I am supposed to find the mean and standard deviation at each given sample size (N), using the "FOR LOOP". I started writing the code as below, I am required to save all the means into vector "p". How do I save all the means into one vector?
sample.sizes =c(3,10,50,100,500,1000)
mean.sds = numeric(0)
for ( N in sample.sizes ){
x <- rnorm(3,mean=0,sd=1)
mean.sds[i]
}
mean(x)
Actually you are doing many thing wrong?
If you are using variable N in for loop, you are not using it anywhere
for (N in 'some_vector') actually means N will take that value one by one. So N in sample sizes will first take, 3 then 10 then 50 and so on.
Now where does i come into picture?
You are calculating x for each iteration of N. In fact you are not using N anywhere in the loop?
first x will return 3 values. In the next line you intend to store these three values in just ith value of mean.sds where i is unknown and storing three values into one value, as it is, is not logically possible.
Do you want this?
sample.sizes =c(3,10,50,100,500,1000)
mean.sds = numeric(0)
for ( i in seq_along(sample.sizes )){
x <- rnorm(sample.sizes[i], mean=0, sd=1)
mean.sds[i] <- mean(x)
}
mean.sds
[1] 0.6085489531 -0.1547286299 0.0052106559 -0.0452804986 -0.0374094936 0.0005667246
I replaced N with seq_along(sample.sizes) which will give iterations equal to the number of that vector. Six in this example.
I passed each ith element to first argument of rnorm to generate these many random values.
Stored each random value into single vector. calculated its mean (one value only) and stored in ith value of your empty vector.
Related
I have a question for an assignment I'm doing.
Q:
"Set the seed at 1, then using a for-loop take a random sample of 5 mice 1,000 times. Save these averages.
What proportion of these 1,000 averages are more than 1 gram away from the average of x ?"
I understand that basically, I need to write a code that says: What percentage of "Nulls" is +or- 1 gram from the average of "x." I'm not really certain how to write that given that this course hasn't given us the information on how to do that yet is asking us to do so. Any help on how to do so?
url <- "https://raw.githubusercontent.com/genomicsclass/dagdata/master/inst/extdata/femaleControlsPopulation.csv"
filename <- basename(url)
download(url, destfile=filename)
x <- unlist( read.csv(filename) )
set.seed(1)
n <- 1000
nulls<-vector("numeric", n)
for(i in 1:n){
control <- sample(x, 5)
nulls[i] <-mean(control)
##I know my last line for this should be something like this
## mean(nulls "+ or - 1")> or < mean(x)
## not certain if they're asking for abs() to be involved.
## is the question asking only for those that are 1 gram MORE than the avg of x?
}
Thanks for any help.
Z
I do think that the absolute distance is what they're after here.
Vectors in R are nice in that you can just perform arithmetic operations between a vector and a scalar and it will apply it element-wise, so computing the absolute value of nulls - mean(x) is easy. The abs function also takes vectors as arguments.
Logical operators (such as < and >) can also be used in the same way, making it equally simple to compare the result with 1. This will yield a vector of booleans (TRUE/FALSE) where TRUE means the value at that index was indeed greater than 1, but booleans are really just numbers (1 or 0), so you can just sum that vector to find the number of TRUE elements.
I don't know what programming level you are on, but I hope this helps without giving the solution away completely (since you said it's for an assignment).
I am dealing with some computational feature extracting problem from RNA data, and I found myself unable to deal with this question:
I have n sequences (say two for example) from which I obtained an iterated statistic i times (kind of doing a Monte Carlo iteration for analizing distribution of obtained statistics compared with original).
Example:
Say we iterate 10 times
n <- 10
I got a vector of 20 values with all the iterations, but this vector corresponds to two different sequences, so I must divide this vector in two equal parts (the iterations are ordered 1:10 - 1:10 for each sequence).
MFEit <- c(10, 12, 34, 32, 12 .....) ## vector of length 20
MFEit.split <- split(MFEit, ceiling(MFEit.along/n5))
This generates a list of two items each with 10 values, named $1 and $2
On the other hand I have a vector of two values which are the original statistics, each corresponding to each original sequence
MFE <- c(25, 15)
What I want to do is to know how many values of first item in the list MFEit.split, are equal or less than the first value of MFE, and, iteratively, how many values of second item in the list MFEit.split, are equal or less than the second value of MFE, and so on, provided that I would have more than two values or items.
I know how to do it one by one, say:
R <- length(subset(MFEit.split$`1`, MFEit.split$`1`<=MFE[1]))
R <- length(subset(MFEit.split$`2`, MFEit.split$`1`<=MFE[2]))
But... how to include this into a loop so that I can get iteratively each comparison, no matter how many MFE values or items in the list I have?
The desired output would be a vector called R, with n values corresponding to each comparison.
Any help?...
I had a custom deck consisting of eight cards of the sequence 2^n, n=0,..,6. I draw cards (without replacement) until the sum is equal or greater than the threshold. How can I implement in R a function that calculates the mean of the difference between the sum and the threshold??
I tried to do it using this How to store values in a vector with nested functions
but it takes ages... I think there is a way to do it with probabilities/simulations but I can figure out.
The threshold could be greater than the value of one single card, ie, threshold=500 or less than the value of a single card, ie, threshold=50
What I have done so far is to find all the subsets that meet the condition of the sum greater or equal to the threshold. Then I will only substract the threshold and calculate the mean.
I am using the following code in R. For a small set I get the answer quite fast. However, I have been running the function for several ours with the set containing the 56 numbers and is still working.
set<-c(rep(1,8),rep(2,8), rep(4,8),rep(8,8),rep(16,8),rep(32,8),rep(64,8))
recursive.subset <-function(x, index, current, threshold, result){
for (i in index:length(x)){
if (current + x[i] >= threshold){
store <<- append(store, sum(c(result,x[i])))
} else {
recursive.subset(x, i + 1, current+x[i], threshold, c(result,x[i]))
}
}
}
store <- vector()
inivector <- vector(mode="numeric", length=0) #initializing empty vector
recursive.subset (set, 1, 0, threshold, inivector)
I don't know if it is possible to get an exact solution, simply because there are so many possible combinations. It is probably better to do simulations, i.e. write a script for 1 full draw and then rerun that script many times. Since the solutions are very similar, the simulation should give a pretty good approximation.
Ok, here goes:
set <- rep(2^(0:6), each = 8)
thr <- 500
fun <- function(set,thr){
x <- cumsum(sample(set))
value <- x[min(which(x >= thr))]
value
}
system.time(a <- replicate(100000, fun(set,thr)))
# user system elapsed
# 1.10 0.00 1.09
mean(a - thr)
# [1] 21.22992
Explanation: Rather than drawing a card one at a time, I draw all cards simultaneously (sample) and then calculate the cumulative sum (cumsum). I then find the point where the cards at up to the threshold or larger, and find the sum of those cards back in x. We run this function many times with replicate, to obtain a vector of the values. We use mean(a-thr) to calculate the mean difference.
Edit: Made a really stupid typo in the code, fixed it now.
Edit2: Shortened the function a little.
I have created two vectors in R, using statistical distributions to build the vectors.
The first is a vector of locations on a string of length 1000. That vector has around 10 values and is called mu.
The second vector is a list of numbers, each one representing the number of features at each location mentioned above. This vector is called N.
What I need to do is generate a random distribution for all features (N) at each location (mu)
After some fiddling around, I found that this code works correctly:
for (i in 1:length(mu)){
a <- rnorm(N[i],mu[i],20)
feature.location <- c(feature.location,a)
}
This produces the right output - a list of numbers of length sum(N), and each number is a location figure which correlates with the data in mu.
I found that this only worked when I used concatenate to get the values into a vector.
My question is; why does this code work? How does R know to loop sum(N) times but for each position in mu? What role does concatenate play here?
Thanks in advance.
To try and answer your question directly, c(...) is not "concatenate", it's "combine". That is, it combines it's argument list into a vector. So c(1,2,3) is a vector with 3 elements.
Also, rnorm(n,mu,sigma) is a function that returns a vector of n random numbers sampled from the normal distribution. So at each iteration, i,
a <- rnorm(N[i],mu[i],20)
creates a vector a containing N[i] random numbers sampled from Normal(mu[i],20). Then
feature.location <- c(feature.location,a)
adds the elements of that vector to the vector from the previous iteration. So at the end, you have a vector with sum(N[i]) elements.
I guess you're sampling from a series of locations, each a variable no. of times.
I'm guessing your data looks something like this:
set.seed(1) # make reproducible
N <- ceiling(10*runif(10))
mu <- sample(seq(1000), 10)
> N;mu
[1] 3 4 6 10 3 9 10 7 7 1
[1] 206 177 686 383 767 496 714 985 377 771
Now you want to take a sample from rnorm of length N(i), with mean mu(i) and sd=20 and store all the results in a vector.
The method you're using (growing the vector) is not recommended as it will be re-copied in memory each time an element is added. (See Circle 2, although for small examples like this, it's not so important.)
First, initialize the storage vector:
f.l <- NULL
for (i in 1:length(mu)){
a <- rnorm(n=N[i], mean=mu[i], sd=20)
f.l <- c(f.l, a)
}
Then, each time, a stores your sample of length N[i] and c() combines it with the existing f.l by adding it to the end.
A more efficient approach is
unlist(mapply(rnorm, N, mu, MoreArgs=list(sd=20)))
Which vectorizes the loop. Unlist is used as mapply returns a list of vectors of varying lengths.
What does the following code do:
rnorm(10, mean=2, sd=1:10)
The first number is from N(2,1)
The second number if from N(2,2)
The third number is from N(2,3)
etc...?
The first argument tells R how many random variates you want returned. In this case, it will give you back 10 values. Those values will be drawn from normal distributions with mean equal to 2. In addition, all 10 values will be drawn from distributions with different standard deviations, the first with SD=1, the second 2, ..., the 10th SD=10. Perhaps the thing to understand is that R, by its nature, is vectorized. That is, there is no such thing as a scalar, only a vector of length=1. (I recognize that that doesn't make a lot of sense within pure math, but it does in computer science.) As a result, arguments are often 'recycled' so that they will all match the length of the longest vector, i.e., you end up with a vector of 10 means, each equal to 2, to match your vector of 10 SDs. HTH.