Create a matrix symmetric from long table in r - r

This is my data
df <- data.frame (Var1 <- c("a", "b", "c","d","e","b","c","d","e","c","d","e","d","e","e"),
Var2 <- c("a","a","a","a","a","b","b","b","b","c","c","c","d","d","e")
pre <- c(1,2,3,4,5,1,6,7,8,1,9,10,1,11,1) )
I would like to build a symmetric matrix with Var1 and Var2 function as rownames and colnames, and the matrix values are the Corresponding number in "pre" in r, like this:
a b c d e
a 1 2 3 4 5
b 2 1 6 7 8
c 3 6 1 9 10
d 4 7 9 1 11
e 5 8 10 11 1
This seems to be an easy problem, but I have googled a lot of posts, but it has not been solved, so I come here to ask, thank you!
Mengying

You can get the data in wide format first.
library(dplyr)
library(tidyr)
mat <- df %>%
pivot_wider(names_from = Var2, values_from = pre, values_fill = 0) %>%
column_to_rownames('Var1') %>%
as.matrix()
mat
# a b c d e
#a 1 0 0 0 0
#b 2 1 0 0 0
#c 3 6 1 0 0
#d 4 7 9 1 0
#e 5 8 10 11 1
Since you have a symmetric matrix you can copy the lower triangular matrix to upper triangle.
mat[upper.tri(mat)] <- t(mat)[upper.tri(mat)]
mat
# a b c d e
#a 1 2 3 4 5
#b 2 1 6 7 8
#c 3 6 1 9 10
#d 4 7 9 1 11
#e 5 8 10 11 1
data
df <- data.frame (Var1 = c("a", "b", "c","d","e","b","c","d","e","c","d","e","d","e","e"),
Var2 = c("a","a","a","a","a","b","b","b","b","c","c","c","d","d","e"),
pre = c(1,2,3,4,5,1,6,7,8,1,9,10,1,11,1) )

Here is an option with igraph package
g <- graph_from_data_frame(df,directed = FALSE)
E(g)$pre <- df$pre
get.adjacency(g,attr = "pre")
which gives
a b c d e
a 1 2 3 4 5
b 2 1 6 7 8
c 3 6 1 9 10
d 4 7 9 1 11
e 5 8 10 11 1

Base R solution (using data provided by Ronak):
# Crosstab:
mdat <- as.data.frame.matrix(xtabs(pre ~ Var1 + Var2, df))
# Reflect on the diag (thanks #Ronak Shah):
mdat[upper.tri(mdat)] <- t(mdat)[upper.tri(mdat)]
As #ThomasIsCoding points as well we can use this one-liner:
xtabs(pre ~ ., unique(rbind(df, cbind(setNames(rev(df[-3]), names(df)[-3]), df[3] ))))
As #thelatemail points out we can also:
xtabs(pre ~ ., unique(data.frame(Map(c, df, df[c(2,1,3)]))))

Here's a base R version:
df <- data.frame (Var1 = c("a", "b", "c","d","e","b","c","d","e","c","d","e","d","e","e"),
Var2 = c("a","a","a","a","a","b","b","b","b","c","c","c","d","d","e"),
pre = c(1,2,3,4,5,1,6,7,8,1,9,10,1,11,1))
# Generate new matrix/data frame
mat2 <- matrix(0, length(unique(df$Var1)), length(unique(df$Var2)))
# Name the columns and rows so we can access values
rownames(mat2) <- unique(df$Var1)
colnames(mat2) <- unique(df$Var2)
# Save values into appropriate places into data frame
mat2[as.matrix(df[, 1:2])] <- as.matrix(df[, 3])
# Using upper triangle trick from #Ronak Shah's answer
mat2[upper.tri(mat)] <- t(mat2)[upper.tri(mat2)]
# See results
mat2
# a b c d e
# a 1 2 3 4 5
# b 2 1 6 7 8
# c 3 6 1 9 10
# d 4 7 9 1 11
# e 5 8 10 11 1

Related

Combining elements of one column into two columns by group in R

Given a two column data.frame with one containing group labels and a second containing integer values ordered from smallest to largest. How can the data be expanded creating pairs of combinations of the integer column?
Not sure the best way to state this. I'm not interested in all possible combinations but instead all unique combinations starting from the lowest value.
In r, the combn function gives the desired output not considering groups, for example:
t(combn(seq(1:4),2))
[,1] [,2]
[1,] 1 2
[2,] 1 3
[3,] 1 4
[4,] 2 3
[5,] 2 4
[6,] 3 4
Since the first values is 1 we get the unique combination of (1,2) and not the additional combination of (2,1) which I don't need. How would one then apply a similar method by groups?
for example given a data.frame
test <- data.frame(Group = rep(c("A","B"),each=4),
Val = c(1,3,6,8,2,4,5,7))
test
Group Val
1 A 1
2 A 3
3 A 6
4 A 8
5 B 2
6 B 4
7 B 5
8 B 7
I was able to come up with this solution that gives the desired output:
test <- data.frame(Group = rep(c("A","B"),each=4),
Val = c(1,3,6,8,2,4,5,7))
j=1
for(i in unique(test$Group)){
if(j==1){
one <- filter(test,i == Group)
two <- data.frame(t(combn(one$Val,2)))
test1 <- data.frame(Group = i,Val1=two$X1,Val2=two$X2)
j=j+1
}else{
one <- filter(test,i == Group)
two <- data.frame(t(combn(one$Val,2)))
test2 <- data.frame(Group = i,Val1=two$X1,Val2=two$X2)
test1 <- rbind(test1,test2)
}
}
test1
Group Val1 Val2
1 A 1 3
2 A 1 6
3 A 1 8
4 A 3 6
5 A 3 8
6 A 6 8
7 B 2 4
8 B 2 5
9 B 2 7
10 B 4 5
11 B 4 7
12 B 5 7
However, this is not elegant and is really slow as the number of groups and length of each group become large. It seems like there should be a more elegant and efficient solution but so far I have not come across anything on SO.
I would appreciate any ideas!
here is a data.table approach
library( data.table )
#make test a data.table
setDT(test)
#split by group
L <- split( test, by = "Group")
#get unique combinations of 2 Vals
L2 <- lapply( L, function(x) {
as.data.table( t( combn( x$Val, m = 2, simplify = TRUE ) ) )
})
#merge them back together
data.table::rbindlist( L2, idcol = "Group" )
# Group V1 V2
# 1: A 1 3
# 2: A 1 6
# 3: A 1 8
# 4: A 3 6
# 5: A 3 8
# 6: A 6 8
# 7: B 2 4
# 8: B 2 5
# 9: B 2 7
#10: B 4 5
#11: B 4 7
#12: B 5 7
You can set simplify = F in combn() and then use unnest_wider() in dplyr.
library(dplyr)
library(tidyr)
test %>%
group_by(Group) %>%
summarise(Val = combn(Val, 2, simplify = F)) %>%
unnest_wider(Val, names_sep = "_")
# Group Val_1 Val_2
# <chr> <dbl> <dbl>
# 1 A 1 3
# 2 A 1 6
# 3 A 1 8
# 4 A 3 6
# 5 A 3 8
# 6 A 6 8
# 7 B 2 4
# 8 B 2 5
# 9 B 2 7
# 10 B 4 5
# 11 B 4 7
# 12 B 5 7
library(tidyverse)
df2 <- split(df$Val, df$Group) %>%
map(~gtools::combinations(n = 4, r = 2, v = .x)) %>%
map(~as_tibble(.x, .name_repair = "unique")) %>%
bind_rows(.id = "Group")

Multiply columns in different dataframes

I am writing a code for analysis a set of dplyr data.
here is how my table_1 looks:
1 A B C
2 5 2 3
3 9 4 1
4 6 3 8
5 3 7 3
And my table_2 looks like this:
1 D E F
2 2 9 3
I would love to based on table 1 column"A", if A>6, then create a column "G" in table1, equals to "C*D+C*E"
Basically, it's like make table 2 as a factor...
Is there any way I can do it?
I can apply a filter to Column "A" and multiply Column"C" with a set number instead of a factor from table_2
table_1_New <- mutate(Table_1,G=if_else(A<6,C*2+C*9))
You could try
#Initialize G column with 0
df1$G <- 0
#Get index where A value is greater than 6
inds <- df1$A > 6
#Multiply those values with D and E from df2
df1$G[inds] <- df1$C[inds] * df2$D + df1$C[inds] * df2$E
df1
# A B C G
#2 5 2 3 0
#3 9 4 1 11
#4 6 3 8 0
#5 3 7 3 0
Using dplyr, we can do
df1 %>% mutate(G = ifelse(A > 6, C*df2$D + C*df2$E, 0))

Reorder a subset of an R data.frame modifying the row names as well

Given a data.frame:
foo <- data.frame(ID=1:10, x=1:10)
rownames(foo) <- LETTERS[1:10]
I would like to reorder a subset of rows, defined by their row names. However, I would like to swap the row names of foo as well. I can do
sel <- c("D", "H") # rows to reorder
foo[sel,] <- foo[rev(sel),]
sel.wh <- match(sel, rownames(foo))
rownames(foo)[sel.wh] <- rownames(foo)[rev(sel.wh)]
but that is long and complicated. Is there a simpler way?
We can replace the sel values in rownames with the reverse of sel.
x <- rownames(foo)
foo[replace(x, x %in% sel, rev(sel)), ]
# ID x
#A 1 1
#B 2 2
#C 3 3
#H 8 8
#E 5 5
#F 6 6
#G 7 7
#D 4 4
#I 9 9
#J 10 10
Not as concise as ronak-shah's answer, but you could also use order.
# extract row names
temp <- row.names(foo)
# reset of vector
temp[which(temp %in% sel)] <- temp[rev(which(temp %in% sel))]
# reset order of data.frame
foo[order(temp),]
ID x
A 1 1
B 2 2
C 3 3
H 8 8
E 5 5
F 6 6
G 7 7
D 4 4
I 9 9
J 10 10
As noted in the comments, this relies on the row names following a lexicographical order. In instances where this is not true, we can use match.
# set up
set.seed(1234)
foo <- data.frame(ID=1:10, x=1:10)
row.names(foo) <- sample(LETTERS[1:10])
sel <- c("D", "H")
Now, the rownames are
# initial data.frame
foo
ID x
B 1 1
F 2 2
E 3 3
H 4 4
I 5 5
D 6 6
A 7 7
G 8 8
J 9 9
C 10 10
# grab row names
temp <- row.names(foo)
# reorder vector containing row names
temp[which(temp %in% sel)] <- temp[rev(which(temp %in% sel))]
Using, match along with order
foo[order(match(row.names(foo), temp)),]
ID x
B 1 1
F 2 2
E 3 3
D 6 6
I 5 5
H 4 4
A 7 7
G 8 8
J 9 9
C 10 10
your data frame is small so you can duplicate it then change the value of each raw:
footmp<-data.frame(foo)
foo[4,]<-footemp[8,]
foot{8,]<-footemp[4,]
Bob

Sort Data in the Table

For example, now I get the table
A B C
A 0 4 1
B 2 1 3
C 5 9 6
I like to order the columns and rows by my own defined order, to achieve
B A C
B 1 2 3
A 4 0 1
C 9 5 6
This can be accomplished in base R. First we make the example data:
# make example data
df.text <- 'A B C
0 4 1
2 1 3
5 9 6'
df <- read.table(text = df.text, header = T)
rownames(df) <- LETTERS[1:3]
A B C
A 0 4 1
B 2 1 3
C 5 9 6
Then we simply re-order the columns and rows using a vector of named indices:
# re-order data
defined.order <- c('B', 'A', 'C')
df <- df[, defined.order]
df <- df[defined.order, ]
B A C
B 1 2 3
A 4 0 1
C 9 5 6
If the defined order is given as
defined_order <- c("B", "A", "C")
and the initial table is created by
library(data.table)
# create data first
dt <- fread("
id A B C
A 0 4 1
B 2 1 3
C 5 9 6")
# note that row names are added as own id column
then you could achieve the desired result using data.table as follows:
# change column order
setcolorder(dt, c("id", defined_order))
# change row order
dt[order(defined_order)]
# id B A C
# 1: B 1 2 3
# 2: A 4 0 1
# 3: C 9 5 6

Convert a matrix with dimnames into a long format data.frame

Hoping there's a simple answer here but I can't find it anywhere.
I have a numeric matrix with row names and column names:
# 1 2 3 4
# a 6 7 8 9
# b 8 7 5 7
# c 8 5 4 1
# d 1 6 3 2
I want to melt the matrix to a long format, with the values in one column and matrix row and column names in one column each. The result could be a data.table or data.frame like this:
# col row value
# 1 a 6
# 1 b 8
# 1 c 8
# 1 d 1
# 2 a 7
# 2 c 5
# 2 d 6
...
Any tips appreciated.
Use melt from reshape2:
library(reshape2)
#Fake data
x <- matrix(1:12, ncol = 3)
colnames(x) <- letters[1:3]
rownames(x) <- 1:4
x.m <- melt(x)
x.m
Var1 Var2 value
1 1 a 1
2 2 a 2
3 3 a 3
4 4 a 4
...
The as.table and as.data.frame functions together will do this:
> m <- matrix( sample(1:12), nrow=4 )
> dimnames(m) <- list( One=letters[1:4], Two=LETTERS[1:3] )
> as.data.frame( as.table(m) )
One Two Freq
1 a A 7
2 b A 2
3 c A 1
4 d A 5
5 a B 9
6 b B 6
7 c B 8
8 d B 10
9 a C 11
10 b C 12
11 c C 3
12 d C 4
Assuming 'm' is your matrix...
data.frame(col = rep(colnames(m), each = nrow(m)),
row = rep(rownames(m), ncol(m)),
value = as.vector(m))
This executes extremely fast on a large matrix and also shows you a bit about how a matrix is made, how to access things in it, and how to construct your own vectors.
A modification that doesn't require you to know anything about the storage structure, and that easily extends to high dimensional arrays if you use the dimnames, and slice.index functions:
data.frame(row=rownames(m)[as.vector(row(m))],
col=colnames(m)[as.vector(col(m))],
value=as.vector(m))

Resources