I have the following data frame:
fakedat<-data.frame(name=c("Holdingcompany","Holdingcompany","company1","company1","company2","company2"),children=c("company1","company2","company4","company3","company5","company6"),info=c("text1","text2","text3","text5","othertext","other_text"),percentage=c("100%","100%","60%","75%","80%","70%"))
The output I am hoping is the following:
{"name": "Holdingcompany",
"children": [
{
"name": "company1",
"tooltip": "text1",
"percentage": "100%",
"children": [
{
"name": "company4",
"tooltip": "text3",
"percentage": "60%"
},
{
"name": "company3",
"tooltip": "text5",
"percentage": "75%"
}
]
},
{
"name": "company2",
"tooltip": "text2",
"percentage": "100%",
"children": [
{
"name": "company5",
"tooltip": "othertext",
"percentage": "80%"
},
{
"name": "company6",
"tooltip": "other_text",
"percentage": "70%"
}
]
}
]
}
I have attempted a couple different methods of parsing including:
How to write to json with children from R
But unfortunately I wasn't able to apply the above code to this situation properly to the the children in lists the way I was hoping.
Attempting to apply some of the solution from the below mentioned possible duplicate, I'm running into a recursion error: "C stack usage too close to limit" as the function appears to call itself.
##Adding in IDs
fakedat<-data.frame(id=c(1,2,3,4,5,6),name=c("Holdingcompany","Holdingcompany","company1","company1","company2","company2"),
children=c("company1","company2","company4","company3","company5","company6"),
info=c("text1","text2","text3","text5","othertext","other text"),
percentage=c("100%","50%","60%","75%","80%","70%"))
get_node <- function(df, id) {
node <- as.list(df[df$id == id, c("name", "info",
"percentage","id")])
names(node) = c("name", "info", "percentage","id")
id1<-df[df$id==id,]$children
if (!is.na(id1)){
child1 <- get_node(df, id)
if(child1$name == node$name){
node$children <- list(child1)}
node
}
}
jsonlite::toJSON(get_node(fakedat,6), pretty = TRUE, auto_unbox =
TRUE)`
Error: C stack usage 7972496 is too close to the limit
Consider preparing the relationships of parent to child with merge, then walk down each level of root / parent / child to build nested lists with nested lapply:
Data Preparation
### MERGE DATA
merge_df <- merge(fakedat, fakedat, by.x="children", by.y="name")
merge_df
# children name info.x percentage.x children.y info.y percentage.y
# 1 company1 Holdingcompany text1 100% company4 text3 60%
# 2 company1 Holdingcompany text1 100% company3 text5 75%
# 3 company2 Holdingcompany text2 100% company5 othertext 80%
# 4 company2 Holdingcompany text2 100% company6 other_text 70%
nested_df <- unique(merge_df[c("children", "name", "info.x", "percentage.x")])
nested_df
# children name info.x percentage.x
# 1 company1 Holdingcompany text1 100%
# 3 company2 Holdingcompany text2 100%
top_level_val <- unique(merge_df$name)
top_level_val
# [1] "Holdingcompany"
JSON Build
output <- lapply(top_level_val, function(root) {
root_lst <- list(
name = root
)
root_lst$children <- lapply(1:nrow(nested_df), function(i) {
chld_mrg <- merge(nested_df[nested_df$children == nested_df$children[i],], merge_df)
parent_lst <- list(
name = nested_df$children[i][1],
tooltip = nested_df$info.x[i][1],
percentage = nested_df$percentage.x[i][1]
)
parent_lst$children <- lapply(1:nrow(chld_mrg), function(j)
list(
name = merge_df$children.y[j][1],
tooltip = merge_df$info.y[j][1],
percentage = merge_df$percentage.y[j][1]
)
)
return(parent_lst)
})
return(root_lst)
})
# CONVERT TO JSON STRING
jdata <- toJSON(output[[1]], pretty=TRUE, auto_unbox=TRUE)
# WRITE TO DISK
fileConn <- file("NestParentChildJSON.json")
writeLines(jdata, fileConn)
close(fileConn)
Output
{
"name": "Holdingcompany",
"children": [
{
"name": "company1",
"tooltip": "text1",
"percentage": "100%",
"children": [
{
"name": "company4",
"tooltip": "text3",
"percentage": "60%"
},
{
"name": "company3",
"tooltip": "text5",
"percentage": "75%"
}
]
},
{
"name": "company2",
"tooltip": "text2",
"percentage": "100%",
"children": [
{
"name": "company4",
"tooltip": "text3",
"percentage": "60%"
},
{
"name": "company3",
"tooltip": "text5",
"percentage": "75%"
}
]
}
]
}
Related
I have a query:
SELECT c.mainColour,t AS colour
FROM c
JOIN t IN c.creatorStyleMainColours
WHERE c.creatorDefaultStyleProfile = "test"
and it returns whole of the array inside the new colour object:
[
{
"colour": {
"mainColour": "black",
"colourPairings": [
"orange",
"silver",
"gold"
]
}
}
]
I need it to just return the main colour values
how do I just select the value of the "mainColour" so its a simple array like ["black","beige","white"] from the document below
I have tried:
SELECT VALUE c.mainColour,t AS colour
FROM c
JOIN t IN c.creatorStyleMainColours
WHERE c.creatorDefaultStyleProfile = "test"
but that returns a syntax error.
Here is the full document:
{
"accountId": "59951c4d-1f0b-483b-a020",
"creatorDefaultStyleProfile": "test",
"creatorDefaultStyleGender": "Female",
"creatorStyleAccountName": "",
"creatorStyleCategory": [
{
"categoryCode": "fashion",
"categoryName": "Fashion",
"categoryMetadata": {
"occasions": [
{
"occasionCode": "casual",
"occasionName": "Casual",
"occasionTypes": [
{
"occasionCode": "out",
"occasionName": "Everyday Wear"
}
]
}
],
"season": [
{
"seasonCode": "spring",
"seasonName": "Spring"
}
]
},
"id": "fashion"
}
],
"creatorStyleDescription": "",
"creatorStyleId": "Classic_Default",
"creatorStyleImages": [
{
"styleImageUrl": "https://4965fa50-6caf-11ed-8082e.png",
"styleImageCategory": "fullsize",
"styleImageResolution": {
"width": 269.25,
"height": 359
},
"styleImagePins": [
{
"itemId": "F243906F37487C78D7EB99880142B370",
"vector": {
"x": 198.125,
"y": 44.33332824707031
}
},
{
"itemId": "9B543E0DC1B05F6E9AFD0A88285AEEF9",
"vector": {
"x": 52.791656494140625,
"y": 46.33332824707031
}
},
{
"itemId": "3E6464FC1F12E3C6E435F751438F1468",
"vector": {
"x": 120.45832824707031,
"y": 320.3333282470703
}
},
{
"itemId": "1CD6065A4C7A0BD66E44DC8A62448534",
"vector": {
"x": 115.45832824707031,
"y": 192
}
}
]
}
],
"creatorStyleItems": [
{
"creatorStyleItemId": "9B543E0DC1B05F6E9AFD0A88285AEEF9",
"ItemType": "Chest",
"creatorStyleItemName": "t-shirt",
"creatorStyleItemImages": [
{
"imageUrl": "https://images/23660493-1-white?$XXL$",
"imageCategory": "thumbnail"
}
]
},
{
"creatorStyleItemId": "F243906F37487C78D7EB99880142B370",
"ItemType": "Chest",
"creatorStyleItemName": "chunky knit cardigan",
"creatorStyleItemImages": [
{
"imageUrl": "https://images/14399002-1-black?$XXL$",
"imageCategory": "thumbnail"
}
]
},
{
"creatorStyleItemId": "1CD6065A4C7A0BD66E44DC8A62448534",
"ItemType": "Leg",
"creatorStyleItemName": " mom jeans",
"creatorStyleItemImages": [
{
"imageUrl": "https://images-blue/202501450-1-denimblack?$XXL$",
"imageCategory": "thumbnail"
}
]
},
{
"creatorStyleItemId": "3E6464FC1F12E3C6E435F751438F1468",
"ItemType": "Feet",
"creatorStyleItemName": "trainers",
"creatorStyleItemImages": [
{
"imageUrl": "https://images./203112454-1-brown?$XXL$",
"imageCategory": "thumbnail"
}
]
}
],
"creatorStyleMainColours": [
{
"mainColour": "black",
"colourPairings": [
"beige",
"grey",
"white"
]
},
{
"mainColour": "beige",
"colourPairings": [
"black",
"grey",
"white"
]
},
{
"mainColour": "white",
"colourPairings": [
"beige",
"grey",
"black"
]
}
],
"creatorStyleMerchantGroup": "test1",
"creatorStyleName": "",
"creatorStyleProfiles": [
{
"id": "",
"profileAccountId": "test1",
"profileId": "test1",
"profileIsDefault": false,
"profileName": "classic",
"profileBiometric": {
"biometricName": "",
"biometricGender": "Female",
"biometricHeight": [
],
"biometricAgeRange": [
],
"biometricHairColour": [
],
"biometricSkinColour": [
],
"biometricBodyShape": [
],
"biometricMeasurement": {
}
},
"profilePersona": {
"personaName": "",
"personaDressSense": [
],
"personaInterests": [
],
"personaStyleIcons": [
],
"personaColours": [
]
}
}
],
"creatorStyleStatus": {
"styleStatusId": "nonpublished",
"styleStatusDescription": ""
},
"id": "classicStyle1",
"_rid": "IW43AJ08x+8BAAAAAAAAAA==",
"_self": "dbs/IW43AA==/colls/IW43AJ08x+8=/docs/IW43AJ08x+8BAAAAAAAAAA==/",
"_etag": "\"97005ae1-0000-1500-0000-638523be0000\"",
"_attachments": "attachments/",
"_ts": 1669669822
}
I want to get from a data.table like this
temp <- data.table(data = list(data.table(a = 1:2,b=1:2)), type = "A")
data
type
<data.table[2x2]>
A
to a JSON like this
{
"group":
{
"data": [
{
"a": 1,
"b": 1
},
{
"a": 2,
"b": 2
}
],
"type": "A"
}
}
The Problem is I always end up with an additional array "[" for group.
What I have tried is tidyr::nest and
temp2 <- temp[, list(group=list(.SD))]
jsonlite::toJSON(temp2,pretty = TRUE, auto_unbox = TRUE)
temp3 <- temp[, (list(group=list(as.list(.SD))))]
jsonlite::toJSON(temp3,pretty = TRUE, auto_unbox = TRUE)
Is there an "easy" solution for my problem?
Thanks
edit more complex example
temp <-
data.table(
id1 = 1:6,
id2 = c(rep("A", 2), rep("B", 2), rep("C", 2)),
data = rep(list(data.table(
a = 1:2, b = 1:2
)), 6),
type = "test"
)
nest1 <- temp[, list(list(.SD)),by=.(id1,id2)] %>% setnames("V1","group")
nest1[, type:="B"]
nest2 <- nest1[, list(list(.SD)),by=.(id2)] %>% setnames("V1","data")
nest2[, type:="C"]
nest3 <- nest2[, list(list(.SD)),by=.(id2)] %>% setnames("V1","group")
jsonlite::toJSON(nest3, pretty = TRUE)
desired output (shortend):
Group should only contain objects and no arrays
[
{
"id2": "A",
"group": {
"data": [
{
"id1": 1,
"group": {
"data": [
{
"a": 1,
"b": 1
},
{
"a": 2,
"b": 2
}
],
"type": "test"
},
"type": "B"
},
{
"id1": 2,
"group": {
"data": [
{
"a": 1,
"b": 1
},
{
"a": 2,
"b": 2
}
],
"type": "test"
},
"type": "B"
}
],
"type": "C"
}
},
{
"id2": "B",
"group": {
"data": [],
"type": "C"
}
}
]
We could use jq to do the unboxing as a post-processing step, since jsonlite doesn't seem to allow for this specific use case:
jsonlite::toJSON(nest3, pretty = TRUE) %>%
jqr::jq('walk(if type=="array" and length==1 then .[0] else . end)')
The jq bit is taken from jq ~ is there a better way to collapse single object arrays?
I am new to spring MVC and need to generate a form having questions of different type how can we generate thymeleaf template and pass this JSON in model
{
"docType": "assessmentForm",
"items": [
{
"id": "101",
"docType": "question",
"model": "text",
"group": "A",
"data": {
"headingText": "Whats your name",
"promptText": "whats your nick name",
"responses": [
{
"text": ""
}
]
}
},
{
"id": "103",
"docType": "question",
"model": "radio",
"group": "B",
"data": {
"headingText": "Are you availabe at 5",
"promptText": "Are you availabe at 5",
"responses": [
{
"text": "yes",
"value": "no"
}
]
}
},
{
"id": "104",
"docType": "question",
"model": "choice",
"group": "B",
"data": {
"headingText": "What all fruite you like",
"promptText": "what all fruite you like",
"responses": [
{
"text": "Apple",
"value": "apple"
},
{
"text": "Banana",
"value": "banana"
},
{
"text": "Orange",
"value": "orange"
}
]
}
}
]
}
This JSON needs to generate a form and submitted on the server with answers. can anybody help me in this
I did not know how to store complex tidy tree data in excel, so I decided to store data for each level in a sheet.
For a simple example, consider the two following dataframes.
for making a tidy tree chart from this dataframes I have tried the following step:
Data
dim_data <- structure(list(dim1 = c("sub1", "sub2", "sub3"), dim2 = c("sub4",
"sub5", NA)), row.names = c(NA, -3L), class = c("tbl_df", "tbl",
"data.frame"))
sub_data <- structure(list(sub1 = c("a", "b", "c"), sub2 = c("d", "f", NA
), sub3 = c("e", "h", NA), sub4 = c("i", "g", NA), sub5 = c("k",
"p", NA)), row.names = c(NA, -3L), class = c("tbl_df", "tbl",
"data.frame"))
Code:
## Function to make each column a list and remove `na`.
list_remove_na <- function(x){
x <- lapply(x, as.list)
x <- sapply(x, function(x) x[!is.na(x)])
x <- sapply(x, unlist)
return(x)
sub_list <- list_remove_na(sub_data)
attach(sub_list)
data_list <- list_remove_na(dim_data)
## Making final list
integrate <- function(x){sapply(x, function(x){ x = get(x)},simplify = F)}
final_list <- sapply(data_list, integrate, simplify = F)
Final list:
final_list
$dim1
$dim1$sub1
[1] "a" "b" "c"
$dim1$sub2
[1] "d" "f"
$dim1$sub3
[1] "e" "h"
$dim2
$dim2$sub4
[1] "i" "g"
$dim2$sub5
[1] "k" "p"
Converting the final list to JSON
library(rjson)
jdata <-toJSON(final_list, indent=1, method="C")
write(jdata, file = "data.json")
JSON File:
{
"dim1":{
"sub1":[
"a",
"b",
"c"
],
"sub2":[
"d",
"f"
],
"sub3":[
"e",
"h"
]
},
"dim2":{
"sub4":[
"i",
"g"
],
"sub5":[
"k",
"p"
]
}
}
Then Using following function from here to make a Parents and children JSON data:
const treeify = (orig, parent) => Object.entries(orig).map(
([k, v]) => (Object.assign({name: k, parent}, typeof v == 'object'
? {children: treeify(v, k)}
: {children: {name: v, parent: k}}
))
)
const convert = (orig) => treeify({Root: orig}, 'null')[0]
const orig =
{
"dim1":{
"sub1":[
"a",
"b",
"c"
],
"sub2":[
"d",
"f"
],
"sub3":[
"e",
"h"
]
},
"dim2":{
"sub4":[
"i",
"g"
],
"sub5":[
"k",
"p"
]
}
}
console.log(convert(orig))
Result:
{
"name": "Root",
"parent": "null",
"children": [
{
"name": "dim1",
"parent": "Root",
"children": [
{
"name": "sub1",
"parent": "dim1",
"children": [
{
"name": "0",
"parent": "sub1",
"children": {
"name": "a",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub1",
"children": {
"name": "b",
"parent": "1"
}
},
{
"name": "2",
"parent": "sub1",
"children": {
"name": "c",
"parent": "2"
}
}
]
},
{
"name": "sub2",
"parent": "dim1",
"children": [
{
"name": "0",
"parent": "sub2",
"children": {
"name": "d",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub2",
"children": {
"name": "f",
"parent": "1"
}
}
]
},
{
"name": "sub3",
"parent": "dim1",
"children": [
{
"name": "0",
"parent": "sub3",
"children": {
"name": "e",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub3",
"children": {
"name": "h",
"parent": "1"
}
}
]
}
]
},
{
"name": "dim2",
"parent": "Root",
"children": [
{
"name": "sub4",
"parent": "dim2",
"children": [
{
"name": "0",
"parent": "sub4",
"children": {
"name": "i",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub4",
"children": {
"name": "g",
"parent": "1"
}
}
]
},
{
"name": "sub5",
"parent": "dim2",
"children": [
{
"name": "0",
"parent": "sub5",
"children": {
"name": "k",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub5",
"children": {
"name": "p",
"parent": "1"
}
}
]
}
]
}
]
}
I do not know where "name": "0" is come from!!!
And tidy tree from here
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Collapsible Tree Example</title>
<style>
.node circle {
fill: #fff;
stroke: steelblue;
stroke-width: 3px;
}
.node text { font: 12px sans-serif; }
.link {
fill: none;
stroke: #ccc;
stroke-width: 2px;
}
</style>
</head>
<body>
<!-- load the d3.js library -->
<script src="http://d3js.org/d3.v3.min.js"></script>
<script>
var treeData = [
{
"name": "Root",
"parent": "null",
"children": [
{
"name": "dim1",
"parent": "Root",
"children": [
{
"name": "sub1",
"parent": "dim1",
"children": [
{
"name": "0",
"parent": "sub1",
"children": {
"name": "a",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub1",
"children": {
"name": "b",
"parent": "1"
}
},
{
"name": "2",
"parent": "sub1",
"children": {
"name": "c",
"parent": "2"
}
}
]
},
{
"name": "sub2",
"parent": "dim1",
"children": [
{
"name": "0",
"parent": "sub2",
"children": {
"name": "d",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub2",
"children": {
"name": "f",
"parent": "1"
}
}
]
},
{
"name": "sub3",
"parent": "dim1",
"children": [
{
"name": "0",
"parent": "sub3",
"children": {
"name": "e",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub3",
"children": {
"name": "h",
"parent": "1"
}
}
]
}
]
},
{
"name": "dim2",
"parent": "Root",
"children": [
{
"name": "sub4",
"parent": "dim2",
"children": [
{
"name": "0",
"parent": "sub4",
"children": {
"name": "i",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub4",
"children": {
"name": "g",
"parent": "1"
}
}
]
},
{
"name": "sub5",
"parent": "dim2",
"children": [
{
"name": "0",
"parent": "sub5",
"children": {
"name": "k",
"parent": "0"
}
},
{
"name": "1",
"parent": "sub5",
"children": {
"name": "p",
"parent": "1"
}
}
]
}
]
}
]
}
];
// ************** Generate the tree diagram *****************
var margin = {top: 20, right: 120, bottom: 20, left: 120},
width = 960 - margin.right - margin.left,
height = 500 - margin.top - margin.bottom;
var i = 0;
var tree = d3.layout.tree()
.size([height, width]);
var diagonal = d3.svg.diagonal()
.projection(function(d) { return [d.y, d.x]; });
var svg = d3.select("body").append("svg")
.attr("width", width + margin.right + margin.left)
.attr("height", height + margin.top + margin.bottom)
.append("g")
.attr("transform", "translate(" + margin.left + "," + margin.top + ")");
root = treeData[0];
update(root);
function update(source) {
// Compute the new tree layout.
var nodes = tree.nodes(root).reverse(),
links = tree.links(nodes);
// Normalize for fixed-depth.
nodes.forEach(function(d) { d.y = d.depth * 180; });
// Declare the nodes…
var node = svg.selectAll("g.node")
.data(nodes, function(d) { return d.id || (d.id = ++i); });
// Enter the nodes.
var nodeEnter = node.enter().append("g")
.attr("class", "node")
.attr("transform", function(d) {
return "translate(" + d.y + "," + d.x + ")"; });
nodeEnter.append("circle")
.attr("r", 10)
.style("fill", "#fff");
nodeEnter.append("text")
.attr("x", function(d) {
return d.children || d._children ? -13 : 13; })
.attr("dy", ".35em")
.attr("text-anchor", function(d) {
return d.children || d._children ? "end" : "start"; })
.text(function(d) { return d.name; })
.style("fill-opacity", 1);
// Declare the links…
var link = svg.selectAll("path.link")
.data(links, function(d) { return d.target.id; });
// Enter the links.
link.enter().insert("path", "g")
.attr("class", "link")
.attr("d", diagonal);
}
</script>
</body>
</html>
The last level nodes are wrong!!!
Anybody has suggestions for fixing the problems or alternative solutions in R or Python?
Is there R or Python function to convert raw JSON to hierarchical parent and children Json?
How can I rewrite the R function to convert more than two dataframes (scaling it)?
**I have limited knowledge aboutjavascript and JSON
I'll provide a solution for your case of two data frames, but I'd like to find out whether you can store the data in a different format (which can be expanded to more dimensions). I'll illustrate below what I mean.
First, I'll load two packages. The first one (data.table) will help with the data.wrangling, whereas the second (collapsibleTree) will help with the tree visualization:
# Load packages
library(data.table)
library(collapsibleTree)
Next I convert the datasets to data.table as I want to re-format them:
# Convert datasets to data.table format
setDT(sub_data)
setDT(dim_data)
I now convert them to (what is called) 'long' format by using the melt function:
# Convert to long format
sub_data_2 = melt.data.table(sub_data, measure.vars = colnames(sub_data))
dim_data_2 = melt.data.table(dim_data, measure.vars = colnames(dim_data))
At this point, I have sub_data_2:
variable value
1: sub1 a
2: sub1 b
3: sub1 c
4: sub2 d
5: sub2 f
6: sub2 <NA>
7: sub3 e
8: sub3 h
9: sub3 <NA>
10: sub4 i
11: sub4 g
12: sub4 <NA>
13: sub5 k
14: sub5 p
15: sub5 <NA>
and dim_data_2:
variable value
1: dim1 sub1
2: dim1 sub2
3: dim1 sub3
4: dim2 sub4
5: dim2 sub5
6: dim2 <NA>
Next, we merge them:
# Merge
merged = merge(dim_data_2, sub_data_2, by.x = "value", by.y = "variable")
Then do some clean up by renaming columns, and removing those rows with NA entries:
# Cleanup
setnames(merged, colnames(merged), c("sub", "dim", "value"))
merged_2 = merged[complete.cases(merged),]
This is the format I was referring to above:
sub dim value
1: sub1 dim1 a
2: sub1 dim1 b
3: sub1 dim1 c
4: sub2 dim1 d
5: sub2 dim1 f
6: sub3 dim1 e
7: sub3 dim1 h
8: sub4 dim2 i
9: sub4 dim2 g
10: sub5 dim2 k
11: sub5 dim2 p
Is it possible for you to save in this format? Most of what I've done so far is data wrangling. As you will see below, once I have this format, tree plotting is one line of code:
collapsibleTree(merged_2, c("dim", "sub", "value"), collapsed = F)
I have array like below as one of the properties for my object. I'd like to extract certain fields and return it still as array in output. For example I want only name and storageAccountType to be returned like below
Desired Output
[
{
"name": "Data",
"storageAccountType": "Standard_LRS"
},
{
"name": "Disk2",
"storageAccountType": "Standard_LRS"
}
]
Input Array
[
{
"name": "Data",
"createOption": "Attach",
"diskSizeGB": 10,
"managedDisk": {
"id": "/subscriptions/24ba3e4c-45e3-4d55-8132-6731cf25547f/resourceGroups/GREG/providers/Microsoft.Compute/disks/Data",
"storageAccountType": "Standard_LRS"
},
"caching": "None",
"toBeDetached": false,
"lun": 0
},
{
"name": "Disk2",
"createOption": "Attach",
"diskSizeGB": 10,
"managedDisk": {
"id": "/subscriptions/24ba3e4c-45e3-4d55-8132-6731cf25547f/resourceGroups/GREG/providers/Microsoft.Compute/disks/Disk2",
"storageAccountType": "Standard_LRS"
},
"caching": "None",
"toBeDetached": false,
"lun": 1
}
]
here's a direction you could follow (which assumes you actually needs to get back arrays and not to have each element in the array in its own row. if the latter is good, remove the rows with the comments (// *)
datatable(some_value:string, d:dynamic) // just a sample data set with 2 records
[
"hello", dynamic([
{
"name": "Data",
"createOption": "Attach",
"diskSizeGB": 10,
"managedDisk": {
"id": "/subscriptions/24ba3e4c-45e3-4d55-8132-6731cf25547f/resourceGroups/GREG/providers/Microsoft.Compute/disks/Data",
"storageAccountType": "Standard_LRS"
},
"caching": "None",
"toBeDetached": false,
"lun": 0
},
{
"name": "Disk2",
"createOption": "Attach",
"diskSizeGB": 10,
"managedDisk": {
"id": "/subscriptions/24ba3e4c-45e3-4d55-8132-6731cf25547f/resourceGroups/GREG/providers/Microsoft.Compute/disks/Disk2",
"storageAccountType": "Standard_LRS"
},
"caching": "None",
"toBeDetached": false,
"lun": 1
}
]), "world", dynamic([
{
"name": "Data3",
"createOption": "Attach",
"diskSizeGB": 10,
"managedDisk": {
"id": "/subscriptions/24ba3e4c-45e3-4d55-8132-6731cf25547f/resourceGroups/GREG/providers/Microsoft.Compute/disks/Data",
"storageAccountType": "Standard_LRS"
},
"caching": "None",
"toBeDetached": false,
"lun": 0
},
{
"name": "Disk23",
"createOption": "Attach",
"diskSizeGB": 10,
"managedDisk": {
"id": "/subscriptions/24ba3e4c-45e3-4d55-8132-6731cf25547f/resourceGroups/GREG/providers/Microsoft.Compute/disks/Disk2",
"storageAccountType": "Standard_LRS"
},
"caching": "None",
"toBeDetached": false,
"lun": 1
}
])
]
// --> answer starts here <--
| extend r = rand() // *
| mv-apply d on (
project d = pack("name", d.name, "storageAccountType", d.managedDisk.storageAccountType)
)
| summarize d = make_list(d) by r, some_value // *
| project-away r // *