How do I declare an array in R? - r

I'm trying to declare an array in R, something logically equivalent to the following Java code:
Object[][] array = new Object[6][32]
After I declare this array, I plan to loop over the indices and assign values to them.

I am not familiar with what you are planning on doing in R, but loops are generally not recommended. I would say this is especially true when you don't know the length of the output.
You might want to find a "vectorized" solution first and if not, then using something in the apply family might also be helpful
Disclaimer: I am certain there is more nuance to this discussion based on what I have read, so I don't want to claim to be an expert on this subject.

Related

Replace for loop with vectorized call of a function returning multiple values

I have the following function: problema_firma_emprestimo(r,w,r_emprestimo,posicao,posicao_banco), where all input are scalars.
This function return three different matrix, using
return demanda_k_emprestimo,demanda_l_emprestimo,lucro_emprestimo
I need to run this function for a series of values of posicao_banco that are stored in a vector.
I'm doing this using a for loop, because I need three separate matrix with each of them storing one of the three outputs of the function, and the first dimension of each matrix corresponds to the index of posicao_banco. My code for this part is:
demanda_k_emprestimo = zeros(num_bancos,na,ny);
demanda_l_emprestimo = similar(demanda_k_emprestimo);
lucro_emprestimo = similar(demanda_k_emprestimo);
for i in eachindex(posicao_bancos)
demanda_k_emprestimo[i,:,:] , demanda_l_emprestimo[i,:,:] , lucro_emprestimo[i,:,:] = problema_firma_emprestimo(r,w,r_emprestimo[i],posicao,posicao_bancos[i]);
end
Is there a fast and clean way of doing this using vectorized functions? Something like problema_firma_emprestimo.(r,w,r_emprestimo[i],posicao,posicao_bancos) ? When I do this, I got a tuple with the result, but I can't find a good way of unpacking the answer.
Thanks!
Unfortunately, it's not easy to use broadcasting here, since then you will end up with output that is an array of tuples, instead of a tuple of arrays. I think a loop is a very good approach, and has no performance penalty compared to broadcasting.
I would suggest, however, that you organize your output array dimensions differently, so that i indexes into the last dimension instead of the first:
for i in eachindex(posicao_bancos)
demanda_k_emprestimo[:, :, i] , ...
end
This is because Julia arrays are column major, and this way the output values are filled into the output arrays in the most efficient way. You could also consider making the output arrays into vectors of matrices, instead of 3D arrays.
On a side note: since you are (or should be) creating an MWE for the sake of the people answering, it would be better if you used shorter and less confusing variable names. In particular for people who don't understand Portuguese (I'm guessing), your variable names are super long, confusing and make the code visually dense. Telling the difference between demanda_k_emprestimo and demanda_l_emprestimo at a glance is hard. The meaning of the variables are not important either, so it's better to just call them A and B or X and Y, and the functions foo or something.

Perform operation on subset of vector in rust?

I'm very new to Rust, and I come from C++ land. I'm trying to use the experimental Vec::partition_at_index function. I'm trying to call this function on a certain range of indices of my vector, but have it still modify the original vector (I'm implementing a version of quicksort). Is there a way this can be done?
I also noticed Iterator::partition_in_place. Is this more what I should going for? Can the iterator version be used to operate on a subset of values?
If there are C++ folks hanging out here, I'm looking for the behavior of std::partition, which can operate on an iterator range.

How to make an R object immutable? [duplicate]

I'm working in R, and I'd like to define some variables that I (or one of my collaborators) cannot change. In C++ I'd do this:
const std::string path( "/projects/current" );
How do I do this in the R programming language?
Edit for clarity: I know that I can define strings like this in R:
path = "/projects/current"
What I really want is a language construct that guarantees that nobody can ever change the value associated with the variable named "path."
Edit to respond to comments:
It's technically true that const is a compile-time guarantee, but it would be valid in my mind that the R interpreter would throw stop execution with an error message. For example, look what happens when you try to assign values to a numeric constant:
> 7 = 3
Error in 7 = 3 : invalid (do_set) left-hand side to assignment
So what I really want is a language feature that allows you to assign values once and only once, and there should be some kind of error when you try to assign a new value to a variabled declared as const. I don't care if the error occurs at run-time, especially if there's no compilation phase. This might not technically be const by the Wikipedia definition, but it's very close. It also looks like this is not possible in the R programming language.
See lockBinding:
a <- 1
lockBinding("a", globalenv())
a <- 2
Error: cannot change value of locked binding for 'a'
Since you are planning to distribute your code to others, you could (should?) consider to create a package. Create within that package a NAMESPACE. There you can define variables that will have a constant value. At least to the functions that your package uses. Have a look at Tierney (2003) Name Space Management for R
I'm pretty sure that this isn't possible in R. If you're worried about accidentally re-writing the value then the easiest thing to do would be to put all of your constants into a list structure then you know when you're using those values. Something like:
my.consts<-list(pi=3.14159,e=2.718,c=3e8)
Then when you need to access them you have an aide memoir to know what not to do and also it pushes them out of your normal namespace.
Another place to ask would be R development mailing list. Hope this helps.
(Edited for new idea:) The bindenv functions provide an
experimental interface for adjustments to environments and bindings within environments. They allow for locking environments as well as individual bindings, and for linking a variable to a function.
This seems like the sort of thing that could give a false sense of security (like a const pointer to a non-const variable) but it might help.
(Edited for focus:) const is a compile-time guarantee, not a lock-down on bits in memory. Since R doesn't have a compile phase where it looks at all the code at once (it is built for interactive use), there's no way to check that future instructions won't violate any guarantee. If there's a right way to do this, the folks at the R-help list will know. My suggested workaround: fake your own compilation. Write a script to preprocess your R code that will manually substitute the corresponding literal for each appearance of your "constant" variables.
(Original:) What benefit are you hoping to get from having a variable that acts like a C "const"?
Since R has exclusively call-by-value semantics (unless you do some munging with environments), there isn't any reason to worry about clobbering your variables by calling functions on them. Adopting some sort of naming conventions or using some OOP structure is probably the right solution if you're worried about you and your collaborators accidentally using variables with the same names.
The feature you're looking for may exist, but I doubt it given the origin of R as a interactive environment where you'd want to be able to undo your actions.
R doesn't have a language constant feature. The list idea above is good; I personally use a naming convention like ALL_CAPS.
I took the answer below from this website
The simplest sort of R expression is just a constant value, typically a numeric value (a number) or a character value (a piece of text). For example, if we need to specify a number of seconds corresponding to 10 minutes, we specify a number.
> 600
[1] 600
If we need to specify the name of a file that we want to read data from, we specify the name as a character value. Character values must be surrounded by either double-quotes or single-quotes.
> "http://www.census.gov/ipc/www/popclockworld.html"
[1] "http://www.census.gov/ipc/www/popclockworld.html"

What is the R equivalent of numpy "stride" indexing?

In numpy if you have an array x you can access it's elements with a 'stride' (i.e. skipping some inbetween) like so: x[::2]. How can you do this in R with a vector? I've searched all over the internet and couldn't find an answer to something so simple, kind of surprising.
EDIT:
I just realized that you could use seq(), but is there no built-in method for doing this?
Ya so it turns out you just need to use
v[seq(to=length(v),by=stride)], just another quirk of R.
Though as #Igor F. mentioned they don't bother making it easier since array order is less important to statisticians. I imagine people are more likely to do something like sample(v,as.integer(length(v)/stride)) without being so verbose of course.
There is none, to my knowledge, but a hard-core R user (which I am not) would probably tell you that you are having a wrong approach. R is made for statistics, by statisticians. In their worldview, the order of the entries in an array or frame is irrelevant (or random), so there is no point in accessing them in a particular order.

What is the Julia's best approximation to R objects' attributes?

I store important metadata in R objects as attributes. I want to migrate my workflow to Julia and I am looking for a way to represent at least temporarily the attributes as something accessible by Julia. Then I can start thinking about extending the RData package to fill this data structure with actual objects' attributes.
I understand, that annotating with things like label or unit in DataFrame - I think the most important use for object' attributes - is probably going to be implemented in the DataFrames package some time (https://github.com/JuliaData/DataFrames.jl/issues/35). But I am asking about about more general solution, that doesn't depend on this specific use case.
For anyone interested, here is a related discussion in the RData package
In Julia it is ideomatic to define your own types - you'd simply make fields in the type to store the attributes. In R, the nice thing about storing things as attributes is that they don't affect how the type dispatches - e.g. adding metadata to a Vector doesn't make it stop behaving like a Vector. In julia, that approach is a little more complicated - you'd have to define the AbstractVector interface for your type https://docs.julialang.org/en/latest/manual/interfaces/#man-interface-array-1 to have it behave like a Vector.
In essence, this means that the workflow solutions are a little different - e.g. often the attribute metadata in R is used to associate metadata to an object when it's returned from a function. An easy way to do something similar in Julia is to have the function return a tuple and assign the result to a tuple:
function ex()
res = rand(5)
met = "uniformly distributed random numbers"
res, met
end
result, metadata = ex()
I don't think there are plans to implement attributes like in R.

Resources