If I understand correctly, you want to replicate the mean--variance efficient frontier by Local Search? Then you need to run a Local Search for every value of lambda that you want to include in the frontier.
The following example should help you get going. I start by attaching the package and setting up the list data.
require("NMOF")
data <- list(m = colMeans(fundData), ## expected returns
Sigma = cov(fundData), ## expected var of returns
na = dim(fundData)[2L], ## number of assets
eps = 0.2/100, ## stepsize for LS
winf = 0, ## minimum weight
wsup = 1, ## maximum weight
lambda = 1)
Next I compute a benchmark for the minimum-variance case (i.e. lambda equals one).
## benchmark: the QP solution
## ==> this will only work with a recent version of NMOF,
## which you can get by saying:
## install.packages('NMOF', type = 'source',
## repos = c('http://enricoschumann.net/R',
## getOption('repos')))
##
require("quadprog")
sol <- NMOF:::minvar(data$Sigma, 0, 1)
Objective function and neighbourhood function. I have slightly simplified both functions (for clarity; using crossprod in the objective function would probably be more efficient).
OF <- function(w, data){
data$lambda * (w %*% data$Sigma %*% w) -
(1 - data$lambda) * sum(w * data$m)
}
neighbour <- function(w, data){
toSell <- which(w > data$winf)
toBuy <- which(w < data$wsup)
i <- toSell[sample.int(length(toSell), size = 1L)]
j <- toBuy[sample.int(length(toBuy), size = 1L)]
eps <- runif(1) * data$eps
eps <- min(w[i] - data$winf, data$wsup - w[j], eps)
w[i] <- w[i] - eps
w[j] <- w[j] + eps
w
}
Now we can run Local Search. Since it is a fairly large dataset (200 assets),
you will need a relatively large number of steps to reproduce the QP solution.
w0 <- runif(data$na) ## a random initial solution
w0 <- w0/sum(w0)
algo <- list(x0 = w0, neighbour = neighbour, nS = 50000L)
sol1 <- LSopt(OF, algo, data)
You can compare the weights you get from Local Search with the QP solution.
par(mfrow = c(3,1), mar = c(2,4,1,1), las = 1)
barplot(sol, main = "QP solution")
barplot(sol1$xbest, main = "LS solution")
barplot(sol - sol1$xbest,
ylim = c(-0.001,0.001)) ## +/-0.1%
Finally, if you want to compute the whole frontier, you need to rerun this code for different levels of data$lambda.

Resources