Optimising nested for loops in R - r

I tried to speed the below code but without any success.
I read about Rfast package but I also fail in implementing that package.
Is there any way to optimise the following code in R?
RI<-function(y,x,a,mu,R=500,t=500){
x <- as.matrix(x)
dm <- dim(x)
n <- dm[1]
bias1 <- bias2 <- bias3 <- numeric(t)
b1 <- b2<- b3 <- numeric(R)
### Outliers in Y ######
for (j in 1:t) {
for (i in 1:R) {
id <- sample(n, a * n)
z <- y
z[id] <- rnorm(id, mu)
b1[i] <- var(coef(lm(z ~., data = as.data.frame(x))))
b2[i] <- var(coef(rlm(z ~ ., data = data.frame(x), maxit = 2000, method = "MM")))
b3[i] <- var(coef(rlm(z ~ ., data = data.frame(x), psi = psi.huber,maxit = 300)))
}
bias1[j] <- sum(b1) ; bias2[j] <- sum(b2); bias3[j] <- sum(b3)
}
bias <- cbind("lm" = bias1,"MM-rlm" = bias2, "H-rlm" = bias3)
colMeans(bias)
}
#######################################
p <- 5
n <- 200
x<- matrix(rnorm(n * p), ncol = p)
y<-rnorm(n)
a=0.2
mu <-10
#######################################
RI(y,x,a,mu)

Related

Jackknife in R to obtain interval estimates

I have a question on how to use the jackknife using the bootstrap package. I want to obtain the interval estimate for the jackknife method.
I've tried running the code below, but no results for my parameter estimate.
rm(list=ls())
library(bootstrap)
library(maxLik)
set.seed(20)
lambda <- 0.02
beta <- 0.5
alpha <- 0.10
n <- 40
N <- 1000
lambda_hat <- NULL
beta_hat <- NULL
cp <- NULL
jack_lambda <- matrix(NA, nrow = N, ncol = 2)
jack_beta <- matrix(NA, nrow = N, ncol = 2)
### group all data frame generated from for loop into a list of data frame
data_full <- list()
for(i in 1:N){
u <- runif(n)
c_i <- rexp(n, 0.0001)
t_i <- (log(1 - (1 / lambda) * log(1 - u))) ^ (1 / beta)
s_i <- 1 * (t_i < c_i)
t <- pmin(t_i, c_i)
data_full[[i]] <- data.frame(u, t_i, c_i, s_i, t)
}
### statistic function for jackknife()
estjack <- function(data, j) {
data <- data[j, ]
data0 <- data[which(data$s_i == 0), ] #uncensored data
data1 <- data[which(data$s_i == 1), ] #right censored data
data
LLF <- function(para) {
t1 <- data$t_i
lambda <- para[1]
beta <- para[2]
e <- s_i*log(lambda*t1^(beta-1)*beta*exp(t1^beta)*exp(lambda*(1-exp(t1^beta))))
r <- (1-s_i)*log(exp(lambda*(1-exp(t1^beta))))
f <- sum(e + r)
return(f)
}
mle <- maxLik(LLF, start = c(para = c(0.02, 0.5)))
lambda_hat[i] <- mle$estimate[1]
beta_hat[i] <- mle$estimate[2]
return(c(lambda_hat[i], beta_hat[i]))
}
jackknife_resample<-list()
for(i in 1:N) {
jackknife_resample[[i]]<-data_full[[i]][-i]
results <- jackknife(jackknife_resample, estjack,R=1000)
jack_lambda[i,]<-lambda_hat[i]+c(-1,1)*qt(alpha/2,n-1,lower.tail = FALSE)*results$jack.se
jack_beta[i,]<-beta_hat[i]+c(-1,1)*qt(alpha/2,n-1,lower.tail = FALSE)*results$jack.se
}```
I couldn't get the parameter estimate that run in MLE and hence couldn't proceed to the next step. Can anyone help?

Convert for loops into foreach loops

I want to make the code below more efficient by using the foreach package. I tried it for a very long time but I don't manage to get the same result as when using the for-loops. I would like to use a nested foreach-loop including parallelization... And as output I would like to have two matrices with dim [R,b1] I would be very grateful for some suggestions!!
n <- c(100, 300, 500)
R <- 100
b0 <- 110
b1 <- seq(0.01, 0.1, length.out = 100)
## all combinations of n and b1
grid <- expand.grid(n, b1)
names(grid) <- c("n", "b1")
calcPower <- function( R, b0, grid) {
cl <- makeCluster(3)
registerDoParallel(cl)
## n and b1 coefficients
n <- grid$n
b1 <- grid$b1
## ensures reproducibility
set.seed(2020)
x <- runif(n, 18, 80)
x.dich <- factor( ifelse( x < median( x), 0, 1))
## enables to store two outputs
solution <- list()
## .options.RNG ensures reproducibility
res <- foreach(i = 1:R, .combine = rbind, .inorder = TRUE, .options.RNG = 666) %dorng% {
p.val <- list()
p.val.d <- list()
for( j in seq_along(b1)) {
y <- b0 + b1[j] * x + rnorm(n, 0, sd = 10)
mod.lm <- lm( y ~ x)
mod.lm.d <- lm( y ~ x.dich)
p.val <- c( p.val, ifelse( summary(mod.lm)$coef[2,4] <= 0.05, 1, 0))
p.val.d <- c( p.val.d, ifelse( summary(mod.lm.d)$coef[2,4] <= 0.05, 1, 0))
}
solution[[1]] <- p.val
solution[[2]] <- p.val.d
return(solution)
}
dp.val <- matrix( unlist(res[,1], use.names = FALSE), R, length(b1), byrow = TRUE)
dp.val.d <- matrix( unlist(res[,2], use.names = FALSE), R, length(b1), byrow = TRUE)
stopCluster(cl)
df <- data.frame(
effectS = b1,
power = apply( dp.val, 2, function(x){ mean(x) * 100}),
power.d = apply( dp.val.d, 2, function(x){ mean(x) * 100}),
n = factor(n))
return(df)
}
## simulation for different n
tmp <- with(grid,
by( grid, n,
calcPower, R = R, b0 = b0))
## combines the 3 results
df.power <- rbind(tmp[[1]], tmp[[2]], tmp[[3]])
I created a foreach loop in following code. There had to be some changes made. It is a lot easier to return a list then a matrix in foreach, since it's combined with rbind. Especially when you want to return multiple ones. My solution here is to save everything in a list and afterwards transform it into a matrix of length 100.
Note: there is one mistake in your code. summary( mod.lm.d)$coef[2,4] does not exist. I changed it to [2]. Adjust to your needing
solution <- list()
df2<-foreach(i = 1:R, .combine = rbind, .inorder=TRUE) %dopar%{
set.seed(i)
p.val <- list()
p.val.d <- list()
counter <- list()
for( j in seq_along(b1)){
x <- sort( runif(n, 18, 80))
x.dich <- factor( ifelse( x < median(x), 0, 1))
y <- b0 + b1[j] * x + rnorm( n, 0, sd = 10)
mod.lm <- lm( y ~ x)
mod.lm.d <- lm( y ~ x.dich)
p.val <- c(p.val, ifelse( summary( mod.lm)$coef[2] <= 0.05, 1, 0))
p.val.d <- c(p.val.d, ifelse( summary( mod.lm.d)$coef[2] <= 0.05, 1, 0))
counter <- c(counter, j)
}
solution[[1]] <- p.val
solution[[2]] <- p.val.d
solution[[3]] <- counter
return(solution)
}
dp.val <- unlist(df2[,1], use.names = FALSE)
dp.val.d <- unlist(df2[,2], use.names = FALSE)
dp.val.matr <- matrix(dp.val, R, length(b1))
dp.val.d.matr <- matrix(dp.val.d, R, length(b1))
stopCluster(cl)
for your comment:
A foreach does work with a normal for loop. Minimal reproducible example:
df<-foreach(i = 1:R, .combine = cbind, .inorder=TRUE) %dopar%{
x <- list()
for(j in 1:3){
x <- c(x,j)
}
return(x)
}

Objective function in optim evaluates to length 3 not 1

I am new to R and trying to find the optimal values of 3 parameters via indirect inference from a simulated panel data set, but getting an error "objective function in optim evaluates to length 3 not 1". I tried to check past posts, but the one I found didn't address the problem I am facing.
The code works if I only try for one parameter instead of 3. Here is the code:
#Generating data
modelp <- function(Y,alpha,N,T){
Yt <- Y[,2:T]
Ylag <- Y[,1:(T-1)]
Alpha <- alpha[,2:T]
yt <- matrix(t(Yt), (T-1)*N, 1)
ylag <- matrix(t(Ylag), (T-1)*N, 1)
alph <- matrix(t(Alpha), (T-1)*N, 1)
rho.ind <- rep(NA,N)
sigma_u <- rep(NA,N)
sigma_a <- rep(NA,N)
for(n in 1:N){
sigma_u[n] <- sigma(lm(yt~alph+ylag))
sigma_a[n] <- lm(yt~alph+ylag)$coef[2] #
(diag(vcov((lm(yt~alph+ylag)$coef),complete=TRUE)))[2] #
rho.ind[n] <- lm(yt~alph+ylag)$coef[3]
}
param <- matrix(NA,1,3)
param[1]<- mean(sum(rho.ind))
param[2]<- mean(sum(sigma_u))
param[3]<- mean(sum(sigma_a))
return(param)
}
## Function to estimate parameters
H.theta <- function(param.s){
set.seed(tmp.seed) #set seed
param.s.tmp <- matrix(0,1,3)
for(s in 1:H){
eps.s <- matrix(rnorm(N*T), N, T) #white noise erros
eps0.s <- matrix(rnorm(N*T), N, 1) #error for initial condition
alph.s <- matrix(rnorm(N*T),N,T)
Y.s <- matrix( 0, N, T)
ys.lag <- eps0.s
for(t in 1:T){ #Simulating the AR(1) process data
ys <- alph.s[,t]+param.s[1] * ys.lag + eps.s[,t] # [n,1:t]
Y.s[,t] <- ys
ys.lag <- ys
}
param.s.tmp <- param.s.tmp + modelp(Y.s, alph.s,N, T)
param.s[2] <- param.s.tmp[2]
param.s[3] <- mean(var(alph.s)) #param.s.tmp[3]
}
return( (param.data - param.s.tmp/H)^2 )
#return(param.s[1])
}
#Results for T = 10 & H = 10, N=100
nrep <-10
rho <-0.9
sigma_u <- 1
sigma_a <- 1.5
param <- matrix(NA,1,3)
param[1] <- rho
param[2] <- sigma_u
param[3] <- sigma_u
s.mu <- 0 # Mean
s.ep <- 0.5 #White Noise -initial conditions
Box <- cbind(rep(100,1),c(20),rep(c(5),1))
r.simu.box <- matrix(0,nrep,nrow(Box))
r.data.box <- matrix(0,nrep,nrow(Box))
for(k in 1:nrow(Box)){
N <- Box[k,1] #Number of individuals in panel
T <- Box[k,2] #Length of Panel
H <- Box[k,3] # Number of simulation paths
p.data <-matrix(NA,nrep,3)
p.simu <-matrix(NA,nrep,3)
est <- matrix(NA,1,3)
for(i in 1:nrep){
mu <- matrix(rnorm(N )*s.mu, N, 1)
eps <- matrix(rnorm(N*T)*s.ep, N, T)
eps0 <- matrix(rnorm(N*T)*s.ep, N, 1)
alph <- matrix(rnorm(N ), N, T)
Y <- matrix( 0, N, T)
y.lag <- (1-param[1])*mu + eps0
for(t in 1:T){
y <- alph[,t]+param[1]*y.lag +eps[,t]
Y[,t] <- y
y.lag <- y
}
param.data <- modelp(Y,alph,N,T) #Actual data
p.data[i,1:3] <- param.data
tmp.seed <- 3864+i+100*(k-1) #Simulated data
x0 <- c(0.5, 0,0)
est[i] <- optim(x0, H.theta,method = "BFGS", hessian = TRUE)$par
p.simu[i,1:3] <- est[i]
if(i%%10==0) print(c("Finished the (",i,")-th replication"))
}
}
mean(p.data[,1])- mean(p.simu[,1])
mean(p.data[,2])- mean(p.simu[,2])
sqrt(mean((p.data[1]-p.simu[1])^2))
I expect to get three values. Any help or suggestion will be greatly appreciated.

Constraints in constrOptim.nl in r

I am using R package costrOptim.nl.
I need to minimize a function with the following constraints:
Alpha < sqrt(2*omega) and omega > 0
In my code expressed as:
theta[3] < sqrt(2*theta[1]) and theta[1] > 0
I write these conditions as:
Image
But when I call optimizer and run it.
I'm getting the following problem:
1: In sqrt(2 * theta[1]) : NaNs produced
Why? Did I set the proper conditions?
This is my whole code.
data <- read.delim(file = file, header = FALSE)
ind <- seq(from = 1, to = NROW(data), by = 1)
data <- data.frame(ind = ind, Ret = data$V1, Ret2 = data$V1^2)
colnames(data)[1] <- "Ind"
colnames(data)[2] <- "Ret"
colnames(data)[3] <- "Ret2"
T <- length(data$Ret)
m <- arima(x = data$Ret2, order = c(3,0,0), include.mean = TRUE, method = c("ML"))
b_not <- m$coef
omega <- 0.1
alpha <- 0.005
beta <- 0.9
theta <- c(omega,beta,alpha) # "some" value of theta
s0 <- theta[1]/(1-theta[2])
theta[3] < sqrt(2*theta[1]) # check whether the Feller condition is verified
N <- 30000
reps <- 1
rho <- -0.8
n <- 100
heston.II <- function(theta){
set.seed(5)
u <- rnorm(n = N*reps,mean = 0, sd = 1)
u1 <- rnorm(n = N*reps,mean = 0, sd = 1)
u2 <- rho*u + sqrt((1-rho^2))*u1
sigma <- matrix(0, nrow = N*reps, ncol = 1)
ret.int <- matrix(0, nrow = N*reps, ncol = 1)
sigma[1,1] <- s0
for (i in 2:(N*reps)) {
sigma[i,1] <- theta[1] + theta[2]*sigma[i-1,1] + theta[3]*sqrt(sigma[i-1,1])*u1[i]
# if(sigma[i,1] < 0.00000001){ sigma[i,1] = s0}
}
for (i in 1:(N*reps)) {
ret.int[i,1] <- sqrt(sigma[i,1])*u2[i]
}
ret <- matrix(0, nrow = N*reps/n, ncol = 1)
ret[1,1] <- sum(ret.int[1:n],1)
for (i in 2:((N*reps)/n)) {
ret[i,] <- sum(ret.int[(n*i):(n*(i+1))])
ret[((N*reps)/n),] <- sum(ret.int[(n*(i-1)):(n*i)])
}
ret2 <- ret^2
model <- arima(x = ret2, order = c(3,0,0), include.mean = TRUE)
beta_hat <- model$coef
m1 <- beta_hat[1] - b_not[1]
m2 <- beta_hat[2] - b_not[2]
m3 <- beta_hat[3] - b_not[3]
m4 <- beta_hat[4] - b_not[4]
D <- cbind(m1,m2,m3,m4)
DD <- (D)%*%t(D)/1000
DD <- as.numeric(DD)
return(DD)
}
heston.sim <- heston.II(theta)
hin <- function(theta){
h <- rep(NA, 2)
h[1] <- theta[1]
h[2] <- sqrt(2*theta[1]) - theta[3]
return(h)
}
hin(theta = theta)
.opt <- constrOptim.nl(par = theta, fn = heston.II, hin = hin)
.opt

Predicting binary response probabilities from gamlss R object

I want to predict binary class probabilities/class labels from gamlss R function, how can the predict function be used to get them?
I have the following sample code
library(gamlss)
X1 <- rnorm(500)
X2 <- sample(c("A","C","D","E"),500, replace = TRUE)
Y <- ifelse(X1>0.2& X2=="A",1,0)
n <- 500
training <- sample(1:n, 400)
testing <- (1:n)[-training]
fit <- gamlss(Y[training]~pcat(X2[training],Lp=1)+ri(X1[training],Lp=1),family=BI())
pred <- predict(fit,newdata = data.frame(X1,X2)[testing,],type = "response")
Error in predict.gamlss(fit, newdata = data.frame(X1, X2)[testing, ], :
define the original data using the option data
Any idea?
You need to define the original data using the data option of gamlss:
library(gamlss)
set.seed(1)
n <- 500
X1 <- rnorm(n)
X2 <- sample(c("A","C","D","E"), n, replace = TRUE)
Y <- ifelse(X1>0.2 & X2=="A", 1, 0)
dtset <- data.frame(X1, X2, Y)
training <- sample(1:n, 400)
XYtrain <- dtset[training,]
XYtest <- dtset[-training,]
fit <- gamlss(Y ~ pcat(X2, Lp=1) + ri(X1, Lp=1), family=BI(), data=XYtrain)
pred <- predict(fit, type="response", newdata=XYtest)
Unfortunately, predict now generates a new error message:
Error in if (p != ap) stop("the dimensions of the penalty matrix and
of the design matrix are incompatible") : argument is of length
zero
This problem can be solved modifying the gamlss.ri function used by predict.gamlss:
gamlss.ri <- function (x, y, w, xeval = NULL, ...)
{
regpen <- function(sm, D, P0, lambda) {
for (it in 1:iter) {
RD <- rbind(R, sqrt(lambda) * sqrt(omega.) * D)
svdRD <- svd(RD)
rank <- sum(svdRD$d > max(svdRD$d) * .Machine$double.eps^0.8)
np <- min(p, N)
U1 <- svdRD$u[1:np, 1:rank]
y1 <- t(U1) %*% Qy
beta <- svdRD$v[, 1:rank] %*% (y1/svdRD$d[1:rank])
dm <- max(abs(sm - beta))
sm <- beta
omega. <- c(1/(abs(sm)^(2 - Lp) + kappa^2))
if (dm < c.crit)
break
}
HH <- (svdRD$u)[1:p, 1:rank] %*% t(svdRD$u[1:p, 1:rank])
edf <- sum(diag(HH))
fv <- X %*% beta
row.names(beta) <- namesX
out <- list(fv = fv, beta = beta, edf = edf, omega = omega.)
}
fnGAIC <- function(lambda, k) {
fit <- regpen(sm, D, P0, lambda)
fv <- fit$fv
GAIC <- sum(w * (y - fv)^2) + k * fit$edf
GAIC
}
X <- if (is.null(xeval))
as.matrix(attr(x, "X"))
else as.matrix(attr(x, "X"))[seq(1, length(y)), , drop=FALSE] # Added drop=FALSE
namesX <- as.character(attr(x, "namesX"))
D <- as.matrix(attr(x, "D"))
order <- as.vector(attr(x, "order"))
lambda <- as.vector(attr(x, "lambda"))
df <- as.vector(attr(x, "df"))
Lp <- as.vector(attr(x, "Lp"))
kappa <- as.vector(attr(x, "kappa"))
iter <- as.vector(attr(x, "iter"))
k <- as.vector(attr(x, "k"))
c.crit <- as.vector(attr(x, "c.crit"))
method <- as.character(attr(x, "method"))
gamlss.env <- as.environment(attr(x, "gamlss.env"))
startLambdaName <- as.character(attr(x, "NameForLambda"))
N <- sum(w != 0)
n <- nrow(X)
p <- ncol(X)
aN <- nrow(D)
ap <- ncol(D)
qrX <- qr(sqrt(w) * X, tol = .Machine$double.eps^0.8)
R <- qr.R(qrX)
Q <- qr.Q(qrX)
Qy <- t(Q) %*% (sqrt(w) * y)
if (p != ap)
stop("the dimensions of the penalty matrix and of the design matrix are incompatible")
P0 <- diag(p) * 1e-06
sm <- rep(0, p)
omega. <- rep(1, p)
tau2 <- sig2 <- NULL
lambdaS <- get(startLambdaName, envir = gamlss.env)
if (lambdaS >= 1e+07)
lambda <- 1e+07
if (lambdaS <= 1e-07)
lambda <- 1e-07
if (is.null(df) && !is.null(lambda) || !is.null(df) && !is.null(lambda)) {
fit <- regpen(sm, D, P0, lambda)
fv <- fit$fv
}
else if (is.null(df) && is.null(lambda)) {
lambda <- lambdaS
switch(method, ML = {
for (it in 1:20) {
fit <- regpen(sm, D, P0, lambda)
gamma. <- D %*% as.vector(fit$beta) * sqrt(fit$omega)
fv <- X %*% fit$beta
sig2 <- sum(w * (y - fv)^2)/(N - fit$edf)
tau2 <- sum(gamma.^2)/(fit$edf - order)
lambda.old <- lambda
lambda <- sig2/tau2
if (abs(lambda - lambda.old) < 1e-04 || lambda >
1e+05) break
}
}, GAIC = {
lambda <- nlminb(lambda, fnGAIC, lower = 1e-07, upper = 1e+07,
k = k)$par
fit <- regpen(sm, D, P0, lambda)
fv <- fit$fv
assign(startLambdaName, lambda, envir = gamlss.env)
}, )
}
else {
edf1_df <- function(lambda) {
edf <- sum(1/(1 + lambda * UDU$values))
(edf - df)
}
Rinv <- solve(R)
S <- t(D) %*% D
UDU <- eigen(t(Rinv) %*% S %*% Rinv)
lambda <- if (sign(edf1_df(0)) == sign(edf1_df(1e+05)))
1e+05
else uniroot(edf1_df, c(0, 1e+05))$root
fit <- regpen(sm, D, P0, lambda)
fv <- fit$fv
}
waug <- as.vector(c(w, rep(1, nrow(D))))
xaug <- as.matrix(rbind(X, sqrt(lambda) * D))
lev <- hat(sqrt(waug) * xaug, intercept = FALSE)[1:n]
var <- lev/w
coefSmo <- list(coef = fit$beta, lambda = lambda, edf = fit$edf,
sigb2 = tau2, sige2 = sig2, sigb = if (is.null(tau2)) NA else sqrt(tau2),
sige = if (is.null(sig2)) NA else sqrt(sig2), fv = as.vector(fv),
se = sqrt(var), Lp = Lp)
class(coefSmo) <- "ri"
if (is.null(xeval)) {
list(fitted.values = as.vector(fv), residuals = y - fv,
var = var, nl.df = fit$edf - 1, lambda = lambda,
coefSmo = coefSmo)
}
else {
ll <- dim(as.matrix(attr(x, "X")))[1]
nx <- as.matrix(attr(x, "X"))[seq(length(y) + 1, ll),
]
pred <- drop(nx %*% fit$beta)
pred
}
}
# Replace "gamlss.ri" in the package "gamlss"
assignInNamespace("gamlss.ri", gamlss.ri, pos="package:gamlss")
pred <- predict(fit, type="response", newdata=XYtest)
print(head(pred))
# [1] 2.220446e-16 2.220446e-16 2.220446e-16 4.142198e-12 2.220446e-16 2.220446e-16

Resources