For example:(6-z)(x1+x2+x3)<40.
z is a positive integer variable.x1,x2 and x3 are all real variables. Then how can I judge that whether the function is convex or non-convex.
This is actually a more complicated question than one would expect.
This is not a function but a constraint.
A constraint should never have a < but rather a <=.
One definition of a convex constraint f(x) <= c is that f(lambda*x1+(1-lambda)*x2) <= lambda*f(x1)+(1-lambda)*f(x2) for all x1,x2,0<lambda<1. (Strict convexity requires < instead of <=)
Often easier is to prove that the matrix of second derivatives (the Hessian) is symmetric and positive-semi definite, for all x.
For quadratic constraints, like in your example, form the constraint x'Qx + a'x <= c (this is just a different notation) and prove Q is positive-semi definite. E.g. by looking at the eigenvalues.
Another way is to try to solve the problem using CVXPY. It will complain if the problem is not convex.
If the model converges to different solutions (with different objective values) depending on the starting point, the problem is non-convex.
Another heuristic I often use: throw into global solver such as Baron, and inspect the log and see if it does any branching. If it does, the problem is non-convex.
For quadratic problems: throw it at Cplex or Gurobi and see if it complains about non-convexity. Gurobi has an option to solve non-convex quadratic problems (but it requires setting an option).
For some problem classes we know whether the problem is convex or not (be familiar with the literature on this).
Constraints with integer variables are convex if the relaxation is convex (i.e. ignore the integer restrictions).
Constraints with integer/binary variables can often be reformulated into a set of linear inequalities.
Related
Hi,
I have a big difficult trying to understand why in the equation of the hyperplane of support vector machine there is a 1 after >=?? w.x + b >= 1 <==(why this 1??) I know that could be something about the intersection point on y axes but I cannot relate that to the support vector and to its meaning of classification.
Can anyone please explain me why the equation has that 1(-1) ?
Thank you.
The 1 is just an algebraic simplification, which comes in handy in the later optimization.
First, notice, that all three hyperplanes can be denotes as
w'x+b= 0
w'x+b=+A
w'x+b=-A
If we would fix the norm of the normal w, ||w||=1, then the above would have one solution with some arbitrary A depending on the data, lets call our solution v and c (values of optimal w and b respectively). But if we let w to have any norm, then we can easily see, that if we put
w'x+b= 0
w'x+b=+1
w'x+b=-1
then there is one unique w which satisfies these equations, and it is given by w=v/A, b=c/A, because
(v/A)'x+(b/A)= 0 (when v'x+b=0) // for the middle hyperplane
(v/A)'x+(b/A)=+1 (when v'x+b=+A) // for the positive hyperplane
(v/A)'x+(b/A)=-1 (when v'x+b=-A) // for the negative hyperplane
In other words - we assume that these "supporting vectors" satisfy w'x+b=+/-1 equation for future simplification, and we can do it, because for any solution satisfing v'x+c=+/-A there is a solution for our equation (with different norm of w)
So once we have these simplifications our optimization problem simplifies to the minimization of the norm of ||w|| (maximization of the size of the margin, which now can be expressed as `2/||w||). If we would stay with the "normal" equation with (not fixed!) A value, then the maximization of the margin would be in one more "dimension" - we would have to look through w,b,A to find the triple which maximizes it (as the "restrictions" would be in the form of y(w'x+b)>A). Now, we just search through w and b (and in the dual formulation - just through alpha but this is the whole new story).
This step is not required. You can build SVM without it, but this makes thing simplier - the Ockham's razor rule.
This boundary is called "margin" and must be maximized then you have to minimize ||w||.
The aim of SVM is to find a hyperplane able to maximize the distances between the two groups.
However there are infinite solutions ( see figure: move the optimal hyperplane along the perpendicualr vector) and we need to fix at least the boundaries: the +1 or -1 is a common convention to avoid these infinite solutions.
Formally you have to optimize r ||w|| and we set a bounadry condition r ||w|| = 1.
(I'm not sure whether I should post this problem on this site or on the math site. Please feel free to migrate this post if necessary.)
My problem at hand is that given a value of k I'd like to numerically compute a rational function of nonlinear polynomials in k which looks like the following: (sorry I don't know how to typeset equations here...)
where {a_0, ..., a_N; b_0, ..., b_N} are complex constants, {u_0, ..., u_N, v_0, ..., v_N} are real constants and i is the imaginary number. I learned from Numerical Recipes that there are whole bunch of ways to compute polynomials quickly, in the meanwhile keeping the rounding error small enough, if all coefficients were constant. But I do not think those ideas are useful in my case since the exponential prefactors also depend on k.
Currently I calculate it in a brute force way in C with complex.h (this is just a pseudo code):
double complex function(double k)
{
return (a_0+a_1*cexp(I*u_1*k)*k+a_2*cexp(I*u_2*k)*k*k+...)/(b_0+b_1*cexp(I*v_1*k)*k+v_2*cexp(I*v_2*k)*k*k+...);
}
However when the number of calls of function increases (because this is just a part of my real calculation), it is very slow and inaccurate (only 6 valid digits). I appreciate any comments and/or suggestions.
I trust that this isn't a homework assignment!
Normally the trick is to use a loop add the next coefficient to the running sum, and multiply by k. However, in your case, I think the "e" term in the coefficient is going to overwhelm any savings by factoring out k. You can still do it, but the savings will probably be small.
Is u_i a constant? Depending on how many times you need to run this formula, maybe you could premultiply u_i * k (unless k changes each run). It's been so many decades since I took a Numerical Analysis course that I have only vague recollections of the tricks of the trade. Let's see... is e^(i*u_i*k) the same as (e^(i*u_i))^k? I don't remember the rules on imaginary numbers, or whether you'll save anything since you've got a real^real (assuming k is real) anyway (internally done using e^power).
If you're getting only 6 digits, that suggests that your math, and maybe your library, is working in single precision (32 bit) reals. Check your library and check your declarations that you are using at least double precision (64 bit) reals everywhere.
What is the best way to simulate a flexagon?
My best guess at a starting point is to represent the faces and edges, and simulate transformations based where edges meet. I'm thinking that in the process of implementing a transformation, it will be apparent when folding in a given direction is physically impossible.
I'm going to try to figure this out by experimentation, but it definitely feels like the kind of problem where a gap in my facility with mathematics is holding me back.
Edit: To clarify, I'm interested in what sort of data structures I could use to represent a flexagon and how I can manipulate those data structures to simulate the folding of a flexagon.
If you write all of the invariants of the flexagon as a system of equations, small deviations around legal states may be written as a linear system. For instance, the stiffness of a piece of paper between (x1,y1) and (x2,y2) enforces
(x1 - x2)**2 + (y1 - y2)**2 - L**2 == 0
This can be be softened to
chi2 = (x1 - x2)**2 + (y1 - y2)**2 - L**2 + other constraints...
Derivatives of chi2 with respect to x1, x2, y1, y2 yield linear equations. A system of linear equations is a matrix, and an eigenvalue/eigenvector decomposition of that matrix give you linear combinations of the x1, x2, y1, y2 parameters that are easy or hard to bend. The eigenvectors are a basis set of possible directions and each one's corresponding eigenvalue tells you how hard it is to bend in that direction. Larger eigenvalues are more constrained.
A problem with the above is that if there are any directions that are truly allowed, that is, the derivative of chi2 with respect to p is 0 (the original constraint is absolutely satisfied), then the matrix is singular and can't be inverted to get the eigensystem. If you only want to know what those absolutely allowed directions are, you can compute the null space of the matrix instead of its eigensystem. However, I suspect (never having played with a flexagon) that the "allowed" directions involve a little bit of bending, in which case chi2 is small but nonzero. Then you'd be looking for small but nonzero eigenvalues. Other degrees of freedom are allowed and uninteresting, such as translation or rotation of the whole object. To turn it into a pure eigensystem problem (no null space at all), add constraints to the system with arbitrarily small constants lambda:
chi2 += lambda_x * (x1 + x2)**2/4.0 + lambda_y * (y1 + y2)**2/4.0
You'll recognize them in your solution because they'll vary as you vary each lambda. (The example above gives a penalty lambda_x to translating in x and lambda_y to translating in y.)
In terms of implementation, you can use any linear algebra software to compute solutions and check for variation with the lambdas. I used Python to prototype a problem like this (detector alignment in high energy physics, in which the constraints are measurements like "this detector is 3 cm from that detector" and the chi2 was derived from the uncertainties "3 cm +- 0.1 cm") and then ported the solution to C++ (BLAS) for production. The Numpy library for Python had enough linear algebra (it's BLAS under the hood), though I also used the generic, non-linear minimizers in Scipy to debug the matrix solution. The hardest part is getting the indexes to line up right, which is necessary when casting it as a matrix and not when you give an objective function to a generic minimizer (because you use variable names instead). This is more of a Matlab or Mathematica problem, so if you're more comfortable with one of them, use it instead. This problem will require a lot of trial and error, so use the most interactive system possible (one with a good REPL or worksheet/notebook-style interface).
It can also be helpful to draw a graph of the connections (graph-theory graph, not a plot), on which to label their constraints. For me, that was a necessary first step before writing out the equations.
It might also help to visualize the system by writing a set of functions that take parameter values (x1, etc.) and draw the figure with OpenGL (or other 3-D mesh renderer). This can show you if some constraint is being violated, because the mesh tiles would pass theough each other. It can also help you identify the degrees of freedom represented by each eigenvector: vary the parameters by the linear combination represented by the eigenvector and you'll see if it's just translating/rotating or if it's doing some interesting twist or fold.
When executing Mathematica's NullSpace command on a symbolic matrix, Mathematica makes some assumptions about the variables and I would like to know what they are.
For example,
In[1]:= NullSpace[{{a, b}, {c, d}}]
Out[1]= {}
but the unstated assumption is that
a d != b c.
How can I determine what assumptions the NullSpace command uses?
The underlying assumptions, so to speak, are enforced by internal uses of PossibleZeroQ. If that function cannot deem an expression to be zero then it will be regarded as nonzero, hence eligible for use as a pivot in row reduction (which is generally what is used for symbolic NullSpace).
---edit---
The question was raised regarding what might be visible in zero testing in symbolic linear algebra. By default the calls to PossibleZeroQ go through internal routes. PossibleZeroQ was later built on top of those.
There is always a question in Mathematica kernel code development of what should go through the main evaluator loop and what (e.g. for purposes of speed) should short circuit. Only the former is readily traced.
One can influence the process in symbolic linear algebra by specifying a non-default zero test. Could be e.g.
myTest[ee_]:= (Print[zerotesting[ee]]; PossibleZeroQ[ee])
and then use ZeroTest->myTest in NullSpace.
---end edit---
Found this:
In this case, if you expand your matrix by one column, the assumption shows up:
NullSpace[{{a, b, 1}, {c, d, 1}}]
{{-((-b+d)/(-b c+a d)),-((a-c)/(-b c+a d)),1}}
Perhaps useful in some situations
What is the best way to approximate a cubic Bezier curve? Ideally I would want a function y(x) which would give the exact y value for any given x, but this would involve solving a cubic equation for every x value, which is too slow for my needs, and there may be numerical stability issues as well with this approach.
Would this be a good solution?
Just solve the cubic.
If you're talking about Bezier plane curves, where x(t) and y(t) are cubic polynomials, then y(x) might be undefined or have multiple values. An extreme degenerate case would be the line x= 1.0, which can be expressed as a cubic Bezier (control point 2 is the same as end point 1; control point 3 is the same as end point 4). In that case, y(x) has no solutions for x != 1.0, and infinite solutions for x == 1.0.
A method of recursive subdivision will work, but I would expect it to be much slower than just solving the cubic. (Unless you're working with some sort of embedded processor with unusually poor floating-point capacity.)
You should have no trouble finding code that solves a cubic that has already been thoroughly tested and debuged. If you implement your own solution using recursive subdivision, you won't have that advantage.
Finally, yes, there may be numerical stablility problems, like when the point you want is near a tangent, but a subdivision method won't make those go away. It will just make them less obvious.
EDIT: responding to your comment, but I need more than 300 characters.
I'm only dealing with bezier curves where y(x) has only one (real) root. Regarding numerical stability, using the formula from http://en.wikipedia.org/wiki/Cubic_equation#Summary, it would appear that there might be problems if u is very small. – jtxx000
The wackypedia article is math with no code. I suspect you can find some cookbook code that's more ready-to-use somewhere. Maybe Numerical Recipies or ACM collected algorithms link text.
To your specific question, and using the same notation as the article, u is only zero or near zero when p is also zero or near zero. They're related by the equation:
u^^6 + q u^^3 == p^^3 /27
Near zero, you can use the approximation:
q u^^3 == p^^3 /27
or p / 3u == cube root of q
So the computation of x from u should contain something like:
(fabs(u) >= somesmallvalue) ? (p / u / 3.0) : cuberoot (q)
How "near" zero is near? Depends on how much accuracy you need. You could spend some quality time with Maple or Matlab looking at how much error is introduced for what magnitudes of u. Of course, only you know how much accuracy you need.
The article gives 3 formulas for u for the 3 roots of the cubic. Given the three u values, you can get the 3 corresponding x values. The 3 values for u and x are all complex numbers with an imaginary component. If you're sure that there has to be only one real solution, then you expect one of the roots to have a zero imaginary component, and the other two to be complex conjugates. It looks like you have to compute all three and then pick the real one. (Note that a complex u can correspond to a real x!) However, there's another numerical stability problem there: floating-point arithmetic being what it is, the imaginary component of the real solution will not be exactly zero, and the imaginary components of the non-real roots can be arbitrarily close to zero. So numeric round-off can result in you picking the wrong root. It would be helpfull if there's some sanity check from your application that you could apply there.
If you do pick the right root, one or more iterations of Newton-Raphson can improve it's accuracy a lot.
Yes, de Casteljau algorithm would work for you. However, I don't know if it will be faster than solving the cubic equation by Cardano's method.