Poco Thread How Can I Avoid Using Join - poco-libraries

Trying to use a Poco::Thread to run a task that takes about a minute to complete.
Tfile_creater_runnable file_creater_runnable();
file_creater_thread.start(file_creater_runnable);
file_creater_thread.join();
It works great as long as I call join, if I don't it throws an exception in _target.run(). But if I call join it will of course wait until the thread completes a minute later. I'm trying to use a thread because because I want the main thread to be able to continue executing. Obviously I'm misunderstanding something here. Is there a way I can accomplish this?

Related

A question about Thread.Sleep inside backgroundworker

As far as I understand backgroundworker in .Net runs on a separate threat than in GUI. And Thread.Sleep is not recommended since it freezes the GUI.
Now if one uses Thread.Sleep inside backgroundworker's DoWork, would GUI freeze or this time Sleep will only sleep the BW's thread? Is it still not recommended?
(I tried to give 1 second pauses inside DoWork by Thread.Sleep(1000) seems it doesnt interfere with GUI. Is there another way to give pause inside BW rather than Thread.Sleep? await Task needs sync method which BW is not:()
Now if one uses Thread.Sleep inside backgroundworker's DoWork, would GUI freeze or this time Sleep will only sleep the BW's thread?
Thread.Sleep, like all other methods, runs on the current thread. So Thread.Sleep causes the current thread to sleep. If it's called from the BGW's DoWork, then it will cause the BGW's thread to sleep.
Is there another way to give pause inside BW rather than Thread.Sleep?
No, but you could replace the BackgroundWorker completely with Task.Run, and then you could use await Task.Delay instead of Thread.Sleep.

Which wait mechanism is Polly using

Polly has several retry functionalities like for example WaitAndRetryForever. I looked in the documentation but couldn't find what is used exactly for making the thread wait until the next retry. I guess Polly uses System.Timers for this or is it something completely different? Thanks for any collaboration.
Asynchronous executions (fooAsyncPolicy.ExecuteAsync(...)) wait with Task.Delay(...), freeing the thread the caller was using while the delay occurs.
Synchronous executions (fooSyncPolicy.Execute(...)) wait between retries in a cancellable thread-blocking manner. This means that, for the synchronous (a):
action();
compared to the synchronous (b):
policy.Execute(action);
the following three things all hold:
both (a) and (b) block progress from continuing (subsequent code does not run) until the statement has completed;
(b) executes action on the same thread that (a) originally would have;
(b) expresses exceptions (if Policy operation does not intervene) in the same/similar-as-possible way that (a) originally would have.
These semantics (1) (2) (3) are intentional, to keep synchronously executing code with Polly as similar in semantics/behaviour (surrounding code needs little adjustment) as executing code without Polly.
Anticipating a follow-up question: Wouldn't it be possible to write the synchronous Polly: Policy.Handle<T>().WaitAndRetry(...).Execute(action) so that it didn't block a thread while waiting before retrying?: Yes, but no solution has been found that is preferable to letting the caller control transitions to TPL Tasks or async/await and then using Polly's ExecuteAsync(...).

Why don't my doRedis workers begin processing until all of the jobs are in the redis server

When using foreach and doRedis the doRedis workers wait until all jobs have reached the redis server before beginning processing. Is it possible to have them begin before all the preprocessing has finished?
I am using an iterator which is working great - preprocessing happens 'just in time' and the job data begins to hit the server as the iterator runs. I can't seem to take advantage of this behavior, though, because the workers just wait until all jobs have been uploaded.
Example code:
library(foreach)
library(doRedis)
registerDoRedis("worklist", "0.0.0.0")
foreach (var = complex.iter(1:1E6)) %dopar% {
process.function(var)
}
In this example complex.iter takes a while and there are many elements to iterate over. As such it would be great if workers started running process.function() before all the preprocessing is finished. Unfortunately they seem to wait until complex.iter has run on all elements.
I have set .inorder=F.
Any suggestions as to how to achieve this desired behavior? Thanks.
You can try a couple of things to make it run smother. One is setting the chunk size and the other is to start local workers to get tasks going in the background.
[Here is a link to the PDF explaining how these two functions are used properly]
startLocalWorkers & setChunkSize
Without more information on the data, functions and tasks it is hard to help you any more than that.
In case others have the same question:
The answer is currently no, the iterator completes aggregation of all task data prior to uploading and distributing jobs to workers. Relevant discussion here: https://github.com/bwlewis/doRedis/issues/39
I was also wrong in my question in that the iterator was completing before data was uploaded. Still, the blocking upload causes the workers to wait not only until the iterator is finished but also until upload has completed.
I'll update the answer if we implement any changes.

How to control the number of threads when executing an Asynchronous Activity in WF 4

I am creating a workflow in WF 4, where I have a ParallelForeach activity that iterates over a collection of items. For each item in the collection, I execute a custom Asynchronous activity to processing multiple items in parallel.
The above solution works for me, but I am concerned about the number of threads used since each Asynchronous activity instance is executed on its own thread. Is there a way to configure/control the number of threads that get launched when executing the parallelForeach activity in the above described mechanism?
since each Asynchronous activity instance is getting executed on its own thread. Who says? Certainly not the docs.
ParallelForEach enumerates its values and schedules the Body for every value it enumerates on. It only schedules the Body. How the body executes depends on whether the Body goes idle.
If the Body does not go idle, it executes in a reverse order because the scheduled activities are handled as a stack, the last scheduled activity executes first.
For example, if you have a collection of {1,2,3,4}in ParallelForEach and use a WriteLine as the body to write the value out. You have 4, 3, 2, 1 printed out in the console. This is because WriteLine does not go idle so after 4 WriteLine activities got scheduled, they executed using a stack behavior (first in last out).
The Parallelism of execution occurs only when an Activity creates a bookmark and goes idle. Even then, two activities aren't actually executing at the same time--one or more have just stopped executing, allowing others to run in order. Understandably confusing, given the name, but that's it.
In any event, when you're relying on the framework to parallelize for you, don't worry about how many threads they're using. They probably have everything under control. Until you know they don't.
Will is correct, ParallelForEach does not require a new thread for each branch. If you are doing blocking I/O in code that should occur in an AsyncCodeActivity so that you aren't unecessarily blocking. If you want CPU-bound work to run in parallel to other activities you will either need to wrap it in an AsyncCodeActivity or use InvokeMethod { RunAsynchronously = true} in which case the framework will take care of running the work on a background thread.
The SynchronizationContext extensibility point is intended for cases where you have a particular existing threading model that you need WF to integrate with. Prime examples of this include ASP.NET's threading environment, and Windows Presentation Foundation/WinForms (e.g. if you wanted a activity to work correctly).

Asynchronous vs synchronous execution. What is the difference? [closed]

Closed. This question needs to be more focused. It is not currently accepting answers.
Closed 2 months ago.
Locked. This question and its answers are locked because the question is off-topic but has historical significance. It is not currently accepting new answers or interactions.
What is the difference between asynchronous and synchronous execution?
When you execute something synchronously, you wait for it to finish before moving on to another task. When you execute something asynchronously, you can move on to another task before it finishes.
In the context of operating systems, this corresponds to executing a process or task on a "thread." A thread is a series of commands (a block of code) that exist as a unit of work. The operating system runs a given thread on a processor core. However, a processor core can only execute a single thread at once. It has no concept of running multiple threads simultaneously. The operating system can provide the illusion of running multiple threads at once by running each thread for a small slice of time (such as 1ms), and continuously switching between threads.
Now, if you introduce multiple processor cores into the mix, then threads CAN execute at the same time. The operating system can allocate time to one thread on the first processor core, then allocate the same block of time to another thread on a different processor core. All of this is about allowing the operating system to manage the completion of your task while you can go on in your code and do other things.
Asynchronous programming is a complicated topic because of the semantics of how things tie together when you can do them at the same time. There are numerous articles and books on the subject; have a look!
Synchronous/Asynchronous HAS NOTHING TO DO WITH MULTI-THREADING.
Synchronous or Synchronized means "connected", or "dependent" in some way. In other words, two synchronous tasks must be aware of one another, and one task must execute in some way that is dependent on the other, such as wait to start until the other task has completed.
Asynchronous means they are totally independent and neither one must consider the other in any way, either in the initiation or in execution.
Synchronous (one thread):
1 thread -> |<---A---->||<----B---------->||<------C----->|
Synchronous (multi-threaded):
thread A -> |<---A---->|
\
thread B ------------> ->|<----B---------->|
\
thread C ----------------------------------> ->|<------C----->|
Asynchronous (one thread):
A-Start ------------------------------------------ A-End
| B-Start -----------------------------------------|--- B-End
| | C-Start ------------------- C-End | |
| | | | | |
V V V V V V
1 thread->|<-A-|<--B---|<-C-|-A-|-C-|--A--|-B-|--C-->|---A---->|--B-->|
Asynchronous (multi-Threaded):
thread A -> |<---A---->|
thread B -----> |<----B---------->|
thread C ---------> |<------C--------->|
Start and end points of tasks A, B, C represented by <, > characters.
CPU time slices represented by vertical bars |
Technically, the concept of synchronous/asynchronous really does not have anything to do with threads. Although, in general, it is unusual to find asynchronous tasks running on the same thread, it is possible, (see below for examples) and it is common to find two or more tasks executing synchronously on separate threads... No, the concept of synchronous/asynchronous has to do solely with whether or not a second or subsequent task can be initiated before the other (first) task has completed, or whether it must wait. That is all. What thread (or threads), or processes, or CPUs, or indeed, what hardware, the task[s] are executed on is not relevant. Indeed, to make this point I have edited the graphics to show this.
ASYNCHRONOUS EXAMPLE:
In solving many engineering problems, the software is designed to split up the overall problem into multiple individual tasks and then execute them asynchronously. Inverting a matrix, or a finite element analysis problem, are good examples. In computing, sorting a list is an example. The quicksort routine, for example, splits the list into two lists and performs a quicksort on each of them, calling itself (quicksort) recursively. In both of the above examples, the two tasks can (and often were) executed asynchronously. They do not need to be on separate threads. Even a machine with one CPU and only one thread of execution can be coded to initiate processing of a second task before the first one has completed. The only criterion is that the results of one task are not necessary as inputs to the other task. As long as the start and end times of the tasks overlap, (possible only if the output of neither is needed as inputs to the other), they are being executed asynchronously, no matter how many threads are in use.
SYNCHRONOUS EXAMPLE:
Any process consisting of multiple tasks where the tasks must be executed in sequence, but one must be executed on another machine (Fetch and/or update data, get a stock quote from financial service, etc.). If it's on a separate machine it is on a separate thread, whether synchronous or asynchronous.
In simpler terms:
SYNCHRONOUS
You are in a queue to get a movie ticket. You cannot get one until everybody in front of you gets one, and the same applies to the people queued behind you.
ASYNCHRONOUS
You are in a restaurant with many other people. You order your food. Other people can also order their food, they don't have to wait for your food to be cooked and served to you before they can order.
In the kitchen restaurant workers are continuously cooking, serving, and taking orders.
People will get their food served as soon as it is cooked.
Simple Explanation via analogy
(story & pics given to help you remember).
Synchronous Execution
My boss is a busy man. He tells me to write code. I tell him: Fine. I get started and he's watching me like a vulture, standing behind me, off my shoulder. I'm like "Dude, WTF: why don't you go and do something while I finish this?"
he's like: "No, I'm waiting right here until you finish." This is synchronous.
Asynchronous Execution
The boss tells me to do it, and rather than waiting right there for my work, the boss goes off and does other tasks. When I finish my job I simply report to my boss and say: "I'm DONE!" This is Asynchronous Execution.
(Take my advice: NEVER work with the boss behind you.)
Synchronous execution means the execution happens in a single series. A->B->C->D. If you are calling those routines, A will run, then finish, then B will start, then finish, then C will start, etc.
With Asynchronous execution, you begin a routine, and let it run in the background while you start your next, then at some point, say "wait for this to finish". It's more like:
Start A->B->C->D->Wait for A to finish
The advantage is that you can execute B, C, and or D while A is still running (in the background, on a separate thread), so you can take better advantage of your resources and have fewer "hangs" or "waits".
In a nutshell, synchronization refers to two or more processes' start and end points, NOT their executions. In this example, Process A's endpoint is synchronized with Process B's start point:
SYNCHRONOUS
|--------A--------|
|--------B--------|
Asynchronous processes, on the other hand, do not have their start and endpoints synchronized:
ASYNCHRONOUS
|--------A--------|
|--------B--------|
Where Process A overlaps Process B, they're running concurrently or synchronously (dictionary definition), hence the confusion.
UPDATE: Charles Bretana improved his answer, so this answer is now just a simple (potentially oversimplified) mnemonic.
Synchronous means that the caller waits for the response or completion, asynchronous that the caller continues and a response comes later (if applicable).
As an example:
static void Main(string[] args)
{
Console.WriteLine("Before call");
doSomething();
Console.WriteLine("After call");
}
private static void doSomething()
{
Console.WriteLine("In call");
}
This will always ouput:
Before call
In call
After call
But if we were to make doSomething() asynchronous (multiple ways to do it), then the output could become:
Before call
After call
In call
Because the method making the asynchronous call would immediately continue with the next line of code. I say "could", because order of execution can't be guaranteed with asynch operations. It could also execute as the original, depending on thread timings, etc.
Sync vs Async
Sync and async operations are about execution order a next task in relation to the current task.
Let's take a look at example where Task 2 is current task and Task 3 is a next task. Task is an atomic operation - method call in a stack (method frame).
Synchronous
Implies that tasks will be executed one by one. A next task is started only after current task is finished. Task 3 is not started until Task 2 is finished.
Single Thread + Sync - Sequential
Usual execution.
Pseudocode:
main() {
task1()
task2()
task3()
}
Multi Thread + Sync - Parallel
Blocked.
Blocked means that a thread is just waiting(although it could do something useful. e.g. Java ExecutorService[About] and Future[About]) Pseudocode:
main() {
task1()
Future future = ExecutorService.submit(task2())
future.get() //<- blocked operation
task3()
}
Asynchronous
Implies that task returns control immediately with a promise to execute a code and notify about result later(e.g. callback, feature). Task 3 is executed even if Task 2 is not finished. async callback, completion handler[About]
Single Thread + Async - Concurrent
Callback Queue (Message Queue) and Event Loop (Run Loop, Looper) are used. Event Loop checks if Thread Stack is empty and if it is true it pushes first item from the Callback Queue into Thread Stack and repeats these steps again. Simple examples are button click, post event...
Pseudocode:
main() {
task1()
ThreadMain.handler.post(task2());
task3()
}
Multi Thread + Async - Concurrent and Parallel
Non-blocking.
For example when you need to make some calculations on another thread without blocking. Pseudocode:
main() {
task1()
new Thread(task2()).start();
//or
Future future = ExecutorService.submit(task2())
task3()
}
You are able use result of Task 2 using a blocking method get() or using async callback through a loop.
For example in Mobile world where we have UI/main thread and we need to download something we have several options:
sync block - block UI thread and wait when downloading is done. UI is not responsive.
async callback - create a new tread with a async callback to update UI(is not possible to access UI from non UI thread). Callback hell.
async coroutine[About] - async task with sync syntax. It allows mix downloading task (suspend function) with UI task.
[iOS sync/async], [Android sync/async]
[Paralel vs Concurrent]
I think this is bit round-about explanation but still it clarifies using real life example.
Small Example:
Let's say playing an audio involves three steps:
Getting the compressed song from harddisk
Decompress the audio.
Play the uncompressed audio.
If your audio player does step 1,2,3 sequentially for every song then it is synchronous. You will have to wait for some time to hear the song till the song actually gets fetched and decompressed.
If your audio player does step 1,2,3 independent of each other, then it is asynchronous. ie.
While playing audio 1 ( step 3), if it fetches audio 3 from harddisk in parallel (step 1) and it decompresses the audio 2 in parallel. (step 2 )
You will end up in hearing the song without waiting much for fetch and decompress.
I created a gif for explain this, hope to be helpful:
look, line 3 is asynchronous and others are synchronous.
all lines before line 3 should wait until before line finish its work, but because of line 3 is asynchronous, next line (line 4), don't wait for line 3, but line 5 should wait for line 4 to finish its work, and line 6 should wait for line 5 and 7 for 6, because line 4,5,6,7 are not asynchronous.
Simply said asynchronous execution is doing stuff in the background.
For example if you want to download a file from the internet you might use a synchronous function to do that but it will block your thread until the file finished downloading. This can make your application unresponsive to any user input.
Instead you could download the file in the background using asynchronous method. In this case the download function returns immediately and program execution continues normally. All the download operations are done in the background and your program will be notified when it's finished.
As a really simple example,
SYNCHRONOUS
Imagine 3 school students instructed to run a relay race on a road.
1st student runs her given distance, stops and passes the baton to the 2nd. No one else has started to run.
1------>
2.
3.
When the 2nd student retrieves the baton, she starts to run her given distance.
1.
2------>
3.
The 2nd student got her shoelace untied. Now she has stopped and tying up again. Because of this, 2nd's end time has got extended and the 3rd's starting time has got delayed.
1.
--2.--->
3.
This pattern continues on till the 3rd retrieves the baton from 2nd and finishes the race.
ASYNCHRONOUS
Just Imagine 10 random people walking on the same road.
They're not on a queue of course, just randomly walking on different places on the road in different paces.
2nd person's shoelace got untied. She stopped to get it tied up again.
But nobody is waiting for her to get it tied up. Everyone else is still walking the same way they did before, in that same pace of theirs.
10--> 9-->
8--> 7--> 6-->
5--> 4-->
1--> 2. 3-->
Synchronous basically means that you can only execute one thing at a time. Asynchronous means that you can execute multiple things at a time and you don't have to finish executing the current thing in order to move on to next one.
When executing a sequence like: a>b>c>d>, if we get a failure in the middle of execution like:
a
b
c
fail
Then we re-start from the beginning:
a
b
c
d
this is synchronous
If, however, we have the same sequence to execute: a>b>c>d>, and we have a failure in the middle:
a
b
c
fail
...but instead of restarting from the beginning, we re-start from the point of failure:
c
d
...this is know as asynchronous.
An example of instructions for making a breakfast:
Pour a cup of coffee.
Heat a pan, then fry two eggs.
Fry three slices of bacon.
Toast two pieces of bread.
Add butter and jam to the toast.
Pour a glass of orange juice.
If you have experience with cooking, you'd execute those instructions asynchronously. You'd start warming the pan for eggs, then start the bacon. You'd put the bread in the toaster, then start the eggs. At each step of the process, you'd start a task, then turn your attention to tasks that are ready for your attention.
Cooking breakfast is a good example of asynchronous work that isn't parallel. One person (or thread) can handle all these tasks. Continuing the breakfast analogy, one person can make breakfast asynchronously by starting the next task before the first task completes. The cooking progresses whether or not someone is watching it. As soon as you start warming the pan for the eggs, you can begin frying the bacon. Once the bacon starts, you can put the bread into the toaster.
For a parallel algorithm, you'd need multiple cooks (or threads). One would make the eggs, one the bacon, and so on. Each one would be focused on just that one task. Each cook (or thread) would be blocked synchronously waiting for the bacon to be ready to flip, or the toast to pop.
(emphasis mine)
From Asynchronous programming concepts
A synchronous operation does its work before returning to the caller.
An asynchronous operation does (most or all of) its work after returning to the caller.
You are confusing Synchronous with Parallel vs Series. Synchronous mean all at the same time. Syncronized means related to each othere which can mean in series or at a fixed interval. While the program is doing all, it it running in series. Get a dictionary...this is why we have unsweet tea. You have tea or sweetened tea.
A different english definition of Synchronize is Here
Coordinate; combine.
I think that is a better definition than of "Happening at the same time". That one is also a definition, but I don't think it is the one that fits the way it is used in Computer Science.
So an asynchronous task is not co-coordinated with other tasks, whereas a synchronous task IS co-coordinated with other tasks, so one finishes before another starts.
How that is achieved is a different question.
I think a good way to think of it is a classic running Relay Race
Synchronous: Processes like members of the same team, they won't execute until they receive baton (end of the execution of previous process/runner) and yet they are all acting in sync with each other.
Asynchronous: Where processes like members of different teams on the same relay race track, they will run and stop, async with each other, but within same race (overall program execution).
Does it make sense?
Synchronous means queue way execution one by one task will be executed. Suppose there is only vehicle that need to be share among friend to reach their destination one by one vehicle will be share.
In asynchronous case each friend can get rented vehicle and reach its destination.
In regards to the "at the same time" definition of synchronous execution (which is sometimes confusing), here's a good way to understand it:
Synchronous Execution: All tasks within a block of code are all executed at the same time.
Asynchronous Execution: All tasks within a block of code are not all executed at the same time.
Yes synchronous means at the same time, literally, it means doing work all together. multiple human/objects in the world can do multiple things at the same time but if we look at computer, it says synchronous means where the processes work together that means the processes are dependent on the return of one another and that's why they get executed one after another in proper sequence. Whereas asynchronous means where processes don't work together, they may work at the same time(if are on multithread), but work independently.

Resources