In short: How can I call, from within Rccp C++ code, the agrep C internal function that gets called when users use the regular agrep function from base R?
In long: I have found multiple questions here about how to invoke, from within Rcpp, a C or C++ function created for another package (e.g. using C function from other package in Rcpp
and Rcpp: Call C function from a package within Rcpp).
The thing that I am trying to achieve, however, is at the same time simpler but also way less documented: it is to directly call, from within Rcpp, a .Internal C function that comes with base R rather than another package, without interfacing with R (that is, without doing what is said in Call R functions in Rcpp). How could I do that for the .Internal C function that lays underneath base R's agrep wrapper?
The specific function I am trying to call here is the agrep internal C function. And for context, what I am ultimately trying to achieve is to speed-up a call to agrep for when millions of patterns must be each checked against each of millions of x targets.
Great question. The long and short of it is "You cant" (in many cases) unless the function is visible in one of the header files in "src/include/". At least not that easily.
Not long ago I had a similar fun challenge, where I tried to get access to the do_docall function (called by do.call), and it is not a simple task. First of all, it is not directly possible to just #include <agrep.c> (or something similar). That file simply isn't available for inclusion, as it is not a part of the "src/include". It is compiled and the uncompiled file is removed (not to mention that one should never "include" a .c file).
If one is willing to go the mile, then the next step one could look at is "copying" and "altering" the source code. Basically find the function in "src/main/agrep.c", copy it into your package and then fix any errors you find.
Problems with this approach:
As documented in R-exts the internal structures of sexprec_info is not made public (this is the base structure for all objects in R). Many internal function use the fields within this structure, so one has to "copy" the structure into your source code, to make it public to your code specifically.
If you ever #include <Rcpp.h> prior to this file, you will need to go through each and every call to internal functions and likely add either R_ or Rf_.
The function may contain calls to other "internal" functions, that further needs to be copied and altered for it to work.
You will also need to get a clear understanding of what CDR, CAR and similar does. The internal functions have a documented structure, where the first argument contains the full call passed to the function, and function like those 2 are used to access parts of the call.
I did myself a solid and rewrote do_docall changing the input format, to avoid having to consider this. But this takes time. The alternative is to create a pairlist according to the documentation, set its type as a call-sexp (the exact name is lost to me at the moment) and pass the appropriate arguments for op, args and env.
And lastly, if you go through the steps, and find that it is necessary to copy the internal structures of sexprec_info (as described later), then you will need to be very careful about when you include Rinternals and Rcpp, as any one of these causes your code to crash and burn in the most beautiful and silent way if you include your header and these in the wrong order! Note that this even goes for [[Rcpp::export]], which may indeed turn out to include them in the wrong arbitrary order!
If you are willing to go this far down the drainage, I would suggest carefully reading adv-R "R's C interface" and Chapter 2, 5 and 6 of R-ext and maybe even the R internal manual, and finally once that is done take a look at do_docall from src/main/coerce.c and compare it to the implementation in my repository cmdline.arguments/src/utils/{cmd_coerce.h, cmd_coerce.c}. In this version I have
Added all the internal structures that are not public, so that I can access their unmodified form (unmodified by the current session).
This includes the table used to store the currently used SEXP's, that was used as a lookup. This caused a problem as I can't access the modified version, so my code is slightly altered with the old code blocked by the macro #if --- defined(CMDLINE_ARGUMENTS_MAYBE_IN_THE_FUTURE). Luckily the code causing a problem had a static answer, so I could work around this (but this might not always be the case).
I added quite a few Rf_s as their macro version is not available (since I #include <Rcpp.h> at some point)
The code has been split into smaller functions to make it more readable (for my own sake).
The function has one additional argument (name), that is not used in the internal function, with some added errors (for my specific need).
This implementation will be frozen "for all time to come" as I've moved on to another branch (and this one is frozen for my own future benefit, if I ever want to walk down this path again).
I spent a few days scouring the internet for information on this and found 2 different posts, talking about how this could be achieved, and my approach basically copies this. Whether this is actually allowed in a cran package, is an whole other question (and not one that I will be testing out).
This approach goes again if you want to use not-public code from other packages. While often here it is as simple as "copy-paste" their files into your repository.
As a final side note, you mention the intend is to "speed up" your code for when you have to perform millions upon millions of calls to agrep. It seems that this is a time where one should consider performing the task in parallel. Even after going through the steps outlined above, creating N parallel sessions to take care of K evaluations each (say 100.000), would be the first step to reduce computing time. Of course each session should be given a batch and not a single call to agrep.
Related
In most languages with switch statements, switch is a special form designed such that the possibilities are evaluated lazily and the compiler knows how to optimise the selection of statements based on the given input. R, mostly already being lazy, does not need some of this. However, R's switch statement is still a function call, rather than any sort of special form. Does this mean that R's switch statement is slower than it would be if it were a special form? Or does R's interpreter know to optimise it as if it were a special form?
If you look at internal code of switch in file src/main/builtin.c, you can read in lines 1009-1025 :
This is a SPECIALSXP, so arguments need to be evaluated as needed.
SPECIALSXP means :
no SEXPTYPE Description
7 SPECIALSXP special functions
So switch is actually a special function which passes unevaluated arguments to the internal function.
Further reading the source code from line 1030 to line 1104 shows that as explained in ?switch, the function either handles character or number in a simple and not fully optimized way.
This probably explains why switch isn't particularly fast in situations which would for example require a binary search.
I was reading up on the documentation of macros and ran into the following under the `Hold up: why macros' section. The reasoning given to use macros is as follows:
Macros are necessary because they execute when code is parsed,
therefore, macros allow the programmer to generate and include
fragments of customized code before the full program is run
This leads me to wonder why someone would want to use "generate and include fragments of customized code before the full program is run". Can someone provide context as to why this would be beneficial and/or other good use cases for macros?
Let me give you my view on macros.
A macro basically is a code -> code function. It takes code (a Julia expression) as input and spits out code (a different Julia expression).
Why is this useful? It has multiple purposes:
compile time copy-and-paste: You don't have to write the same piece of code multiple times but instead can define a short macro that writes it for you wherever you put it. (example)
domain specific language (DSL): You can create special syntax that after the macros code -> code transform is replaced by pure Julia constructs. This is used in many packages to define special syntax, for example here and here.
code generation: Imagine you want to write a really long piece of code which, although being long, is very simple because it has some kind of pattern that repeats itself rather trivially. Writing that code by hand can be a pain (or even practically impossible). A macro can programmatically generate the code for you. One example is for-loop unrolling (see here and here). But even the #time macro isn't doing much more than just putting a bunch of Base.time_ns() function calls around the provided Julia expression.
special string parsing: If you type the literal 3.2 in Julia it will be parsed and interpreted as a Float64. Now, imagine you want to supply a number literally that goes beyond Float64 precision but would fit into a BigFloat. Typing big(3.123124812498124812498) won't work, because the literal number is first interpreted as a Float64 and then handed to the big function. Instead you need a way to tell Julia at parse time that this should become a BigFloat. This is handled by a #big_str 3.2 macro which (for convenience) can also be written as big"3.2". The latter is just syntactic sugar.
There might be many more applications of macros, but those are the most important to me.
Let me end by referencing Steven G. Johnson's great talk at JuliaCon 2019:
Most of the time, don't do metaprogramming :)
Here is a piece of R code that writes to each element of a matrix in a reference class. It runs incredibly slowly, and I’m wondering if I’ve missed a simple trick that will speed this up.
nx = 2000
ny = 10
ref_matrix <- setRefClass(
"ref_matrix",fields = list(data = "matrix"),
)
out <- ref_matrix(data = matrix(0.0,nx,ny))
#tracemem(out$data)
for (iy in 1:ny) {
for (ix in 1:nx) {
out$data[ix,iy] <- ix + iy
}
}
It seems that each write to an element of the matrix triggers a check that involves a copy of the entire matrix. (Uncommenting the tracemen() call shows this.) Now, I’ve found a discussion that seems to confirm this:
https://r-devel.r-project.narkive.com/8KtYICjV/rd-copy-on-assignment-to-large-field-of-reference-class
and this also seems to be covered by Speeding up field access in R reference classes
but in both of these this behaviour can be bypassed by not declaring a class for the field, and this works for the example in the first link which uses a 1D vector, b, which can just be set as b <<- 1:10000. But I’ve not found an equivalent way of creating a 2D array without using a explicit “matrix” instance.
Am I just missing something simple, or is this actually not possible?
Let me add a couple of things. First, I’m very new to R, so could easily have missed something. Second, I’m really just curious about the way reference classes work in this case and whether there’s a simple way to use them efficiently; I’m not looking for a really fast way to set the elements of a matrix - I can do that by not having the matrix in a reference class at all, and if I really care about speed I can write a C routine to do it and call it from R.
Here’s some background that might explain why I’m interested in this, which you’re welcome to ignore.
I got here by wanting to see how different languages, and even different compiler options and different ways of coding the same operation, compared for efficiency when accessing 2D rectangular arrays. I’ve been playing with a test program that creates two 2D arrays of the same size, and calls a subroutine that sets the first to the elements of the second plus their index values. (Almost any operation would do, but this one isn’t completely trivial to optimise.) I have this in a number of languages now, C, C++, Julia, Tcl, Fortran, Swift, etc., even hand-coded assembler (spoiler alert: assembler isn’t worth the effort any more) and thought I’d try R. The obvious implementation in R passes the two arrays to a subroutine that does the work, but because R doesn’t normally pass by reference, that routine has to make a copy of the modified array and return that as the function value. I thought using a reference class would avoid the relatively minor overhead of that copy, so I tried that and was surprised to discover that, far from speeding things up, it slowed them down enormously.
Use outer:
out$data <- outer(1:ny, 1:nx, `+`)
Also, don't use reference classes (or R6 classes) unless you actually need reference semantics. KISS and all that.
I am often confronted with the following situation when I debug my Julia code:
I suspect that a certain variable (often a large matrix) deep inside my code is not what I intended it to be and I want to have a closer look at it. Ideally, I want to have access to it in the REPL so I can play around with it.
What is the best practice to get access to variables several function layers deep without passing them up the chain, i.e. changing the function returns?
Example:
function multiply(u)
v = 2*u
w = subtract(v)
return w
end
function subtract(x)
i = x-5
t = 10
return i-3t
end
multiply(10)
If I run multiply() and suspect that the intermediate variable i is not what I assume it should be, how would I gain access to it in the REPL?
I know that I could just write a test function and test that i has the intended properties right inside subtract(), but sometimes it would just be quicker to use the REPL.
This is the same in any programming language. You can use debugging tools like ASTInterpreter2 (which has good Juno integration) to step through your code and have an interactive REPL in the current environment, or you can use println debugging where you run the code with #show commands in there to print out values.
I have started using the doMC package for R as the parallel backend for parallelised plyr routines.
The parallelisation itself seems to be working fine (though I have yet to properly benchmark the speedup), my problem is that the logging is now asynchronous and messages from different cores are getting mixed in together. I could created different logfiles for each core, but I think I neater solution is to simply add a different label for each core. I am currently using the log4r package for my logging needs.
I remember when using MPI that each processor got a rank, which was a way of distinguishing each process from one another, so is there a way to do this with doMC? I did have the idea of extracting the PID, but this does seem messy and will change for every iteration.
I am open to ideas though, so any suggestions are welcome.
EDIT (2011-04-08): Going with the suggestion of one answer, I still have the issue of correctly identifying which subprocess I am currently inside, as I would either need separate closures for each log() call so that it writes to the correct file, or I would have a single log() function, but have some logic inside it determining which logfile to append to. In either case, I would still need some way of labelling the current subprocess, but I am not sure how to do this.
Is there an equivalent of the mpi_rank() function in the MPI library?
I think having multiple process write to the same file is a recipe for a disaster (it's just a log though, so maybe "disaster" is a bit strong).
Often times I parallelize work over chromosomes. Here is an example of what I'd do (I've mostly been using foreach/doMC):
foreach(chr=chromosomes, ...) %dopar% {
cat("+++", chr, "+++\n")
## ... some undoubtedly amazing code would then follow ...
}
And it wouldn't be unusual to get output that tramples over each other ... something like (not exactly) this:
+++chr1+++
+++chr2+++
++++chr3++chr4+++
... you get the idea ...
If I were in your shoes, I think I'd split the logs for each process and set their respective filenames to be unique with respect to something happening in that process's loop (like chr in my case above). Collate them later if you must ... ie. map/reduce your log files :-)