Rearrange rows of Matrix in R - r

I created the following matrix, in R
P = as.matrix(expand.grid(0:1, 0:1, 0:1, 0:1))
P = P[-1,]
Var1 Var2 Var3 Var4
[1,] 1 0 0 0
[2,] 0 1 0 0
[3,] 1 1 0 0
[4,] 0 0 1 0
[5,] 1 0 1 0
[6,] 0 1 1 0
[7,] 1 1 1 0
[8,] 0 0 0 1
[9,] 1 0 0 1
[10,] 0 1 0 1
[11,] 1 1 0 1
[12,] 0 0 1 1
[13,] 1 0 1 1
[14,] 0 1 1 1
[15,] 1 1 1 1
Is there a way to arrange the rows of P and obtain the following ??
P = matrix(c(1,1,1,1,0,1,1,1,0,0,1,1,0,0,0,1,1,1,1,0,0,1,1,0,0,0,1,0,1,1,0,0,0,1,0,0,1,0,0,0),10,4,byrow=TRUE)
[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] 0 1 1 1
[3,] 0 0 1 1
[4,] 0 0 0 1
[5,] 1 1 1 0
[6,] 0 1 1 0
[7,] 0 0 1 0
[8,] 1 1 0 0
[9,] 0 1 0 0
[10,] 1 0 0 0
In a generic way? i.e. if I increase the colums of P as as.matrix(expand.grid(0:1, 0:1, 0:1, 0:1, 0:1, 0:1)) I would like to have an equivalent rearrangement.

You can try creating the matrix you want directly by using something like this:
fun <- function(nc = 4) {
out <- lapply(rev(seq.int(nc)), function(x) {
a <- matrix(1L, ncol = x, nrow = x)
a[lower.tri(a)] <- 0L
if (x == nc) {
a
} else {
b <- matrix(0L, ncol = nc - x, nrow = nrow(a))
cbind(a, b)
}
})
do.call(rbind, out)
}
fun(4)
# [,1] [,2] [,3] [,4]
# [1,] 1 1 1 1
# [2,] 0 1 1 1
# [3,] 0 0 1 1
# [4,] 0 0 0 1
# [5,] 1 1 1 0
# [6,] 0 1 1 0
# [7,] 0 0 1 0
# [8,] 1 1 0 0
# [9,] 0 1 0 0
# [10,] 1 0 0 0

Here is a function that creates the matrix in the question and is extensible to any number of columns.
makeMat <- function(n){
f <- function(n){
p <- diag(n)
p[upper.tri(p)] <- 1
p
}
P <- lapply(rev(seq.int(n)), f)
P[-1] <- lapply(seq_along(P)[-1], function(i, n){
Q <- matrix(0, nrow = n - i + 1, ncol = i - 1)
cbind(P[[i]], Q)
}, n = n)
do.call(rbind, P)
}
makeMat(4)
# [,1] [,2] [,3] [,4]
# [1,] 1 1 1 1
# [2,] 0 1 1 1
# [3,] 0 0 1 1
# [4,] 0 0 0 1
# [5,] 1 1 1 0
# [6,] 0 1 1 0
# [7,] 0 0 1 0
# [8,] 1 1 0 0
# [9,] 0 1 0 0
#[10,] 1 0 0 0

Related

Copying the diagonal of a dataframe/matrix in the first row, by group

Say I have the following matrix mat3, where column 1 is a variable defining 2 groups:
mat1 <- diag(1, 5, 5)
mat1[,1] <- 1
mat2 <- diag(3, 5, 5)
mat2[,1] <- 3
mat3 <- rbind(mat1, mat2)
mat3
In mat3, how do I copy the diagonals of mat1 and mat2 in their respective first rows (i.e. rows 1 and 6)? The pseudocode would be: diag(mat3) by mat3[,1]
I tried the following but it did not work:
fnc <- function(x) {
res <- x
res[1,] <- diag(x)
res <<- res
}
by(mat3, as.factor(mat3[,1]), fnc)
res
In practice, I need to apply this operation to a dataframe.
Thanks a lot!
do.call(rbind, lapply(split.data.frame(mat3, mat3[,1]), \(x) {
x[1, ] <- diag(x); x
}))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 1 0 0 0
[3,] 1 0 1 0 0
[4,] 1 0 0 1 0
[5,] 1 0 0 0 1
[6,] 3 3 3 3 3
[7,] 3 3 0 0 0
[8,] 3 0 3 0 0
[9,] 3 0 0 3 0
[10,] 3 0 0 0 3
If mat3 is a data.frame, you can revise the anonymous function as
\(x) {
x[1, ] <- diag(as.matrix(x)); x
}
Here's an approch that just finds the start of each matrix assuming they are square:
idx <- seq(from=1, to=nrow(mat3), by=ncol(mat3))
for(i in idx) mat3[i, ] <- rep(mat3[i, 1], ncol(mat3))
mat3
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 1
# [2,] 1 1 0 0 0
# [3,] 1 0 1 0 0
# [4,] 1 0 0 1 0
# [5,] 1 0 0 0 1
# [6,] 3 3 3 3 3
# [7,] 3 3 0 0 0
# [8,] 3 0 3 0 0
# [9,] 3 0 0 3 0
# [10,] 3 0 0 0 3

How to form the matrix of logical '1' and '0' using two vectors and logical operators in r?

Here is Matlab code to form the matrix of logical values of '0' and '1'
A=[1 2 3 4 5 6 7 8 9 10 ];
N = numel(A);
step = 2; % Set this to however many zeros you want to add each column
index = N:-step:1;
val = (1:N+step).' <= index;
Which result in
val=
1 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 1 1 0
1 1 1 0 0
1 1 1 0 0
1 1 0 0 0
1 1 0 0 0
1 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
How to do same task in r ,particularly val = (1:N+step).' <= indexthis step?
One option is
i <- seq_len(ncol(m1))
sapply(rev(i), function(.i) {
m1[,.i][sequence(.i *2)] <- 1
m1[,.i]
})
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 1
# [2,] 1 1 1 1 1
# [3,] 1 1 1 1 0
# [4,] 1 1 1 1 0
# [5,] 1 1 1 0 0
# [6,] 1 1 1 0 0
# [7,] 1 1 0 0 0
# [8,] 1 1 0 0 0
# [9,] 1 0 0 0 0
#[10,] 1 0 0 0 0
#[11,] 0 0 0 0 0
#[12,] 0 0 0 0 0
Or vectorize it
i1 <- rep(i, rev(2*i))
m1[cbind(ave(i1, i1, FUN = seq_along), i1)] <- 1
m1
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 1
# [2,] 1 1 1 1 1
# [3,] 1 1 1 1 0
# [4,] 1 1 1 1 0
# [5,] 1 1 1 0 0
# [6,] 1 1 1 0 0
# [7,] 1 1 0 0 0
# [8,] 1 1 0 0 0
# [9,] 1 0 0 0 0
#[10,] 1 0 0 0 0
#[11,] 0 0 0 0 0
#[12,] 0 0 0 0 0
Or another option without creating a matrix beforehand
n <- 5
i1 <- seq(10, 2, by = -2)
r1 <- c(rbind(i1, rev(i1)))
matrix(rep(rep(c(1, 0), n), r1), ncol = n)
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 1
# [2,] 1 1 1 1 1
# [3,] 1 1 1 1 0
# [4,] 1 1 1 1 0
# [5,] 1 1 1 0 0
# [6,] 1 1 1 0 0
# [7,] 1 1 0 0 0
# [8,] 1 1 0 0 0
# [9,] 1 0 0 0 0
#[10,] 1 0 0 0 0
#[11,] 0 0 0 0 0
#[12,] 0 0 0 0 0
data
m1 <- matrix(0, 12, 5)

Obtain matrices by switch a one and a zero-Local search

Let's start with the following matrix.
M <- matrix(c(0,0,0,1,0,0,1,1,
0,0,1,0,0,1,1,0,
0,0,0,0,0,1,1,1,
0,0,0,1,1,0,1,0,
0,0,0,1,1,1,0,0,
0,0,1,0,1,0,0,1),nrow = 8,ncol = 6)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 0 0 0 0 0 0
[2,] 0 0 0 0 0 0
[3,] 0 1 0 0 0 1
[4,] 1 0 0 1 1 0
[5,] 0 0 0 1 1 1
[6,] 0 1 1 0 1 0
[7,] 1 1 1 1 0 0
[8,] 1 0 1 0 0 1
I want to obtain set of matrices by switching ones and zeros. For each column, starting from column 1, I wanna obtain set of matrices by switching 1 in (4,1) with 0 in (1,1), (2,1), (3,1), (5,1), (6,1) and then do the same for 1s in (7,1) and (8,1). Then continue to the other columns. There are altogether
90 matrices (15 for each column, 15*6) after switching. This is just an example. I have bigger size matrices. How do I generalize for other cases?
Here's a solution. You could wrap the whole thing up into a function. It produces a list of lists of matrices, results, where results[[i]] is a list of matrices with the ith column switched.
column_switcher = function(x) {
ones = which(x == 1)
zeros = which(x == 0)
results = matrix(rep(x, length(ones) * length(zeros)), nrow = length(x))
counter = 1
for (one in ones) {
for (zero in zeros) {
results[one, counter] = 0
results[zero, counter] = 1
counter = counter + 1
}
}
return(results)
}
switched = lapply(1:ncol(M), function(col) column_switcher(M[, col]))
results = lapply(seq_along(switched), function(m_col) {
lapply(1:ncol(switched[[m_col]]), function(i) {
M[, m_col] = switched[[m_col]][, i]
return(M)
})
})
results[[1]]
# [[1]]
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 1 0 0 0 0 0
# [2,] 0 0 0 0 0 0
# [3,] 0 1 0 0 0 1
# [4,] 0 0 0 1 1 0
# [5,] 0 0 0 1 1 1
# [6,] 0 1 1 0 1 0
# [7,] 1 1 1 1 0 0
# [8,] 1 0 1 0 0 1
#
# [[2]]
# [,1] [,2] [,3] [,4] [,5] [,6]
# [1,] 0 0 0 0 0 0
# [2,] 1 0 0 0 0 0
# [3,] 0 1 0 0 0 1
# [4,] 0 0 0 1 1 0
# [5,] 0 0 0 1 1 1
# [6,] 0 1 1 0 1 0
# [7,] 1 1 1 1 0 0
# [8,] 1 0 1 0 0 1
#
# ...
Checking the length of the list and the lengths of the sublists, they're all there.
length(results)
# [1] 6
lengths(results)
# [1] 15 15 15 15 15 15

Operate on every two columns in a matrix

Q1=c(0,1,0,1,0,1,0,1)
Q2=c(1,0,0,0,1,1,1,0)
Q3=c(0,0,0,0,0,0,0,0)
Q4=c(1,0,0,0,1,1,1,0)
Q = cbind(Q1,Q2, Q3, Q4)
Q = matrix(Q, 8, 4)
[,1] [,2] [,3] [,4]
[1,] 0 1 0 1
[2,] 1 0 0 0
[3,] 0 0 0 0
[4,] 1 0 0 0
[5,] 0 1 0 1
[6,] 1 1 0 1
[7,] 0 1 0 1
[8,] 1 0 0 0
I want to write a function
ifelse(Q[1]==1||Q[2]==1, 1,0)
and then keep increasing for column 3 and 4
ifelse(Q[3]==1||Q[4]==1, 1,0)
Return matrix
This is my code:
n = function(n){
x <- matrix(n row= 8,n col=n)
for(i in 1:n){
for (j in 1: 4){
i = 1
j = 1
x[,i]= apply(Q, 1, function(x)if else(x[j]==1||x[j+1]==1, 1,0))
j = j+2
}
return(x)
}
}
n(1)
n(2)
[,1] [,2]
[1,] 1 NA
[2,] 1 NA
[3,] 0 NA
[4,] 1 NA
[5,] 1 NA
[6,] 1 NA
[7,] 1 NA
I think I did something wrong,the new matrix suppose, plus I have over 100 columns, so I have to write increase loop every 2 columns
[,1] [,2]
[1,] 1 1
[2,] 1 0
[3,] 0 0
[4,] 1 0
[5,] 1 1
[6,] 1 1
[7,] 1 1
Thanks guys,now this time I got right. We can group by how many variables you want. I have 2 ways to do that, the first one is not good, the second one is better
> Q1=c(0,1,0,1,0,1,0,1)
> Q2=c(1,0,0,0,1,1,1,0)
> Q3=c(0,0,0,0,0,0,0,0)
> Q4=c(1,0,0,0,1,1,1,0)
> Q5=c(1,0,0,0,1,1,1,0)
> Q6=c(0,0,0,0,0,0,0,0)
> Q7=c(1,0,0,0,1,1,1,0)
> Q8=c(0,0,0,0,0,0,0,0)
> Q9=c(1,0,0,0,1,1,1,0)
> Q = cbind(Q1,Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9)
> Q = matrix(Q, 8, 9)
> Q
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
[1,] 0 1 0 1 1 0 1 0 1
[2,] 1 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0
[4,] 1 0 0 0 0 0 0 0 0
[5,] 0 1 0 1 1 0 1 0 1
[6,] 1 1 0 1 1 0 1 0 1
[7,] 0 1 0 1 1 0 1 0 1
[8,] 1 0 0 0 0 0 0 0 0
This is the first way
> x <- list(1:3,4:6,7:9)
> do.call(cbind, lapply(x, function(i) ifelse(rowSums(Q[,i]>=1), 1,0)))
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 0 0
[3,] 0 0 0
[4,] 1 0 0
[5,] 1 1 1
[6,] 1 1 1
[7,] 1 1 1
[8,] 1 0 0
>
This is the second way, it's better
> Q.t <- data.frame(t(Q))
> n <- 3
> Q.t$groups <- rep(seq(1:(ncol(Q)/n)), each = n, len = (ncol(Q)))
> QT <- data.table(Q.t)
> setkey(QT, groups)
> Q.level <- QT[,lapply(.SD,sum), by = groups]
> Q.level <- t(Q.level)
> Q.level <- Q.level[-1,]
> apply(Q.level,2, function(x) ifelse(x>=1,1,0))
[,1] [,2] [,3]
X1 1 1 1
X2 1 0 0
X3 0 0 0
X4 1 0 0
X5 1 1 1
X6 1 1 1
X7 1 1 1
X8 1 0 0
>

Identify all elements adjacent to a 1 in a binary matrix

I'm trying to create a function where at every time step in a matrix, the cells adjacent and diagonal to a 1 become 1 as well.
For example, something like this:
Input
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
Output after first time step
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
0 0 0 0 0
0 0 0 0 0
So far, I have this:
A = matrix(0,nrow=5,ncol=5)
A[2,2]=1
for (i in 1:5){
for (j in 1:5){
if ((A[i,j]==1)) {
A[,(j+1)]=1
A[,(j-1)]=1
A[(i+1),]=1
A[(i-1),]=1
A[(i+1),(j+1)]=1
A[(i+1),(j-1)]=1
A[(i-1),(j+1)]=1
A[(i-1),(j-1)]=1
}
}
}
I'm not too sure how to integrate a function in there, so I can have the resulting matrix for whatever time step I want.
You could determine if a bit is set either in the matrix or the matrix when it is shifted in any of the 8 legitimate directions (right, left, up, down, up-right, down-right, down-left, up-left):
spread <- function(X) unname(X |
rbind(F, head(X, -1)) |
rbind(tail(X, -1), F) |
cbind(F, X[,-ncol(X)]) |
cbind(X[,-1], F) |
cbind(F, rbind(F, head(X, -1))[,-ncol(X)]) |
cbind(rbind(F, head(X, -1))[,-1], F) |
cbind(F, rbind(tail(X, -1), F)[,-ncol(X)]) |
cbind(rbind(tail(X, -1), F)[,-1], F)) * 1
X <- matrix(rep(c(0, 1, 0), c(6, 1, 18)), nrow=5)
spread(X)
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 0 0
# [2,] 1 1 1 0 0
# [3,] 1 1 1 0 0
# [4,] 0 0 0 0 0
# [5,] 0 0 0 0 0
You can apply the function repeatedly to further spread the data:
spread(spread(X))
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 0
# [2,] 1 1 1 1 0
# [3,] 1 1 1 1 0
# [4,] 1 1 1 1 0
# [5,] 0 0 0 0 0
spread(spread(spread(X)))
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 1
# [2,] 1 1 1 1 1
# [3,] 1 1 1 1 1
# [4,] 1 1 1 1 1
# [5,] 1 1 1 1 1
This works for multiple 1's in the initial matrix that also can be in the first/last column/row.
A <- matrix(0, nrow = 5, ncol = 5)
A[2, 2] <- 1
A[5, 5] <- 1
A
# [,1] [,2] [,3] [,4] [,5]
# [1,] 0 0 0 0 0
# [2,] 0 1 0 0 0
# [3,] 0 0 0 0 0
# [4,] 0 0 0 0 0
# [5,] 0 0 0 0 1
spread <- function(x) {
idx <- do.call(rbind, apply(which(x == 1, arr.ind = TRUE), 1,
function(y) expand.grid(y[1] + 1:-1, y[2] + 1:-1)))
idx <- idx[!(idx[, 1] %in% c(0, nrow(x) + 1) | idx[, 2] %in% c(0, ncol(x) + 1)), ]
x[as.matrix(idx)] <- 1
x
}
spread(A)
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 0 0
# [2,] 1 1 1 0 0
# [3,] 1 1 1 0 0
# [4,] 0 0 0 1 1
# [5,] 0 0 0 1 1
spread(spread(A))
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 0
# [2,] 1 1 1 1 0
# [3,] 1 1 1 1 1
# [4,] 1 1 1 1 1
# [5,] 0 0 1 1 1
Edit:
Here is a function with a parameter k (taking values 1, 2, ...) that denotes the step of spreading 1's:
spread <- function(x, k) {
idx <- do.call(rbind, apply(which(x == 1, arr.ind = TRUE), 1,
function(y) expand.grid(y[1] + k:-k, y[2] + k:-k)))
idx <- idx[idx[, 1] %in% 1:nrow(x) & idx[, 2] %in% 1:ncol(x), ]
x[as.matrix(idx)] <- 1
x
}
spread(A, 2)
# [,1] [,2] [,3] [,4] [,5]
# [1,] 1 1 1 1 0
# [2,] 1 1 1 1 0
# [3,] 1 1 1 1 1
# [4,] 1 1 1 1 1
# [5,] 0 0 1 1 1
This works but might need some retooling for more general cases, i.e. your going to run into problems with multiple 1 in the initial matrix. If such a generalization is required please let me know and I'll gladly attempt to produce one. Or just use either josilber's or Julius's answer.
M <- as.matrix(read.table(textConnection("0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0")))
my_spread <- function(m){
e <- which(m == 1, arr.ind = TRUE)
r <- c(e[, 1] - 1, e[, 1], e[, 1] + 1)
l <- c(e[, 2] - 1, e[, 2], e[, 2] + 1)
#dealing with border cases
r <- r[nrow(m) >= r]
l <- l[ncol(m) >= l]
m[as.matrix(expand.grid(r,l))] <- 1
m
}
my_spread(M)
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 0 0
[2,] 1 1 1 0 0
[3,] 1 1 1 0 0
[4,] 0 0 0 0 0
[5,] 0 0 0 0 0
my_spread(my_spread(M))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 0
[2,] 1 1 1 1 0
[3,] 1 1 1 1 0
[4,] 1 1 1 1 0
[5,] 0 0 0 0 0
my_spread(my_spread(my_spread(M)))
[,1] [,2] [,3] [,4] [,5]
[1,] 1 1 1 1 1
[2,] 1 1 1 1 1
[3,] 1 1 1 1 1
[4,] 1 1 1 1 1
[5,] 1 1 1 1 1

Resources