I have a problem with fitdistr{MASS} function in R. I have this vector:
a <- c(26,73,84,115,123,132,159,207,240,241,254,268,272,282,300,302,329,346,359,367,375,378, 384,452,475,495,503,531,543,563,594,609,671,687,691,716,757,821,829,885,893,968,1053,1081,1083,1150,1205,1262,1270,1351,1385,1498,1546,1565,1635,1671,1706,1820,1829,1855,1873,1914,2030,2066,2240,2413,2421,2521,2586,2727,2797,2850,2989,3110,3166,3383,3443,3512,3515,3531,4068,4527,5006,5065,5481,6046,7003,7245,7477,8738,9197,16370,17605,25318,58524)
and I want to fit a gamma distribution to the data with a command:
fitted.gamma <- fitdistr(a, "gamma")
but I have such error:
Error in optim(x = c(26, 73, 84, 115, 123, 132, 159, 207, 240, 241, 254, :
non-finite finite-difference value [1]
In addition: Warning messages:
1: In densfun(x, parm[1], parm[2], ...) : NaNs produced
2: In densfun(x, parm[1], parm[2], ...) : NaNs produced
3: In densfun(x, parm[1], parm[2], ...) : NaNs produced
4: In densfun(x, parm[1], parm[2], ...) : NaNs produced
So I tried with initializing the parameters:
(fitted.gamma <- fitdistr(a, "gamma", start=list(1,1)))
The object fitted.gamma is created but when printed, creates an error:
Error in dn[[2L]] : subscript out of bounds
Do you know what is happening or maybe know some other R functions to fit univariate distributions by MLE?
Thanks in advance for any help or response.
Kuba
Always plot your stuff first, you scaling is far offfffffff.
library(MASS)
a <- c(26,73,84,115,123,132,159,207,240,241,254,268,272,282,300,302,329,346,359,367,375,378, 384,452,475,495,503,531,543,563,594,609,671,687,691,716,757,821,829,885,893,968,1053,1081,1083,1150,1205,1262,1270,1351,1385,1498,1546,1565,1635,1671,1706,1820,1829,1855,1873,1914,2030,2066,2240,2413,2421,2521,2586,2727,2797,2850,2989,3110,3166,3383,3443,3512,3515,3531,4068,4527,5006,5065,5481,6046,7003,7245,7477,8738,9197,16370,17605,25318,58524)
## Ooops, rater wide
plot(hist(a))
fitdistr(a/10000,"gamma") # gives warnings
# No warnings
fitted.gamma <- fitdistr(a/10000, dgamma, start=list(shape = 1, rate = 0.1),lower=0.001)
Now you can decide what to do with the scaling
For data that clearly fits the gamma distribution, but is on the wrong scale (i.e., as if it had been multiplied/divided by a large number), here's an alternative approach to fitting the gamma distribution:
fitgamma <- function(x) {
# Equivalent to `MASS::fitdistr(x, densfun = "gamma")`, where x are first rescaled to
# the appropriate scale for a gamma distribution. Useful for fitting the gamma distribution to
# data which, when multiplied by a constant, follows this distribution
if (!requireNamespace("MASS")) stop("Requires MASS package.")
fit <- glm(formula = x ~ 1, family = Gamma)
out <- MASS::fitdistr(x * coef(fit), "gamma")
out$scaling_multiplier <- unname(coef(fit))
out
}
Usage:
set.seed(40)
test <- rgamma(n = 100, shape = 2, rate = 2)*50000
fitdistr(test, "gamma") # fails
dens_fit <- fitgamma(test) # successs
curve(dgamma(x, 2, 2), to = 5) # true distribution
curve(dgamma(x, dens_fit$estimate['shape'], dens_fit$estimate['rate']), add=TRUE, col=2) # best guess
lines(density(test * dens_fit$scaling_multiplier), col = 3)
I have been doing some data analysis in R and I am trying to figure out how to fit my data to a 3 parameter Weibull distribution. I found how to do it with a 2 parameter Weibull but have come up short in finding how to do it with a 3 parameter.
Here is how I fit the data using the fitdistr function from the MASS package:
y <- fitdistr(x[[6]], 'weibull')
x[[6]] is a subset of my data and y is where I am storing the result of the fitting.
First, you might want to look at FAdist package. However, that is not so hard to go from rweibull3 to rweibull:
> rweibull3
function (n, shape, scale = 1, thres = 0)
thres + rweibull(n, shape, scale)
<environment: namespace:FAdist>
and similarly from dweibull3 to dweibull
> dweibull3
function (x, shape, scale = 1, thres = 0, log = FALSE)
dweibull(x - thres, shape, scale, log)
<environment: namespace:FAdist>
so we have this
> x <- rweibull3(200, shape = 3, scale = 1, thres = 100)
> fitdistr(x, function(x, shape, scale, thres)
dweibull(x-thres, shape, scale), list(shape = 0.1, scale = 1, thres = 0))
shape scale thres
2.42498383 0.85074556 100.12372297
( 0.26380861) ( 0.07235804) ( 0.06020083)
Edit: As mentioned in the comment, there appears various warnings when trying to fit the distribution in this way
Error in optim(x = c(60.7075705026659, 60.6300379017397, 60.7669410153573, :
non-finite finite-difference value [3]
There were 20 warnings (use warnings() to see them)
Error in optim(x = c(60.7075705026659, 60.6300379017397, 60.7669410153573, :
L-BFGS-B needs finite values of 'fn'
In dweibull(x, shape, scale, log) : NaNs produced
For me at first it was only NaNs produced, and that is not the first time when I see it so I thought that it isn't so meaningful since estimates were good. After some searching it seemed to be quite popular problem and I couldn't find neither cause nor solution. One alternative could be using stats4 package and mle() function, but it seemed to have some problems too. But I can offer you to use a modified version of code by danielmedic which I have checked a few times:
thres <- 60
x <- rweibull(200, 3, 1) + thres
EPS = sqrt(.Machine$double.eps) # "epsilon" for very small numbers
llik.weibull <- function(shape, scale, thres, x)
{
sum(dweibull(x - thres, shape, scale, log=T))
}
thetahat.weibull <- function(x)
{
if(any(x <= 0)) stop("x values must be positive")
toptim <- function(theta) -llik.weibull(theta[1], theta[2], theta[3], x)
mu = mean(log(x))
sigma2 = var(log(x))
shape.guess = 1.2 / sqrt(sigma2)
scale.guess = exp(mu + (0.572 / shape.guess))
thres.guess = 1
res = nlminb(c(shape.guess, scale.guess, thres.guess), toptim, lower=EPS)
c(shape=res$par[1], scale=res$par[2], thres=res$par[3])
}
thetahat.weibull(x)
shape scale thres
3.325556 1.021171 59.975470
An alternative: package "lmom". The estimative by L-moments technique
library(lmom)
thres <- 60
x <- rweibull(200, 3, 1) + thres
moments = samlmu(x, sort.data = TRUE)
log.moments <- samlmu( log(x), sort.data = TRUE )
weibull_3parml <- pelwei(moments)
weibull_3parml
zeta beta delta
59.993075 1.015128 3.246453
But I don´t know how to do some Goodness-of-fit statistics in this package or in the solution above. Others packages you can do Goodness-of-fit statistics easily. Anyway, you can use alternatives like: ks.test or chisq.test