R Shiny: Switching between tabPanels causes errors - r

I have created an App that will use an randomforest model to predict the type of Species in the Iris dataset. The idea is that a user can select a value for the other varaibles using input widgets, which the model then use to give a prediction. This all works fine.
I recently decided to implement a log containing the different inputs, a timestamp and the estimation. I've placed this log in another tabPanel to give a better overview. Everything apperes to work fine, when I hit the save button, the inputs, timestamp and estimation are saved in the log, however, when I go back to the original tabPanel ("Calculator"), errors appear saying that the number of columns doesn't match (or something like that, I have translated it from danish).
Does anyone know why this problem occours and how to fix it?
Im also having trouble running the app by using the "Run App" button in R. It works fine when I select everything with ctrl+A and hit ctrl+enter to run the code.
Here is my code:
require(shiny)
require(tidyverse)
require(shinythemes)
require(data.table)
require(RCurl)
require(randomForest)
require(mlbench)
require(janitor)
require(caret)
require(recipes)
require(rsconnect)
# Read data
DATA <- datasets::iris
# Rearrange data so the response variable is located in column 1
DATA <- DATA[,c(names(DATA)[5],names(DATA)[-5])]
# Creating a model
model <- randomForest(DATA$Species ~ ., data = DATA, ntree = 500, mtry = 3, importance = TRUE)
.# UI -------------------------------------------------------------------------
ui <- fluidPage(
navbarPage(title = "Dynamic Calculator",
tabPanel("Calculator",
sidebarPanel(
h3("Values Selected"),
br(),
tableOutput('show_inputs'),
hr(),
actionButton("submitbutton", label = "calculate", class = "btn btn-primary", icon("calculator")),
actionButton("savebutton", label = "Save", icon("save")),
hr(),
tableOutput("tabledata")
), # End sidebarPanel
mainPanel(
h3("Variables"),
uiOutput("select")
) # End mainPanel
), # End tabPanel Calculator
tabPanel("Log",
br(),
DT::dataTableOutput("datatable15", width = 300),
) # End tabPanel "Log"
) # End tabsetPanel
) # End UI bracket
# Server -------------------------------------------------------------------------
server <- function(input, output, session) {
# Create input widgets from dataset
output$select <- renderUI({
df <- req(DATA)
tagList(map(
names(df[-1]),
~ ifelse(is.numeric(df[[.]]),
yes = tagList(sliderInput(
inputId = paste0(.),
label = .,
value = mean(df[[.]], na.rm = TRUE),
min = round(min(df[[.]], na.rm = TRUE),2),
max = round(max(df[[.]], na.rm = TRUE),2)
)),
no = tagList(selectInput(
inputId = paste0(.),
label = .,
choices = sort(unique(df[[.]])),
selected = sort(unique(df[[.]]))[1],
))
) # End ifelse
)) # End tagList
})
# creating dataframe of selected values to be displayed
AllInputs <- reactive({
id_exclude <- c("savebutton","submitbutton")
id_include <- setdiff(names(input), id_exclude)
if (length(id_include) > 0) {
myvalues <- NULL
for(i in id_include) {
myvalues <- as.data.frame(rbind(myvalues, cbind(i, input[[i]])))
}
names(myvalues) <- c("Variable", "Selected Value")
myvalues %>%
slice(match(names(DATA[,-1]), Variable))
}
})
# render table of selected values to be displayed
output$show_inputs <- renderTable({
AllInputs()
})
# Creating a dataframe for calculating a prediction
datasetInput <- reactive({
df1 <- data.frame(AllInputs(), stringsAsFactors = FALSE)
input <- transpose(rbind(df1, names(DATA[1])))
write.table(input,"input.csv", sep=",", quote = FALSE, row.names = FALSE, col.names = FALSE)
test <- read.csv(paste("input.csv", sep=""), header = TRUE)
# Defining factor levels for factor variables
cnames <- colnames(DATA[sapply(DATA,class)=="factor"])
if (length(cnames)>0){
lapply(cnames, function(par) {
test[par] <<- factor(test[par], levels = unique(DATA[,par]))
})
}
# Making the actual prediction and store it in a data.frame
Prediction <- predict(model,test)
Output <- data.frame("Prediction"=Prediction)
print(format(Output, nsmall=2, big.mark=","))
})
# display the prediction when the submit button is pressed
output$tabledata <- renderTable({
if (input$submitbutton>0) {
isolate(datasetInput())
}
})
# -------------------------------------------------------------------------
# Create the Log
saveData <- function(data) {
data <- as.data.frame(t(data))
if (exists("datatable15")) {
datatable15 <<- rbind(datatable15, data)
} else {
datatable15 <<- data
}
}
loadData <- function() {
if (exists("datatable15")) {
datatable15
}
}
# Whenever a field is filled, aggregate all form data
formData <- reactive({
fields <- c(colnames(DATA[,-1]), "Timestamp", "Prediction")
data <- sapply(fields, function(x) input[[x]])
data$Timestamp <- as.character(Sys.time())
data$Prediction <- as.character(datasetInput())
data
})
# When the Submit button is clicked, save the form data
observeEvent(input$savebutton, {
saveData(formData())
})
# Show the previous responses
# (update with current response when Submit is clicked)
output$datatable15 <- DT::renderDataTable({
input$savebutton
loadData()
})
} # End server bracket
# ShinyApp -------------------------------------------------------------------------
shinyApp(ui, server)

When creating your reactive AllInputs, you are making a loop on id_include.
The problem is that all input[[i]] are not length 1 : they can be NULL or length more than one.
You cannot use a cbind on two variables of different lengths, which causes the mistake.
So I added a condition before calculating myvalues, and everything works fine :
# creating dataframe of selected values to be displayed
AllInputs <- reactive({
id_exclude <- c("savebutton","submitbutton")
id_include <- setdiff(names(input), id_exclude)
if (length(id_include) > 0) {
myvalues <- NULL
for(i in id_include) {
if(!is.null(input[[i]]) & length(input[[i]] == 1)){
myvalues <- as.data.frame(rbind(myvalues, cbind(i, input[[i]])))
}
}
names(myvalues) <- c("Variable", "Selected Value")
myvalues %>%
slice(match(names(DATA[,-1]), Variable))
}
})
By the way, for loops are not good practice in R, you may want to have a look at apply family functions.

Related

R Shiny: Creating unique datatables for different datasets

UPDATED: An example of the problem is shown below the code for the app
I'm building an dynamic ML app where the user can upload a dataset to get a prediction of the first column in the dataset (the response variable should be located in column 1 of the uploaded dataset). The user can select a value for the variables in the uploaded dataset and get a prediction of the response variable.
I'm currently trying to create a datatable that stores all the selected values, timestamp and the prediction.
The table is suppose to store the previous saved values, but only for that perticular dataset. By this I mean that if I save values from the iris dataset, the table uses the variables from the iris dataset as columns. This causes problems when uploading another dataset and saving those values, since the columns from the iris dataset would still be there and not the variables/columns from the new dataset.
My question is: How do I create a unique datatable for each dataset uploaded to the app?
If this sound confusion, try to run the app, calculate a prediction and save the data. Do this for two different datasets and look at the datatable under the "log" tab.
If you don't have two datasets, you can use these two datasets, they are build into R as default and already have the response variable positioned in column 1.
write_csv(attitude, "attitude.csv")
write_csv(ToothGrowth, "ToothGrowth.csv")
You will find the code regarding the datatable under the 'Create the log' section in the server function.
This is the code for the app:
library(shiny)
library(tidyverse)
library(shinythemes)
library(data.table)
library(RCurl)
library(randomForest)
library(mlbench)
library(janitor)
library(caret)
library(recipes)
library(rsconnect)
# UI -------------------------------------------------------------------------
ui <- fluidPage(
navbarPage(title = "Dynamic ML Application",
tabPanel("Calculator",
sidebarPanel(
h3("Values Selected"),
br(),
tableOutput('show_inputs'),
hr(),
actionButton("submitbutton", label = "calculate", class = "btn btn-primary", icon("calculator")),
actionButton("savebutton", label = "Save", icon("save")),
hr(),
tableOutput("tabledata")
), # End sidebarPanel
mainPanel(
h3("Variables"),
uiOutput("select")
) # End mainPanel
), # End tabPanel Calculator
tabPanel("Log",
br(),
DT::dataTableOutput("datatable18", width = 300),
), # End tabPanel "Log"
tabPanel("Upload file",
br(),
sidebarPanel(
fileInput(inputId = "file1", label="Upload file"),
checkboxInput(inputId ="header", label="header", value = TRUE),
checkboxInput(inputId ="stringAsFactors", label="stringAsFactors", value = TRUE),
radioButtons(inputId = "sep", label = "Seperator", choices = c(Comma=",",Semicolon=";",Tab="\t",Space=" "), selected = ","),
radioButtons(inputId = "disp", "Display", choices = c(Head = "head", All = "all"), selected = "head"),
), # End sidebarPanel
mainPanel(
tableOutput("contents")
)# End mainPanel
) # EndtabPanel "upload file"
) # End tabsetPanel
) # End UI bracket
# Server -------------------------------------------------------------------------
server <- function(input, output, session) {
# Upload file content table
get_file_or_default <- reactive({
if (is.null(input$file1)) {
paste("No file is uploaded yet")
} else {
df <- read.csv(input$file1$datapath,
header = input$header,
sep = input$sep,
quote = input$quote)
if(input$disp == "head") {
return(head(df))
}
else {
return(df)
}
}
})
output$contents <- renderTable(get_file_or_default())
# Create input widgets from dataset
output$select <- renderUI({
req(input$file1)
if (is.null(input$file1)) {
"No dataset is uploaded yet"
} else {
df <- read.csv(input$file1$datapath,
header = input$header,
sep = input$sep,
quote = input$quote)
tagList(map(
names(df[-1]),
~ ifelse(is.numeric(df[[.]]),
yes = tagList(sliderInput(
inputId = paste0(.),
label = .,
value = mean(df[[.]], na.rm = TRUE),
min = round(min(df[[.]], na.rm = TRUE),2),
max = round(max(df[[.]], na.rm = TRUE),2)
)),
no = tagList(selectInput(
inputId = paste0(.),
label = .,
choices = sort(unique(df[[.]])),
selected = sort(unique(df[[.]]))[1],
))
) # End ifelse
)) # End tagList
}
})
# creating dataframe of selected values to be displayed
AllInputs <- reactive({
req(input$file1)
if (is.null(input$file1)) {
} else {
DATA <- read.csv(input$file1$datapath,
header = input$header,
sep = input$sep,
quote = input$quote)
}
id_exclude <- c("savebutton","submitbutton","file1","header","stringAsFactors","input_file","sep","contents","head","disp")
id_include <- setdiff(names(input), id_exclude)
if (length(id_include) > 0) {
myvalues <- NULL
for(i in id_include) {
if(!is.null(input[[i]]) & length(input[[i]] == 1)){
myvalues <- as.data.frame(rbind(myvalues, cbind(i, input[[i]])))
}
}
names(myvalues) <- c("Variable", "Selected Value")
myvalues %>%
slice(match(names(DATA[,-1]), Variable))
}
})
# render table of selected values to be displayed
output$show_inputs <- renderTable({
if (is.null(input$file1)) {
paste("No dataset is uploaded yet.")
} else {
AllInputs()
}
})
# Creating a dataframe for calculating a prediction
datasetInput <- reactive({
req(input$file1)
DATA <- read.csv(input$file1$datapath,
header = input$header,
sep = input$sep,
quote = input$quote)
DATA <- as.data.frame(unclass(DATA), stringsAsFactors = TRUE)
response <- names(DATA[1])
model <- randomForest(eval(parse(text = paste(names(DATA)[1], "~ ."))),
data = DATA, ntree = 500, mtry = 3, importance = TRUE)
df1 <- data.frame(AllInputs(), stringsAsFactors = FALSE)
input <- transpose(rbind(df1, names(DATA[1])))
write.table(input,"input.csv", sep=",", quote = FALSE, row.names = FALSE, col.names = FALSE)
test <- read.csv(paste("input.csv", sep=""), header = TRUE)
# Defining factor levels for factor variables
cnames <- colnames(DATA[sapply(DATA,class)=="factor"])
if (length(cnames)>0){
lapply(cnames, function(par) {
test[par] <<- factor(test[par], levels = unique(DATA[,par]))
})
}
# Making the actual prediction and store it in a data.frame
Prediction <- predict(model,test)
Output <- data.frame("Prediction"=Prediction)
print(format(Output, nsmall=2, big.mark=","))
})
# display the prediction when the submit button is pressed
output$tabledata <- renderTable({
if (input$submitbutton>0) {
isolate(datasetInput())
}
})
# -------------------------------------------------------------------------
# Create the Log
saveData <- function(data) {
data <- as.data.frame(t(data))
if (exists("datatable18")) {
datatable18 <<- rbind(datatable18, data)
} else {
datatable18 <<- data
}
}
loadData <- function() {
if (exists("datatable18")) {
datatable18
}
}
# Whenever a field is filled, aggregate all form data
formData <- reactive({
DATA <- read.csv(input$file1$datapath,
header = input$header,
sep = input$sep,
quote = input$quote)
fields <- c(colnames(DATA[,-1]), "Timestamp", "Prediction")
data <- sapply(fields, function(x) input[[x]])
data$Timestamp <- as.character(Sys.time())
data$Prediction <- as.character(datasetInput())
data
})
# When the Submit button is clicked, save the form data
observeEvent(input$savebutton, {
saveData(formData())
})
# Show the previous responses
# (update with current response when Submit is clicked)
output$datatable18 <- DT::renderDataTable({
input$savebutton
loadData()
})
} # End server bracket
# ShinyApp -------------------------------------------------------------------------
shinyApp(ui, server)
UPDATED HERE
To get an idea about how the problem occurs take a look at this:
I upload the iris dataset to the application.
I then make some predictions and save them.
The predictions, as well as the selected inputs and a timestamp of when the save-button was pressed can now be seen under the "Log" tab.
I upload a new dataset (attitude), which of course have different variables included (attitude dataset has 7 variables total, iris dataset has 5).
I calculate a prediction, hit the save button and the app crashes. This happens because the number of columns in the dataset now has changed, so I get this errormessage:
Error in rbind: numbers of columns of arguments do not match
This can be fixed by renaming the datatable object in the server, since this creates a new datatable without any specified columns yet. But as soon as the Save button is pressed for the first time, the datatable locks-in the columns so they can't be changed again.
I can still access the old datatables if I switch the name of the datatable in the server function back the original name. So I'm thinking that if the name of the datatable object can be dynamic dependend on the dataset uploaded to the app, then the correct datatable can be shown.
So I think a better question could be: How do I create a dynamic/reactive datatable output object
Here's a simple shiny app that demonstrates a technique of storing a list of data (and properties). I'll store it in alldata (a reactive-value), and each dataset has the following properties:
name, just the name, redundant with the name of the list itself
depvar, stored dependent-variable, allowing the user to select which of the variables is used; in the displayed table, this is shown as the first column, though the original data is in its original column-order
data, the raw data (data.frame)
created and modified, timestamps; you said timestamps, but I didn't know if you meant on a particular dataset/prediction/model or something else, so I did this instead
Note that the same data can be uploaded multiple times: while I don't know if this is needed, it is allowed since all referencing is done on the integer index within the alldata list, not the names therein.
library(shiny)
NA_POSIXt_ <- Sys.time()[NA] # for class-correct NA
defdata <- list(
mtcars = list(
name = "mtcars",
depvar = "mpg",
data = head(mtcars, 10),
created = Sys.time(),
modified = NA_POSIXt_
),
CO2 = list(
name = "CO2",
depvar = "uptake",
data = head(CO2, 20),
created = Sys.time(),
modified = NA_POSIXt_
)
)
makelabels <- function(x) {
out <- mapply(function(ind, y) {
cre <- format(y$created, "%H:%M:%S")
mod <- format(y$modified, "%H:%M:%S")
if (is.na(mod)) mod <- "never"
sprintf("[%d] %s (cre: %s ; mod: %s)", ind, y$name, cre, mod)
}, seq_along(x), x)
setNames(seq_along(out), out)
}
ui <- fluidPage(
sidebarLayout(
sidebarPanel(
selectInput("seldata", label = "Selected dataset", choices = makelabels(defdata)),
selectInput("depvar", label = "Dependent variable", choices = names(defdata[[1]]$data)),
hr(),
fileInput("file1", label = "Upload data"),
textInput("filename1", label = "Data name", placeholder = "Derive from filename"),
checkboxInput("header", label = "Header", value = TRUE),
checkboxInput("stringsAsFactors", label = "stringsAsFactors", value = TRUE),
radioButtons("sep", label = "Separator",
choices = c(Comma = ",", Semicolon = ";", Tab = "\t", Space = " "),
select = ","),
radioButtons("quote", label = "Quote",
choices = c(None = "", "Double quote" = '"', "Single quote" = "'"),
selected = '"')
),
mainPanel(
tableOutput("contents")
)
)
)
server <- function(input, output, session) {
alldata <- reactiveVal(defdata)
observeEvent(input$seldata, {
dat <- alldata()[[ as.integer(input$seldata) ]]
choices <- names(dat$data)
selected <-
if (!is.null(dat$depvar) && dat$depvar %in% names(dat$data)) {
dat$depvar
} else names(dat$data)[1]
updateSelectInput(session, "depvar", choices = choices, selected = selected)
# ...
# other things you might want to update when the user changes dataset
})
observeEvent(input$depvar, {
ind <- as.integer(input$seldata)
alldat <- alldata()
if (alldat[[ ind ]]$depvar != input$depvar) {
# only update alldata() when depvar changes
alldat[[ ind ]]$depvar <- input$depvar
alldat[[ ind ]]$modified <- Sys.time()
lbls <- makelabels(alldat)
sel <- as.integer(input$seldata)
updateSelectInput(session, "seldata", choices = lbls, selected = lbls[sel])
alldata(alldat)
}
})
observeEvent(input$file1, {
req(input$file1)
df <- tryCatch({
read.csv(input$file1$datapath,
header = input$header, sep = input$sep,
stringsAsFactors = input$stringsAsFactors,
quote = input$quote)
}, error = function(e) e)
if (!inherits(df, "error")) {
if (!NROW(df) > 0 || !NCOL(df) > 0) {
df <- structure(list(message = "No data found"), class = c("simpleError", "error", "condition"))
}
}
if (inherits(df, "error")) {
showModal(modalDialog(title = "Error loading data", "No data was found in the file"))
} else {
nm <-
if (nzchar(input$filename1)) {
input$filename1
} else tools:::file_path_sans_ext(basename(input$file1$name))
depvar <- names(df)[1]
newdat <- setNames(list(list(name = nm, depvar = depvar, data = df,
created = Sys.time(), modified = NA_POSIXt_)),
nm)
alldat <- alldata()
alldata( c(alldat, newdat) )
# update the selectInput to add this new dataset
lbls <- makelabels(alldata())
sel <- length(lbls)
updateSelectInput(session, "seldata", choices = lbls, selected = lbls[sel])
}
})
output$contents <- renderTable({
req(input$seldata)
seldata <- alldata()[[ as.integer(input$seldata) ]]
# character
depvar <- seldata$depvar
othervars <- setdiff(names(seldata$data), seldata$depvar)
cbind(seldata$data[, depvar, drop = FALSE], seldata$data[, othervars, drop = FALSE])
})
}
shinyApp(ui, server)
There is no ML, no modeling, nothing else in this shiny app, it just shows one possible method for switching between multiple datasets.
For your functionality, you'll need to react to input$seldata to find when the user changes dataset. Note that (1) I'm returning the integer of the list index, and (2) selectInput always returns a string. From this, if the user selects the second dataset in the pull-down, you will get "2", which will obviously not index by itself. Your data must be referenced as alldata()[[ as.integer(input$seldata) ]].
To support repeated-data with less ambiguity, I added the timestamps to the selectInput text, so you can see the "when" of some data. Perhaps overkill, easily removed.

R Shiny: Creating factor variables and defining levels

I trying to create a machine learning application with Shiny.
In this application, the user can select the specifications of the input variables (via. input widgets) which will be used to give an estimate of a response variable.
To do this, I have created a dataframe from the selected inputs and save it locally as a datatable.
A problem arises when I load the datatable again, since this will cause all categorical variables to become character variables. I can however change these manually with the factor() function and use the levels= specification.
The problem is that I don't want to manually do this every time a new dataset gets used, since this most likly will change the position of the categorical variables in the dataset. There will also most likly not be the same amout of categorical variables in a new dataset.
The dataframe "DATA" is the main dataset which contains the response variable in column 1.
The dataframe "test" is the dataframe constructed from the selected inputs, which will be used as the
testset for prediction and will contain only the 1 specified obsevation. This dataframe will always have the response variable as the last column in the dataframe, due to how the dataframe is constructed. So the factor variable in DATA[ ,5] will always correspond to the previous column in the test dataframe: test[ ,4].
It is the test dataframe which needs the factor levels to be specified since it doesn't automatically know the amount of categories when it only contains 1 obsevation.
test[4] <- factor(test[4], levels = unique(DATA[,5]))
I'm trying to write a code that will apply the factor function on all character variables in the dataset and specify the levels no matter the position of the character variable in the dataset.
Here is the code I have written so far:
library(shiny)
library(tidyverse)
library(shinythemes)
library(data.table)
library(RCurl)
library(randomForest)
library(mlbench)
library(janitor)
# Read data
DATA <- BostonHousing
# Rearrange data so the response variable is located in column 1
DATA <- DATA[,c(names(BostonHousing)[14],names(BostonHousing)[-14])]
# Creating a simple RF model
model <- randomForest(medv ~ ., data = DATA, ntree = 500, mtry = 4, importance = TRUE)
# UI -------------------------------------------------------------------------
ui <- fluidPage(
sidebarPanel(
h3("Parameters Selected"),
br(),
tableOutput('show_inputs'),
hr(),
actionButton("submitbutton", label = "calculate", class = "btn btn-primary", icon("calculator")),
hr(),
tableOutput("tabledata")
), # End sidebarPanel
mainPanel(
h3("Input widgets"),
uiOutput("select")
) # End mainPanel
) # End UI bracket
# Server -------------------------------------------------------------------------
server <- function(input, output, session) {
# Create input widgets from dataset
output$select <- renderUI({
df <- req(DATA)
tagList(map(
names(df[-1]),
~ ifelse(is.numeric(df[[.]]),
yes = tagList(sliderInput(
inputId = paste0(.),
label = .,
value = mean(df[[.]], na.rm = TRUE),
min = round(min(df[[.]], na.rm = TRUE),2),
max = round(max(df[[.]], na.rm = TRUE),2)
)),
no = tagList(selectInput(
inputId = paste0(.),
label = .,
choices = sort(unique(df[[.]])),
selected = sort(unique(df[[.]]))[1],
))
)
))
})
# creating dataframe of selected values to be displayed
AllInputs <- reactive({
id_exclude <- c("savebutton","submitbutton")
id_include <- setdiff(names(input), id_exclude)
if (length(id_include) > 0) {
myvalues <- NULL
for(i in id_include) {
myvalues <- as.data.frame(rbind(myvalues, cbind(i, input[[i]])))
}
names(myvalues) <- c("Variable", "Selected Value")
myvalues %>%
slice(match(names(DATA[,-1]), Variable))
}
})
# render table of selected values to be displayed
output$show_inputs <- renderTable({
AllInputs()
})
# Creating a dataframe for calculating a prediction
datasetInput <- reactive({
df1 <- data.frame(AllInputs(), stringsAsFactors = FALSE)
input <- transpose(rbind(df1, names(DATA[1])))
write.table(input,"input.csv", sep=",", quote = FALSE, row.names = FALSE, col.names = FALSE)
test <- read.csv(paste("input.csv", sep=""), header = TRUE)
# defining factor levels for factor variables
test[4] <- factor(test[4], levels = unique(DATA[,5])) # <- This line will cause problems if multiple factors in dataset or if different column location
# Making the actual prediction and store it in a data.frame
Prediction <- predict(model,test)
Output <- data.frame("Prediction"=Prediction)
print(format(Output, nsmall=2, big.mark=","))
})
# display the prediction when the submit button is pressed
output$tabledata <- renderTable({
if (input$submitbutton>0) {
isolate(datasetInput())
}
})
} # End server bracket
# ShinyApp -------------------------------------------------------------------------
shinyApp(ui, server)
To generalize the factor variables you can use the following code:
# defining factor levels for factor variables
#test[4] <- factor(test[4], levels = unique(DATA[,5])) # <- This line will cause problems if multiple factors in dataset or if different column location
cnames <- colnames(DATA[sapply(DATA,class)=="factor"])
if (length(cnames)>0){
lapply(cnames, function(par) {
test[par] <<- factor(test[par], levels = unique(DATA[,par]))
})
}
You can apply this to BostonHousing2 data as shown below
# Read data
BH <- BostonHousing2
DATA <- BH
# Rearrange data so the response variable is located in column 1
#DATA <- DATA[,c(names(BH)[14],names(BH)[-14])]
DATA <- DATA[,c(names(BH)[5],names(BH)[-5])] ## for BostonHousing2
# Creating a simple RF model
model <- randomForest(medv ~ ., data = DATA[,-2], ntree = 500, mtry = 4, importance = TRUE)
# UI -------------------------------------------------------------------------
ui <- fluidPage(
sidebarPanel(
h3("Parameters Selected"),
br(),
tableOutput('show_inputs'),
hr(),
actionButton("submitbutton", label = "calculate", class = "btn btn-primary", icon("calculator")),
hr(),
tableOutput("tabledata")
), # End sidebarPanel
mainPanel(
h3("Input widgets"),
uiOutput("select")
) # End mainPanel
) # End UI bracket
# Server -------------------------------------------------------------------------
server <- function(input, output, session) {
# Create input widgets from dataset
output$select <- renderUI({
df <- req(DATA)
tagList(map(
names(df[-1]),
~ ifelse(is.numeric(df[[.]]),
yes = tagList(sliderInput(
inputId = paste0(.),
label = .,
value = mean(df[[.]], na.rm = TRUE),
min = round(min(df[[.]], na.rm = TRUE),2),
max = round(max(df[[.]], na.rm = TRUE),2)
)),
no = tagList(selectInput(
inputId = paste0(.),
label = .,
choices = sort(unique(df[[.]])),
selected = sort(unique(df[[.]]))[1],
))
)
))
})
# creating dataframe of selected values to be displayed
AllInputs <- reactive({
id_exclude <- c("savebutton","submitbutton")
id_include <- setdiff(names(input), id_exclude)
if (length(id_include) > 0) {
myvalues <- NULL
for(i in id_include) {
myvalues <- as.data.frame(rbind(myvalues, cbind(i, input[[i]])))
}
names(myvalues) <- c("Variable", "Selected Value")
myvalues %>%
slice(match(names(DATA[,-1]), Variable))
}
})
# render table of selected values to be displayed
output$show_inputs <- renderTable({
AllInputs()
})
# Creating a dataframe for calculating a prediction
datasetInput <- reactive({
df1 <- data.frame(AllInputs(), stringsAsFactors = FALSE)
input <- transpose(rbind(df1, names(DATA[1])))
write.table(input,"input.csv", sep=",", quote = FALSE, row.names = FALSE, col.names = FALSE)
test <- read.csv(paste("input.csv", sep=""), header = TRUE)
# defining factor levels for factor variables
#test[4] <- factor(test[4], levels = unique(DATA[,5])) # <- This line will cause problems if multiple factors in dataset or if different column location
cnames <- colnames(DATA[sapply(DATA,class)=="factor"])
if (length(cnames)>0){
lapply(cnames, function(par) {
test[par] <<- factor(test[par], levels = unique(DATA[,par]))
})
}
# Making the actual prediction and store it in a data.frame
Prediction <- predict(model,test)
Output <- data.frame("Prediction"=Prediction)
print(format(Output, nsmall=2, big.mark=","))
})
# display the prediction when the submit button is pressed
output$tabledata <- renderTable({
if (input$submitbutton>0) {
isolate(datasetInput())
}
})
} # End server bracket
# ShinyApp -------------------------------------------------------------------------
shinyApp(ui, server)

Using dynamic input from tagList to renderTable in Shiny

What I am trying to do is have the user specify the number of groups then, based on the number of groups specified, the UI generates a numericInput for each group. Then I want to use that value to do some other operations (in this example, I'm making a table of means). Using this example, I was able to make it return some text, but not use that label as input for anything else.
When I try to use that information (i.e., as reactive conductor), I get a "replacement has length zero" error. It seems shiny is not recognizing the updated UI. I know it probably has something to do with using reactive, but I can't figure out why it's not working. Here's my code:
library(shiny)
library(purrr)
# functions ---------------------------------------------------------------
## generic function that creates an input from an i
make_list = function(i, idname, labelname){
idname <- paste(idname, i, sep = "")
div(style="display: inline-block;vertical-align:top; width: 45%;",
numericInput(idname, labelname, 0))
}
## make function that can be used within a loop
list_loop = function(i) {
make_list(i, "mean", "Mean of Group ")
}
# UI ----------------------------------------------------------------------
# Define UI for application that draws a histogram
ui <- fluidPage(
# Application title
titlePanel("A Test Page"),
sidebarLayout(
sidebarPanel(width = 8,
#### UI for groups
numericInput("groups", "How many groups?", 4),
hr(),
uiOutput("inputMean")),
# Main panel for displaying outputs ----
mainPanel(width = 4,
h3("Data Preview"),
#textOutput("inputValues"),
tableOutput("table"))
)
)
# Server ------------------------------------------------------------------
# Define server logic required to draw a histogram
server = function(input, output) {
## loop through # of groups for all i and make the UI
## this is passed back to the UI
observeEvent(input$groups,
{
output$inputMean = renderUI(
{
mean_list <- 1:input$groups %>% map(~list_loop(.x))
do.call(tagList, mean_list)
}
)
}
)
## return the inputnames
## This WORKS
output$inputValues <- renderText({
paste(lapply(1:input$groups, function(i) {
inputName <- paste("mean", i, sep = "")
input[[inputName]]
}))
})
make_table = reactive({
### prepopulate a table
d = data.frame(group = 1:input$groups)
d$means = NA
paste(lapply(1:input$groups, function(i) {
inputName <- paste("mean", i, sep = "")
# this fails because input is NULL at this point
d$means[i] = input[[inputName]]
}))
d
})
output$table <- renderTable({
make_table()
})
}
# Run the application
shinyApp(ui = ui, server = server)
If you replace your make_table with the following, it works.
I added a req that checks if all the input is present, so it won't throw errors anymore. Then, I filled d$means using the lapply you created.
make_table = reactive({
req(input$groups, input[[paste("mean", input$groups, sep = "")]])
### prepopulate a table
d = data.frame(group = 1:input$groups)
d$means = lapply(1:input$groups, function(i) {
inputName <- paste("mean", i, sep = "")
# this fails because input is NULL at this point
input[[inputName]]
})
d
})

Filtering dataframe rows from dynamic variables within shiny

I'm writing a shiny function that takes a dataset and generates UI components based upon the presence of design variables (factors) and response variables (numeric).
I would like to have a checkbox input to hide/show all of the variables in the app (the design UI element) and also be able to filter out particular rows based upon the levels of the design factors. Since the number of factors in a dataset is unknown, this has to be generated generically.
Within the function, before ui and server are defined, I find all of the factor variables and generate the relevant parameters for checkboxGroupInputs and then in ui use lapply and do.call to add them to the interface. However, I now need to use them to filter the rows and I'm not sure how to do so.
I've prepared a MWE to illustrate:
data(iris)
iris$Species2 <- iris$Species
filterex <- function(data = NULL){
library(shiny)
# Get design variables (factors) and response variables:
dvars <- names(which(sapply(data, class) == "factor"))
rvars <- names(which(sapply(data, class) != "factor"))
# Generate inputs for all design factor filters:
num_filters <- length(dvars)
filters <- list()
for (i in 1:num_filters){
filt <- dvars[[i]]
filters[[i]] <- list(inputId = filt, label = filt,
choices = levels(data[[filt]]),
selected = levels(data[[filt]]))
}
## UI #############################
ui = fluidPage(
titlePanel("Dynamic filtering example"),
sidebarPanel(
checkboxGroupInput(inputId = "design", label = "Design Variables",
choices = dvars, selected = dvars),
# Add filter checkboxes:
lapply(filters, do.call, what = checkboxGroupInput)),
mainPanel(
dataTableOutput("data"))
)
## SERVER #########################
server = function(input, output, session) {
# SUBSET DESIGN COLUMNS BASED UPON INPUTS:
dat_subset <- reactive({
df <- data[, c(input$design, rvars), drop = FALSE]
# NEED TO INCORPORATE CODE TO SUBSET ROWS HERE
return(df)
})
output$data <- renderDataTable({
dat_subset()
})
}
runApp(list(ui = ui, server = server))
}
filterex(iris)
My issues are:
[SOLVED] Even though it appears the filter checkboxes are being created (lines 11:19), I cannot get them to be included in the app as expected.
Once they are added, I'm not sure how to utilize them to filter the rows as needed around line 40 (e.g., should be able to uncheck setosa from Species to hide those rows).
Any advice would be really appreciated! I've looked at many other threads, but all the solutions I've come across are tailored for a particular dataset (so the number and names of the variables are known a priori).
Similar to your arrived solution, consider lapply over for loops in building filters and dynamic subsetting:
filterex <- function(data = NULL){
# Get design variables (factors) and response variables:
dvars <- names(which(sapply(data, class) == "factor"))
rvars <- names(which(sapply(data, class) != "factor"))
# Generate inputs for all design factor filters:
filters <- lapply(dvars, function(d) {
list(inputId = d, label = d,
choices = levels(data[[d]]),
selected = levels(data[[d]]))
})
## UI #############################
ui = fluidPage(
titlePanel("Dynamic filtering example"),
sidebarPanel(
checkboxGroupInput(inputId = "design", label = "Design Variables",
choices = dvars, selected = dvars),
# Add filter checkboxes:
lapply(filters, do.call, what = checkboxGroupInput)),
mainPanel(
dataTableOutput("data"))
)
## SERVER #########################
server = function(input, output, session) {
# SUBSET DESIGN COLUMNS BASED UPON INPUTS:
dat_subset <- reactive({
df <- data[, c(input$design, rvars), drop = FALSE]
# DF SUBSET LIST
dfs <- lapply(dvars, function(d) {
df[df[[d]] %in% input[[d]],]
})
# ROW BIND ALL DFs
df <- do.call(rbind, dfs)
return(df)
})
output$data <- renderDataTable({
dat_subset()
})
}
runApp(list(ui = ui, server = server))
}
filterex(iris)
If there is a better way of doing this, I would love to hear it but I have a working prototype! This can show/hide the design variables and filter the rows based upon the boxes that are checked/unchecked. Further, the UI elements for the filters are added/hidden based upon the design selection :)
filterex <- function(data = NULL){
# Get design variables (factors) and response variables:
dvars <- names(which(sapply(data, class) == "factor"))
rvars <- names(which(sapply(data, class) != "factor"))
data$internalid <- 1:nrow(data)
## UI #############################
ui = fluidPage(
titlePanel("Dynamic filtering example"),
sidebarPanel(
checkboxGroupInput(inputId = "design", label = "Design Variables",
choices = dvars, selected = dvars),
uiOutput("filters")),
mainPanel(
dataTableOutput("data"))
)
## SERVER #########################
server = function(input, output, session) {
# Determine checkboxes:
output$filters <- renderUI({
filters <- lapply(dvars[dvars == input$design], function(d) {
list(inputId = d, label = d,
choices = levels(data[[d]]),
selected = levels(data[[d]]))
})
lapply(filters, do.call, what = checkboxGroupInput)
})
# GENERATE REDUCED DATA TABLE:
dat_subset <- reactive({
# SUBSET DATA BY DESIGN INPUTS
df <- data[, c(input$design, rvars, "internalid"), drop = FALSE]
# SUBSET DATA BY ROWS AND MERGE
for (i in 1:length(input$design)){
if(!is.null(input[[input$design[[i]]]])){
dfs <- lapply(input$design, function(d) {
df[df[[d]] %in% input[[d]],]
})
if (length(dfs) > 1){
df <- Reduce(function(...) merge(..., all=FALSE), dfs)
} else df <- dfs[[1]]
}
}
return(df)
})
output$data <- renderDataTable({
dat_subset()[,c(input$design, rvars)]
})
}
runApp(list(ui = ui, server = server), launch.browser = TRUE)
}
data(iris)
iris$Species2 <- iris$Species
filterex(iris)
Here is one option using tidyverse
library(shiny)
library(dplyr)
library(purrr)
filterex <- function(data = NULL) {
i1 <- data %>%
summarise_all(is.factor) %>%
unlist()
dvars <- i1 %>%
names(.)[.]
rvars <- i1 %>%
`!` %>%
names(.)[.]
filters <-dvars %>%
map(~list(inputId = .,
label = .,
choices = levels(data[[.]]),
selected = levels(data[[.]])))
ui = fluidPage(
titlePanel("Dynamic filtering example"),
sidebarPanel(
checkboxGroupInput(inputId = "design",
label = "Design Variables",
choices = dvars,
selected = dvars),
map(filters, ~do.call(what = checkboxGroupInput, .))),
mainPanel(dataTableOutput("data"))
)
server = function(input, output, session) {
dat_subset <- reactive({
df <- data %>%
select(input$design, rvars)
dvars %>%
map2_df(list(df), ~.y %>%
filter_at(.x, all_vars(. %in% input[[.x]])))
})
output$data <- renderDataTable({
dat_subset()
})
}
runApp(list(ui = ui, server = server))
}
Using the function on 'iris'
filterex(iris)
Output got is

RShiny: modify numericInput based on data

Here's a sample code where I generate random vector and plot its histogram. In addition, there's a numericInput field that I use to clip data, i.e. to assign values lower than a threshold to that threshold. The initial value of the numericInput field is assigned based on data.
The problem is that when I press the button to generate data, the plot is evaluated twice, which I want to avoid. I emphasise this by adding sleep routine in the plotting function.
It seems to me that I'm updating the numericInput incorrectly. When I simply hard-code initial field value of that field, the issue is gone and the plot is evaluated once.
library(shiny)
ui <- shinyUI(fluidPage(
titlePanel("test data clipping"),
sidebarLayout(
sidebarPanel(
actionButton('inDataGen', 'Generate dataset'),
br(),
br(),
uiOutput('resetable_input_clip'),
actionButton('inDataClipReset', 'Reset data clipping')
),
mainPanel(plotOutput("plotHist", width = "100%"))
)
))
server <- shinyServer(function(input, output) {
rValues <- reactiveValues(dataIn = NULL,
dataMin = -10e10)
# generate random dataset
userDataGen <- observeEvent(input$inDataGen, {
cat(file = stderr(), '\nuserDataGen\n')
# assign result to shared 'dataIn' variable
x <- rnorm(1000)
rValues$dataIn = x
rValues$dataMin = min(x)
})
# modify data
userDataProc <- reactive({
cat(file = stderr(), 'userDataProc\n')
dm = rValues$dataIn
if (is.null(rValues$dataIn))
return(NULL)
else {
# Data clipping
dm[dm < input$inDataClipMin] <-
input$inDataClipMin
return(dm)
}
})
output$resetable_input_clip <- renderUI({
cat(file = stderr(), 'output$resetable_input_clip\n')
times <- input$inDataClipReset
div(
id = letters[(times %% length(letters)) + 1],
numericInput(
'inDataClipMin',
'Clip data below threshold:',
value = rValues$dataMin,
width = 200,
step = 100
)
)
})
output$plotHist <- renderPlot({
cat(file = stderr(), 'plotHist \n')
if (is.null(rValues$dataIn))
return(NULL)
else {
plot(hist(userDataProc()))
Sys.sleep(2)
}
})
})
shinyApp(ui = ui, server = server)
The flow after pressing the button to generate data involves two evaluations of plotHist:
output$resetable_input_clip
plotHist
userDataGen
plotHist
userDataProc
output$resetable_input_clip
plotHist
userDataProc
SOLVED ELSWHERE
This issue has been solved on Shiny Google group. The final solution is available here and is a combination of changing observeEvent + reactiveValues to reactive(), and using freezeReactiveValue.
I believe your issue is occurring in
# modify data
userDataProc <- reactive({
cat(file = stderr(), 'userDataProc\n')
dm = rValues$dataIn
if (is.null(df))
return(NULL)
else {
# Data clipping
dm[dm < input$inDataClipMin] <-
input$inDataClipMin
return(dm)
}
})
Since input$inDataClipMin is dependent on the reactive value rValues$dataMin, you end up rendering this for the initial value of rValues$dataMin, the rValues$dataMin is being reevaluated, which triggers a reevaluation of input$inDataClipMin.
If you replace this snippet with what I have below, you should get your desired behavior.
# modify data
userDataProc <- reactive({
cat(file = stderr(), 'userDataProc\n')
dm = rValues$dataIn
if (is.null(df))
return(NULL)
else {
# Data clipping
dm[dm < rValues$dataMin] <-
rValues$dataMin
return(dm)
}
})
As an alternative, you could put the following in your ui
numericInput(
'inDataClipMin',
'Clip data below threshold:',
value = rValues$dataMin,
width = 200,
step = 100
)
And then use updateNumericInput to replace it's value. This would require a lot more tinkering in your current code, however, and depending on what else is happening in your app, may not be the ideal solution anyway.
Here's what I came up with. The key difference is introduction of a shared reactive variable rValues$dataClip that stores clipped data. Previously, data modification was achieved by a reactive function userDataProc. The output of that function was used for plotting which, as suggested by #Benjamin, was the culprit of double evaluation of plotting. In this version, the userDataProc is turned into observeEvent that monitors input$inDataClipMin numeric input field.
library(shiny)
ui <- shinyUI(fluidPage(
titlePanel("test data clipping"),
sidebarLayout(
sidebarPanel(
actionButton('inDataGen', 'Generate dataset'),
br(),
br(),
uiOutput('resetable_input_clip'),
actionButton('inDataClipReset', 'Reset data clipping')
),
mainPanel(plotOutput("plotHist", width = "100%"))
)
))
server <- shinyServer(function(input, output, session) {
rValues <- reactiveValues(dataIn = NULL,
dataClip = NULL,
dataMin = -10e10)
# generate random dataset
userDataGen <- observeEvent(input$inDataGen, {
cat(file = stderr(), '\nuserDataGen\n')
# assign result to shared 'dataIn' variable
x <- rnorm(1000)
rValues$dataIn = x
rValues$dataMin = min(x)
})
# modify data
userDataProc <- observeEvent(input$inDataClipMin, {
cat(file = stderr(), 'userDataProc\n')
dm = rValues$dataIn
if (is.null(rValues$dataIn))
rValues$dataClip = NULL
else {
dm[dm < input$inDataClipMin] <-
input$inDataClipMin
rValues$dataClip <- dm
}
})
output$resetable_input_clip <- renderUI({
cat(file = stderr(), 'output$resetable_input_clip\n')
times <- input$inDataClipReset
div(
id = letters[(times %% length(letters)) + 1],
numericInput(
'inDataClipMin',
'Clip data below threshold:',
value = rValues$dataMin,
width = 200,
step = 100
)
)
})
output$plotHist <- renderPlot({
cat(file = stderr(), 'plotHist \n')
if (is.null(rValues$dataClip))
return(NULL)
else {
plot(hist(rValues$dataClip))
Sys.sleep(2)
}
})
})
shinyApp(ui = ui, server = server)
Now, there's only one evaluation of plotHist after pressing the button to generate data:
output$resetable_input_clip
plotHist
userDataProc
userDataGen
output$resetable_input_clip
userDataProc
plotHist

Resources