Tibbles print with row numbers as row names. See 1, 2 in the left margin below:
tibble::as_tibble(mtcars)
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
Can I suppress those numbers from printing, in an argument to tibble:::print.tbl() or otherwise? I know I can use the row.names = FALSE argument in print.data.frame: print.data.frame(as_tibble(mtcars), row.names = FALSE) but then I don't get all the other nice printing options of it being a tibble, it just prints like a regular data.frame.
I'd like to keep the output the same as in print.tbl() - like what's above, here - but without row numbers.
The row names are applied by pillar::squeeze. You could create a copy of the squeeze function (source here) with the relevant section commented out:
squeeze <- function(x, width = NULL, ...) {
zero_height <- length(x) == 0L || length(x[[1]]) == 0L
if (zero_height) {
return(new_colonnade_sqeezed(list(), colonnade = x, extra_cols = seq_along(x)))}
if (is.null(width)) {width <- pillar:::get_width(x)}
if (is.null(width)) {width <- getOption("width")}
rowid <- pillar:::get_rowid_from_colonnade(x)
if (is.null(rowid)) {
rowid_width <- 0 }
else { rowid_width <- max(pillar:::get_widths(rowid)) + 1L }
col_widths <- pillar:::colonnade_get_width(x, width, rowid_width)
col_widths_show <- split(col_widths, factor(col_widths$tier != 0, levels = c(FALSE, TRUE)))
col_widths_shown <- col_widths_show[["TRUE"]]
col_widths_tiers <- split(col_widths_shown, col_widths_shown$tier)
out <- map(col_widths_tiers, function(tier) {
map2(tier$pillar, tier$width, pillar:::pillar_format_parts)
})
#if (!is.null(rowid)) {
# rowid_formatted <- pillar:::pillar_format_parts(rowid, rowid_width - 1L)
# out <- map(out, function(x) c(list(rowid_formatted), x))
#}
extra_cols <- rlang:::seq2(nrow(col_widths_shown) + 1L, length(x))
pillar:::new_colonnade_sqeezed(out, colonnade = x, extra_cols = extra_cols)
}
Then assign the new version into the pillar namespace, and you are set.
library(tidyverse)
assignInNamespace("squeeze", squeeze, ns = "pillar")
as_tibble(mtcars)
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
21 6 160 110 3.9 2.62 16.5 0 1 4 4
21 6 160 110 3.9 2.88 17.0 0 1 4 4
22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
24.4 4 147. 62 3.69 3.19 20 1 0 4 2
22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
You could capture the printed output and replace the row numbers with white space, and then hijack tibble:::print.tbl
tibble::as_tibble(mtcars)
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
print.tbl <- function(x) {
## tibble:::print.tbl
o <- capture.output(tibble::as_tibble(x))
m <- gregexpr('^ *\\d+', o)
regmatches(o, m) <- ' '
cli::cat_line(o)
invisible(x)
}
tibble::as_tibble(mtcars)
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
21 6 160 110 3.9 2.62 16.5 0 1 4 4
21 6 160 110 3.9 2.88 17.0 0 1 4 4
22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
24.4 4 147. 62 3.69 3.19 20 1 0 4 2
22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
edit
Here is another attempt with a few more features. You can pass n, width, or n_extra to tibble:::print.tbl as usual:
x <- tibble::as_tibble(mtcars)
print(x, n = 3, width = 60, n_extra = 1)
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1
2 21 6 160 110 3.9 2.88 17.0 0 1
3 22.8 4 108 93 3.85 2.32 18.6 1 1
# … with 29 more rows, and 2 more variables: gear <dbl>, …
And you can also exclude the row names, dimensions, and variable class or any combination:
print(x, row.names = FALSE, dims = FALSE, classes = FALSE, n = 3)
mpg cyl disp hp drat wt qsec vs am gear carb
21 6 160 110 3.9 2.62 16.5 0 1 4 4
21 6 160 110 3.9 2.88 17.0 0 1 4 4
22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
# … with 29 more rows
Here is the function although to get these extra features you must use print(x) where x is of class tbl instead of just x.
print.tbl <- function(x, ..., row.names = TRUE, classes = TRUE, dims = TRUE) {
## tibble:::print.tbl
o <- capture.output(tibble:::print.tbl(tibble::as_tibble(x), ...))
if (!row.names) {
m <- gregexpr('^ *\\d+', o)
regmatches(o, m) <- ' '
}
if (!classes)
o <- o[!grepl('^ +<...>', o)]
if (!dims)
o <- o[!grepl('^# A tibble.*', o)]
cli::cat_line(o)
invisible(x)
}
Related
I'm trying to use dplyr::mutate to change a dynamic column with conditions using other columns dynamically.
I've got this bit of code:
d <- mtcars %>% tibble
fld_name <- "mpg"
other_fld_name <- "cyl"
d <- d %>% mutate(!!fld_name := ifelse(!!other_fld_name < 5,NA,!!fld_name))
which sets mpg to
mpg
<chr>
1 mpg
2 mpg
3 mpg
4 mpg
5 mpg
6 mpg
7 mpg
8 mpg
9 mpg
10 mpg
it seems to select the field on the LHS of assignment operator, but just pastes the field name on the RHS.
Removing the unquotes on the RHS yields the same result.
Any help is much appreciated.
use get to retreive column value instead
library(tidyverse)
d <- mtcars %>% tibble
fld_name <- "mpg"
other_fld_name <- "cyl"
d %>% mutate(!!fld_name := ifelse(get(other_fld_name) < 5 ,NA, get(fld_name)))
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 NA 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 NA 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 NA 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ... with 22 more rows
Created on 2021-06-22 by the reprex package (v2.0.0)
We can also use ensym function to quote variable name stored as string and unquote it with !! like the following:
library(rlang)
d <- mtcars %>% tibble
fld_name <- "mpg"
other_fld_name <- "cyl"
d %>%
mutate(!!ensym(fld_name) := ifelse(!!ensym(other_fld_name) < 5, NA, !!ensym(fld_name)))
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 NA 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 NA 4 147. 62 3.69 3.19 20 1 0 4 2
9 NA 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
We could also use .data
library(dplyr)
d %>%
mutate(!! fld_name := case_when(.data[[other_fld_name]] >=5 ~
.data[[fld_name]]))
-output
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 NA 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 NA 4 147. 62 3.69 3.19 20 1 0 4 2
9 NA 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
data
d <- mtcars %>%
as_tibble
fld_name <- "mpg"
other_fld_name <- "cyl"
tibble::tibble(`` = 1:10)
Error: attempt to use zero-length variable name
tibble::tibble("" = 1:10)
Error: attempt to use zero-length variable name
How can I get around this? I need to have a column with precisely "" as the name.
My first thought is that this sounds like a report-representation thing, since one generally doesn't need nameless columns while developing or working with data. In that regard, I suggest you look at changing names in whatever reporting system you might be using (knitr, kableExtra, etc).
Having said that, R is not going to let you define a zero-length column name, but it'll let you update it later:
setNames(data.frame(" "=1),"")
#
# 1 1
setNames(tibble(" "=1),"")
# # A tibble: 1 x 1
# ``
# <dbl>
# 1 1
This can be achieved by directly modifying the names attribute of a tibble, though it's not a recommended practice. Do something like this:
attr(df, "names") <- c("", "cyl", "disp", "hp", "drat", "wt", "qsec", "vs", "am", "gear", "carb")
Tested with this dataset
df <- tibble::as_tibble(mtcars)
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
Output
# A tibble: 32 x 11
`` cyl disp hp drat wt qsec vs am gear carb
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
I am trying to write a custom function that uses rlang's non-standard evaluation to group a dataframe by more than one variable.
This is what I've-
library(rlang)
# function definition
tryfn <- function(data, groups, ...) {
# preparing data
df <- dplyr::group_by(data, !!!rlang::enquos(groups))
print(head(df))
# applying some function `.f` on df that absorbs `...`
# .f(df, ...)
}
This works with a single grouping variable-
# works
tryfn(mtcars, am)
#> # A tibble: 6 x 11
#> # Groups: am [2]
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
But if try to use more than one grouping variable, this doesn't work-
# doesn't work
tryfn(mtcars, c(am, cyl))
#> Error: Column `c(am, cyl)` must be length 32 (the number of rows) or one, not 64
# doesn't work
tryfn(mtcars, list(am, cyl))
#> Error: Column `list(am, cyl)` must be length 32 (the number of rows) or one, not 2
We could parse as an expression with enexpr and use !!!
tryfn <- function(data, groups, ...) {
groups <- as.list(rlang::enexpr(groups))
groups <- if(length(groups) > 1) groups[-1] else groups
group_by(data, !!!groups)
}
-testing
tryfn(mtcars, am)
# A tibble: 32 x 11
# Groups: am [2]
# mpg cyl disp hp drat wt qsec vs am gear carb
# * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
# 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
# 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
# 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
# 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
# 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
# 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
# 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
# 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
tryfn(mtcars, c(am, cyl))
# A tibble: 32 x 11
# Groups: am, cyl [6]
# mpg cyl disp hp drat wt qsec vs am gear carb
# * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
# 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
# 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
# 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
# 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
# 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
# 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
# 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
# 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
# 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
I would like to change some of the variables from numerical to factor types, leaving other types as they are. I know how to do this one variable at a time, but I would like to automate the process for larger datasets.
I've changed variables in the mtcars dataset one by one, copying and pasting the code. I've used mapply to successfully automate this, but I've only managed to do it on a subset of mtcars. I'm not sure how I would keep the entire dataset intact with the new variable types, though. Reprex below.
#before
as_tibble(mtcars)
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ... with 22 more rows
#copy + paste job
mtcars$cyl <- factor(as.character(mtcars$cyl))
mtcars$hp <- factor(as.character(mtcars$hp))
mtcars$vs <- factor(as.character(mtcars$vs))
#after
as_tibble(mtcars)
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> <dbl> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ... with 22 more rows
Created on 2019-05-17 by the reprex package (v0.2.1)
I managed to change the variable types successfully. I would hate to do this something like 30-50 times though. What are some ways to automate this? Thank you.
library(dplyr)
as_tibble(mtcars) %>%
mutate_at(.vars = vars(cyl, hp, vs),
.funs = ~ factor(as.character(.)))
Hope this helps.
Using base R:
vars_to_make_f <- c("cyl", "hp", "vs")
mtcars[vars_to_make_f] <-
lapply(mtcars[vars_to_make_f], function(x) as.factor(as.character(x)))
mtcars
# A tibble: 32 x 11
mpg cyl disp hp drat wt qsec vs am gear carb
<dbl> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl>
1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# ... with 22 more rows
You can use mutate_at:
mtcars %>%
mutate_at(c("cyl","hp","vs"),function(x) factor(as.character(x)))
Or use purrr modify_at:
mtcars %>%
modify_at(c("cyl","hp","vs"),function(x) factor(as.character(x)))
An option is mutate_at. The as.factor(as.character is not needed, we can directly convert to factor. But, the reverse route would be `factor -> character -> numeric)
library(dplyr)
mtcars %>%
as_tibble %>%
mutate_at(vars(cyl, hp, vs), factor)
# A tibble: 32 x 11
# mpg cyl disp hp drat wt qsec vs am gear carb
# <dbl> <fct> <dbl> <fct> <dbl> <dbl> <dbl> <fct> <dbl> <dbl> <dbl>
# 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
# 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
# 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
# 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
# 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
# 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
# 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
# 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
# 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
# … with 22 more rows
I have a number of dataframes and a series of changes I want to make to each of them. For this example, let to the desired change be simply making each data frame a tibble using as_tibble. I know there are various ways of doing this, but I'd like to do this using purrr:walk.
For data frames df1 and df2,
df1 <- mtcars
df2 <- mtcars
I'd like to do the equivalent of
df1 %<>% as_tibble
df2 %<>% as_tibble
using walk. My attempt:
library(tidyverse)
walk(c(df1, df2), ~ assign(deparse(substitute(.)), as_tibble(.)))
This runs but does not make the desired change:
is_tibble(df1)
#> [1] FALSE
Here is how you can combine assign with walk (see the comments the code for more explanation)-
library(tidyverse)
# data
df1 <- mtcars
df2 <- mtcars
# creating tibbles
# this creates a list of objects with names ("df1", "df2")
tibble::lst(df1, df2) %>%
purrr::walk2(
.x = names(.), # names to assign
.y = ., # object to be assigned
.f = ~ assign(x = .x,
value = tibble::as.tibble(.y),
envir = .GlobalEnv)
)
# checking the newly created tibbles
df1
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ... with 22 more rows
df2
#> # A tibble: 32 x 11
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> * <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 21 6 160 110 3.9 2.62 16.5 0 1 4 4
#> 2 21 6 160 110 3.9 2.88 17.0 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.46 20.2 1 0 3 1
#> 7 14.3 8 360 245 3.21 3.57 15.8 0 0 3 4
#> 8 24.4 4 147. 62 3.69 3.19 20 1 0 4 2
#> 9 22.8 4 141. 95 3.92 3.15 22.9 1 0 4 2
#> 10 19.2 6 168. 123 3.92 3.44 18.3 1 0 4 4
#> # ... with 22 more rows
Created on 2018-11-13 by the reprex package (v0.2.1)