How to build Exponential Smoothing Model - r

My data :
library(forecast)
library(Mcomp)
# Time Series
# Subset the M3 data to contain the relevant series
ts.data<- subset(M3, 12)[[551]]
print(ts.data)
I have selected time series 551 of the monthly data of the M3 competition.
I want to build exponential smoothing model (ETS) and then calculate the in-sample error and out-of-sample error of the model.
How can i get through this ? Any help?
EDITED !
My code :
# Exponential Smoothing Model
library(forecast)
library(Mcomp)
# My data is
# Time Series
# Subset the M3 data to contain the relevant series
ts.data<- subset(M3, 12)[[551]]
print(ts.data)
library(tidyverse)
library(fpp2)
# Holt’s Method
# create training and validation
# of the data
data.train <- window(???)
data.test <- window(???)
holt.data <- holt(data.train,
h = 100)
autoplot(holt.data)
# holt's method
holt.data$model
# accuracy of the model
accuracy(holt.data, data.test)
# try to find the optimal value of beta through a loop ranging from 0.0001 to 0.5 that will minimize the RMSE test
# identify optimal alpha parameter
beta <- seq(.0001, .5, by = .001)
RMSE <- NA
for(i in seq_along(beta)) {
fit <- holt(data.train,
beta = beta[i],
h = 100)
RMSE[i] <- accuracy(fit,
data.test)[2,2]
}
# convert to a data frame and
# idenitify min alpha value
beta.fit <- data_frame(beta, RMSE)
beta.min <- filter(beta.fit,
RMSE == min(RMSE))
# plot RMSE vs. alpha
ggplot(beta.fit, aes(beta, RMSE)) +
geom_line() +
geom_point(data = beta.min,
aes(beta, RMSE),
size = 2, color = "red")
# Refit the model with the obtained optimal value of beta :
# Set the optimal value of beta nad also compare the predictive accuracy with our original model.
# new model with optimal beta
holt.data.opt <- holt(data.train,
h = 100,
beta = 0.0601)
# accuracy of first model
accuracy(holt.data, data.test)
# accuracy of new optimal model
accuracy(holt.data.opt, data.test)
p1 <- autoplot(holt.data) +
ggtitle("Original Holt's Model") +
coord_cartesian(ylim = c(400, 1000))
p2 <- autoplot(holt.data.opt) +
ggtitle("Optimal Holt's Model") +
coord_cartesian(ylim = c(400, 1000))
gridExtra::grid.arrange(p1, p2,
nrow = 1)
My problem is that i cant create my data.train and data.test samples.
data.train <- window(???)
data.test <- window(???)

From this good stack exchange answer you could do :
library(forecast)
library(Mcomp)
# Time Series
# Subset the M3 data to contain the relevant series
ts.data<- subset(M3, 12)[[551]]
ts.data
mod1 <- HoltWinters(ts.data$x, alpha=0.1, beta=FALSE, gamma=FALSE)
pred <- predict(mod1, n.ahead=30)
abs_error <- abs(pred - ts.data$xx)
mae <- sum(abs_error)/30
mae
# with forcats
mod2 <- forecast::ses(ts.data$x, h=30, alpha=0.1, initial="simple")
pred2 <- predict(mod2, n.ahead=30)
abs_error2 <- abs(pred2$mean - ts.data$xx)
mae2 <- sum(abs_error2)/30
mae2

Related

Stata vs. R: Delta Method provides different results for relative risk SE's from logit model

I've been trying to estimate the conditional mean treatment effect of covariates in a logit regression (using relative-risk) along with their standard errors for inference purposes. The delta method is necessary to calculated the standard errors for these treatment effects. I've been trying to recreate these results using the Stata user written command, adjrr, to calculate the relative risk with standard errors and confidence intervals in R.
The adjrr command in Stata calculates the adjusted relative-risk (the conditional mean treatment effect of interest for my project) and it's SE's using the delta method. The deltamethod command in R should create the same results, however this is not the case.
How can I replicate the results from Stata in R?
I used the following self generated data: (https://migariane.github.io/DeltaMethodEpiTutorial.nb.html).
R code below:
generateData <- function(n, seed){
set.seed(seed)
age <- rnorm(n, 65, 5)
age65p <- ifelse(age>=65, T, F)
cmbd <- rbinom(n, size=1, prob = plogis(1 - 0.05 * age))
Y <- rbinom(n, size=1, prob = plogis(1 - 0.02* age - 0.02 * cmbd))
data.frame(Y, cmbd, age, age65p)
}
# Describing the data
data <- generateData(n = 1000, seed = 777)
str(data)
logfit <- glm(Y ~ age65p + cmbd, data = data, family = binomial)
summary(logfit)
p1 <- predict(logfit, newdata = data.frame(age65p = T, cmbd = 0), type="response")
p0 <- predict(logfit, newdata = data.frame(age65p = F, cmbd = 0), type="response")
rr <- p1 / p0
rr
0.8123348 #result
library(msm)
se_rr_delta <- deltamethod( ~(1 + exp(-x1)) / (1 + exp(-x1 -x2)), coef(logfit), vcov(logfit))
se_rr_delta
0.6314798 #result
Stata Code (using same data):
logit Y i.age65p i.cmbd
adjrr age65p
//results below
R1 = 0.3685 (0.0218) 95% CI (0.3259, 0.4112)
R0 = 0.4524 (0.0222) 95% CI (0.4090, 0.4958)
ARR = 0.8146 (0.0626) 95% CI (0.7006, 0.9471)
ARD = -0.0839 (0.0311) 95% CI (-0.1449, -0.0229)
p-value (R0 = R1): 0.0071
p-value (ln(R1/R0) = 0): 0.0077

Hierarchical Dirichlet regression (jags)... overfitting

Good Morning, please I need community help in order to understand some problems that occurred writing this model.
I aim at modeling causes of death proportion using as predictors "log_GDP" (Gross domestic product in log scale), and "log_h" (hospital beds per 1,000 people on log scale)
y: 3 columns that are observed proportions of deaths over the years.
x1: "log_GDP" (Gross domestic product in log scale)
x2: "log_h" (hospital beds per 1,000 people in log scale)
As you can see from the estimation result in the last plot, I got a high noise level. Where I worked using just one covariate i.e. log_GDP, I obtained smoothed results
Here the model specification:
Here simulated data:
library(reshape2)
library(tidyverse)
library(ggplot2)
library(runjags)
CIRC <- c(0.3685287, 0.3675516, 0.3567829, 0.3517274, 0.3448940, 0.3391031, 0.3320184, 0.3268640,
0.3227445, 0.3156360, 0.3138515,0.3084506, 0.3053657, 0.3061224, 0.3051044)
NEOP <- c(0.3602199, 0.3567355, 0.3599409, 0.3591258, 0.3544591, 0.3566269, 0.3510974, 0.3536156,
0.3532980, 0.3460948, 0.3476183, 0.3475634, 0.3426035, 0.3352433, 0.3266048)
OTHER <-c(0.2712514, 0.2757129, 0.2832762, 0.2891468, 0.3006468, 0.3042701, 0.3168842, 0.3195204,
0.3239575, 0.3382691, 0.3385302, 0.3439860, 0.3520308, 0.3586342, 0.3682908)
log_h <- c(1.280934, 1.249902, 1.244155, 1.220830, 1.202972, 1.181727, 1.163151, 1.156881, 1.144223,
1.141033, 1.124930, 1.115142, 1.088562, 1.075002, 1.061257)
log_GDP <- c(29.89597, 29.95853, 29.99016, 30.02312, 30.06973, 30.13358, 30.19878, 30.25675, 30.30184,
30.31974, 30.30164, 30.33854, 30.37460, 30.41585, 30.45150)
D <- data.frame(CIRC=CIRC, NEOP=NEOP, OTHER=OTHER,
log_h=log_h, log_GDP=log_GDP)
cause.y <- as.matrix((data.frame(D[,1],D[,2],D[,3])))
cause.y <- cause.y/rowSums(cause.y)
mat.x<- D$log_GDP
mat.x2 <- D$log_h
n <- 15
Jags Model
dirlichet.model = "
model {
#setup priors for each species
for(j in 1:N.spp){
m0[j] ~ dnorm(0, 1.0E-3) #intercept prior
m1[j] ~ dnorm(0, 1.0E-3) # mat.x prior
m2[j] ~ dnorm(0, 1.0E-3)
}
#implement dirlichet
for(i in 1:N){
y[i,1:N.spp] ~ ddirch(a0[i,1:N.spp])
for(j in 1:N.spp){
log(a0[i,j]) <- m0[j] + m1[j] * mat.x[i]+ m2[j] * mat.x2[i] # m0 = intercept; m1= coeff log_GDP; m2= coeff log_h
}
}} #close model loop.
"
jags.data <- list(y = cause.y,mat.x= mat.x,mat.x2= mat.x2, N = nrow(cause.y), N.spp = ncol(cause.y))
jags.out <- run.jags(dirlichet.model,
data=jags.data,
adapt = 5000,
burnin = 5000,
sample = 10000,
n.chains=3,
monitor=c('m0','m1','m2'))
out <- summary(jags.out)
head(out)
Gather coefficient and I make estimation of proportions
coeff <- out[c(1,2,3,4,5,6,7,8,9),4]
coef1 <- out[c(1,4,7),4] #coeff (interc and slope) caus 1
coef2 <- out[c(2,5,8),4] #coeff (interc and slope) caus 2
coef3 <- out[c(3,6,9),4] #coeff (interc and slope) caus 3
pred <- as.matrix(cbind(exp(coef1[1]+coef1[2]*mat.x+coef1[3]*mat.x2),
exp(coef2[1]+coef2[2]*mat.x+coef2[3]*mat.x2),
exp(coef3[1]+coef3[2]*mat.x+coef3[3]*mat.x2)))
pred <- pred / rowSums(pred)
Predicted and Obs. values DB
Obs <- data.frame(Circ=cause.y[,1],
Neop=cause.y[,2],
Other=cause.y[,3],
log_GDP=mat.x,
log_h=mat.x2)
Obs$model <- "Obs"
Pred <- data.frame(Circ=pred[,1],
Neop=pred[,2],
Other=pred[,3],
log_GDP=mat.x,
log_h=mat.x2)
Pred$model <- "Pred"
tot60<-as.data.frame(rbind(Obs,Pred))
tot <- melt(tot60,id=c("log_GDP","log_h","model"))
tot$variable <- as.factor(tot$variable)
Plot
tot %>%filter(model=="Obs") %>% ggplot(aes(log_GDP,value))+geom_point()+
geom_line(data = tot %>%
filter(model=="Pred"))+facet_wrap(.~variable,scales = "free")
The problem for the non-smoothness is that you are calculating Pr(y=m|X) = f(x1, x2) - that is the predicted probability is a function of x1 and x2. Then you are plotting Pr(y=m|X) as a function of a single x variable - log of GDP. That result will almost certainly not be smooth. The log_GDP and log_h variables are highly negatively correlated which is why the result is not much more variable than it is.
In my run of the model, the average coefficient for log_GDP is actually positive for NEOP and Other, suggesting that the result you see in the plot is quite misleading. If you were to plot these in two dimensions, you would see that the result is again, smooth.
mx1 <- seq(min(mat.x), max(mat.x), length=25)
mx2 <- seq(min(mat.x2), max(mat.x2), length=25)
eg <- expand.grid(mx1 = mx1, mx2 = mx2)
pred <- as.matrix(cbind(exp(coef1[1]+coef1[2]*eg$mx1 + coef1[3]*eg$mx2),
exp(coef2[1]+coef2[2]*eg$mx1 + coef2[3]*eg$mx2),
exp(coef3[1]+coef3[2]*eg$mx1 + coef3[3]*eg$mx2)))
pred <- pred / rowSums(pred)
Pred <- data.frame(Circ=pred[,1],
Neop=pred[,2],
Other=pred[,3],
log_GDP=mx1,
log_h=mx2)
lattice::wireframe(Neop ~ log_GDP + log_h, data=Pred, drape=TRUE)
A couple of other things to watch out for.
Usually in hierarchical Bayesian models, your the parameters of your coefficients would themselves be distributions with hyperparameters. This enables shrinkage of the coefficients toward the global mean which is a hallmark of hierarhical models.
Not sure if this is what your data really look like or not, but the correlation between the two independent variables is going to make it difficult for the model to converge. You could try using a multivariate normal distribution for the coefficients - that might help.

Confusion Matrix need to be clearly clarified

Hi I tried to print the confusion matrix for a dataset using R. Following are my results
My class variables contains binary values. Medv value is my class variable binarized with Medv value of the house greater than 230k being 1, or 0 otherwise. When I see the confusion matrix, at the end represents Positive class as 0. What does this mean? Are these results misrepresents my data?
my R code so far,
# Load CART packages
library(rpart)
library(rpart.plot)
library(caTools)
library(caret)
library (pROC)
housing_data = read.csv('housing.csv')
summary(housing_data)
housing_data = na.omit(housing_data)
# CART model
latlontree = rpart(Medv ~ Crim + Rm, data=housing_data , method = "class")
# Plot the tree using prp command defined in rpart.plot package
prp(latlontree)
# Split the data for Machine Learning
set.seed(123)
split = sample.split(housing_data$Medv, SplitRatio = 0.8)
train = subset(housing_data, split==TRUE)
test = subset(housing_data, split==FALSE)
#print (train)
#print (test)
# Create a CART model
tree = rpart(Medv ~ Crim + Zn + Indus + Chas + Nox + Rm + Age + Dis + Rad + Tax + Ptratio + B + Lstat , data=train , method = "class")
prp(tree)
#Decision tree prediction
#tree.pred = predict(tree, test)
pred = predict(tree,test, type="class")
#print (pred)
table(pred, test$Medv)
table(factor(pred, levels=min(test$Medv):max(test$Medv)),
factor(test$Medv, levels=min(test$Medv):max(test$Medv)))
# If p exceeds threshold of 0.5, M else R: m_or_r
#m_or_r <- ifelse(p > 0.5, 1, 0)
#print (m_or_r)
# Convert to factor: p_class
#p_class <- factor(m_or_r, levels = test$Medv)
# Create confusion matrix
confusionMatrix(table(factor(pred, levels=min(test$Medv):max(test$Medv)),
factor(test$Medv, levels=min(test$Medv):max(test$Medv))))
#print (tree.sse)
#ROC Curve
#Obtaining predicted probabilites for Test data
tree.probs=predict(tree,
test,
type="prob")
head(tree.probs)
#Calculate ROC curve
rocCurve.tree <- roc(test$Medv,tree.probs[,2])
#plot the ROC curve
plot(rocCurve.tree,col=c(4))
auc <- auc (test$Medv,tree.probs[,2])
print (auc)
#creating a dataframe with a single row
x <- data.frame("Crim"= c(0.03), "Zn"=c(13), "Indus"=c(3.5), "Chas"=c(0.3), "Nox"=c(0.58), "Rm"=c(4.1), "Age"=c(68), "Dis"=c(4.98), "Rad" =c(3), "Tax"=c(225), "Ptratio"=c(17), "B"=c(396), "Lstat"=c(7.56))
#Obtaining predicted probabilites for Test data
probability2=predict(tree,
x,
type="prob")
print (probability2)
#Obtaining predicted class for Test data
probability3=predict(tree,
x,
type="class")
print (probability3)
Image of the dataset

Time series prediction via ARIMA model

Hi i am new in the field of time series.
I want to make predictions for a given time series
I use the code below :
library(forecast)
library(TSPred)
dataSet <- 'data'
dataSetPath <- paste0("data/", dataSet, '.csv')
# load data
recDF <- read.csv(dataSetPath, skip=0)
rt = ts(recDF["s2"])
if(dataSet=="data"){
nTrain <- 3000
nSkip <- nTrain
nData <- length(rt)
testLength <- nData - nSkip
# testLength
arima_output90 = vector(mode="numeric", length=testLength)
real = vector(mode="numeric", length=testLength)
pred2 <- arimapred(rt[seq(1, nTrain)], n.ahead=testLength)
forecast::auto.arima(rt[seq(1, nTrain)])
# Brute force ARIMA - recompute model every step
# while making predictions for the next N hours.
for(i in nSkip+1:testLength)
{
# Compute ARIMA on the full dataset up to this point
trainSet = window(rt, start=i-nTrain, end=i)
fit_arima <- forecast::auto.arima(trainSet)
# fcast_arima <- predict(fit_arima, n.ahead = 5, se.fit = TRUE)
# mean <- fcast_arima$pred
# std <- fcast_arima$se
fcast_arima <- forecast(fit_arima, h=50)
pred <- fcast_arima$mean
arima_output50[i] = pred[50]
real[i] = rt[i]
cat("step: ",i ,"true : ", rt[i], " prediction: ", pred[50], '\n')
}
I want to plot in a graph predicted and true values, in same graph to have a visualization of true values and predicted values for same time step.
How can this done?
In the model above in timestep t,does prediction pred[50] refer to value rt[i+50] (i want 50 time steps ahead prediction) , or refer to
rt[i](estimated from model brute force trained, from previous values)?
Where i is current timestep as in code, and rt is the real value for timestep i.
You can use:
ts.plot(fit_arima$x, fit_arima$fitted, pred, type='o', col=c('blue', 'green', 'red'), lty=c(1,2,3))
legend('topleft', c('train', 'fitted', 'forecast'), col=c('blue', 'green', 'red'), lty=c(1,2,3))
ts.plot automatically fetches the timestamps from the time series and plots them on the x-axis. For the standard AirPassengers data you will get the following output.

Predict using felm output with standard errors

Is there way to get predict behavior with standard errors from lfe::felm if the fixed effects are swept out using the projection method in felm? This question is very similar to the question here, but none of the answers to that question can be used to estimate standard errors or confidence/prediction intervals. I know that there's currently no predict.felm, but I am wondering if there are workarounds similar to those linked above that might also work for estimating the prediction interval
library(DAAG)
library(lfe)
model1 <- lm(data = cps1, re74 ~ age + nodeg + marr)
predict(model1, newdata = data.frame(age=40, nodeg = 0, marr=1), se.fit = T, interval="prediction")$fit
# Result: fit lwr upr
# 1 18436.18 2339.335 34533.03
model2 <- felm(data = cps1, re74 ~ age | nodeg + marr)
predict(model2, newdata = data.frame(age=40, nodeg = 0, marr=1), se.fit = T, interval="prediction")$fit
# Does not work
The goal is to estimate a prediction interval for yhat, for which I think I'd need to compute the full variance-covariance matrix (including the fixed effects). I haven't been able to figure out how to do this, and I'm wondering if it's even computationally feasible.
After conversations with several people, I don't believe it is possible to obtain an estimate the distribution of yhat=Xb (where X includes both the covariates and the fixed effects) directly from felm, which is what this question boils down to. It is possible bootstrap them, however. The following code does so in parallel. There is scope for performance improvements, but this gives the general idea.
Note: here I do not compute full prediction interval, just the SEs on Xb, but obtaining the prediction interval is straightforward - just add the root of sigma^2 to the SE.
library(DAAG)
library(lfe)
library(parallel)
model1 <- lm(data = cps1, re74 ~ age + nodeg + marr)
yhat_lm <- predict(model1, newdata = data.frame(age=40, nodeg = 0, marr=1), se.fit = T)
set.seed(42)
boot_yhat <- function(b) {
print(b)
n <- nrow(cps1)
boot <- cps1[sample(1:n, n, replace=T),]
lm.model <- lm(data=demeanlist(boot[, c("re74", "age")], list(factor(boot$nodeg), factor(boot$marr))),
formula = re74 ~ age)
fe <- getfe(felm(data = boot, re74 ~ age | nodeg + marr))
bootResult <- predict(lm.model, newdata = data.frame(age = 40)) +
fe$effect[fe$fe == "nodeg" & fe$idx==0] +
fe$effect[fe$fe == "marr" & fe$idx==1]
return(bootResult)
}
B = 1000
yhats_boot <- mclapply(1:B, boot_yhat)
plot(density(rnorm(10000, mean=yhat_lm$fit, sd=yhat_lm$se.fit)))
lines(density(yhats), col="red")
From your first model predict(.) yields this:
# fit lwr upr
# 1 18436.18 2339.335 34533.03
Following 李哲源 we can achieve these results manually, too.
beta.hat.1 <- coef(model1) # save coefficients
# model matrix: age=40, nodeg = 0, marr=1:
X.1 <- cbind(1, matrix(c(40, 0, 1), ncol=3))
pred.1 <- as.numeric(X.1 %*% beta.hat.1) # prediction
V.1 <- vcov(model1) # save var-cov matrix
se2.1 <- unname(rowSums((X.1 %*% V.1) * X.1)) # prediction var
alpha.1 <- qt((1-0.95)/2, df = model1$df.residual) # 5 % level
pred.1 + c(alpha.1, -alpha.1) * sqrt(se2.1) # 95%-CI
# [1] 18258.18 18614.18
sigma2.1 <- sum(model1$residuals ^ 2) / model1$df.residual # sigma.sq
PI.1 <- pred.1 + c(alpha.1, -alpha.1) * sqrt(se2.1 + sigma2.1) # prediction interval
matrix(c(pred.1, PI.1), nrow = 1, dimnames = list(1, c("fit", "lwr", "upr")))
# fit lwr upr
# 1 18436.18 2339.335 34533.03
Now, your linked example applied to multiple FE, we get this results:
lm.model <- lm(data=demeanlist(cps1[, c(8, 2)],
list(as.factor(cps1$nodeg),
as.factor(cps1$marr))), re74 ~ age)
fe <- getfe(model2)
predict(lm.model, newdata = data.frame(age = 40)) + fe$effect[fe$idx=="1"]
# [1] 15091.75 10115.21
The first value is with and the second without added FE (try fe$effect[fe$idx=="1"]).
Now we're following the manual approach above.
beta.hat <- coef(model2) # coefficient
x <- 40 # age = 40
pred <- as.numeric(x %*% beta.hat) # prediction
V <- model2$vcv # var/cov
se2 <- unname(rowSums((x %*% V) * x)) # prediction var
alpha <- qt((1-0.95)/2, df = model2$df.residual) # 5% level
pred + c(alpha, -alpha) * sqrt(se2) # CI
# [1] 9599.733 10630.697
sigma2 <- sum(model2$residuals ^ 2) / model2$df.residual # sigma^2
PI <- pred + c(alpha, -alpha) * sqrt(se2 + sigma2) # PI
matrix(c(pred, PI), nrow = 1, dimnames = list(1, c("fit", "lwr", "upr"))) # output
# fit lwr upr
# 1 10115.21 -5988.898 26219.33
As we see, the fit is the same as the linked example approach, but now with prediction interval. (Disclaimer: The logic of the approach should be straightforward, the values of the PI should still be evaluated, e.g. in Stata with reghdfe.)
Edit: In case you want to achieve exactly the same output from felm() which predict.lm() yields with the linear model1, you simply need to "include" again the fixed effects in your model (see model3 below). Just follow the same approach then. For more convenience you easily could wrap it into a function.
library(DAAG)
library(lfe)
model3 <- felm(data = cps1, re74 ~ age + nodeg + marr)
pv <- c(40, 0, 1) # prediction x-values
predict0.felm <- function(mod, pv.=pv) {
beta.hat <- coef(mod) # coefficient
x <- cbind(1, matrix(pv., ncol=3)) # prediction vector
pred <- as.numeric(x %*% beta.hat) # prediction
V <- mod[['vcv'] ] # var/cov
se2 <- unname(rowSums((x %*% V) * x)) # prediction var
alpha <- qt((1-0.95)/2, df = mod[['df.residual']]) # 5% level
CI <- structure(pred + c(alpha, -alpha) * sqrt(se2),
names=c("CI lwr", "CI upr")) # CI
sigma2 <- sum(mod[['residuals']] ^ 2) / mod[['df.residual']] # sigma^2
PI <- pred + c(alpha, -alpha) * sqrt(se2 + sigma2) # PI
mx <- matrix(c(pred, PI), nrow = 1,
dimnames = list(1, c("PI fit", "PI lwr", "PI upr"))) # output
list(CI, mx)
}
predict0.felm(model3)[[2]]
# PI fit PI lwr PI upr
# 1 18436.18 2339.335 34533.03
By this with felm() you can achieve the same prediction interval as with predict.lm().

Resources