Is it possible to obtain lower-precision path lengths? - r

I am working with a scientific package that makes heavy use of igraph's shortest path algorithm to calculate path lengths. However, for the graphs we are interested in, the matrix returned is very memory-intensive, easily scaling to 10's of Gb. Also, double precision calculations are not needed--in most cases single precision or even integer precision are enough.
I have two questions:
Is it possible to change the data type of the matrix, say from double to single precision or even integer (if we only need the number of edges)?
Is it possible to change the default value of the path length between unconnected nodes from infinity to null or some other value? (We are considering storing the matrix in a sparse matrix, but the infinity is incompatible)
I can't find any arguments or settings in the documentation that would let me do this, neither here: https://igraph.org/r/doc/distances.html nor in the low-level function documentation.
Thanks in advance!

Some tips that may help:
Using a sparse matrix would only help if most vertex pairs are unreachable from each other. This would mean that the graph has many small components. If so, decompose the graph into components, and run the shortest path length calculation separately on each component.
Do you need to store the entire matrix in memory for the next step of your calculation? Or can you use the matrix part by part? igraph makes it possible to compute shortest paths not from all sources, but only from certain sources. Process sources one-by-one (or for better performance: small group by small group) instead of all at once. igraph also supports calculating the path only to certain targets, due to how the shortest path finder works, doing the computation target-by-target won't be efficient.

Related

All pairs shortest paths in graph directed with non-negative weighted edges

I have a directed graph with non-negative weighted edges where there are multiple edges between two vertices.
I need to compute all pairs shortest path.
This graph is very big (20 milion vertices and 100 milion of edges).
Is Floyd–Warshall the best algorithm ? There is a good library or tool to complete this task ?
There exists several all-to-all shortest paths algorithms for directed graphs with non-negative cycles, Floyd-Warshall being probably the most famous, but with the figures you gave, I think you will have in any case memory issues (time could be an issue, but you can find all-to-all algorithm that can be easily and massively parallelized).
Independently of the algorithm you use, you will have to store the result somewhere. And storing 20,000,000² = 400,000,000,000,000 paths length (if not the full paths themselves) would use hundreds of terabytes, at the very least.
Accessing any of these results would probably be longer than calculating one shortest path (memory wall), which can be done in less than a milisecond (depending on the graph structure, you can find techniques that are much, much faster than Dijkstra or any priority queue based algorithm).
I think you should look for an alternative where computing all-to-all shortest paths is not required, to be honnest. Or, to study the structure of your graph (DAG, well structured graph easy to partition/cluster, geometric/geographic information ...) in order to apply different algorithms, because in the general case, I do not see any way around.
For example, with the figures you gave, an average degree of about 5 makes for a decently sparse graph, considering its dimensions. Graph partitioning approaches could then be very useful.

Different bandwidth specification in mean-shift clustering with different packages in R

I want to perform mean-shift clustering in R and found out that there are at least two packages that have this functionality: MeanShift and meanShiftR. As showed here the latter is much faster and as I tried out the first one and it took a long time to perform a clustering, I'm keen on choosing meanShiftR. However meanShiftR::meanShift function has rather uncommon way of bandwidth specification, see part of documentation:
queryData A matrix or vector of points to be classified by the mean
shift algorithm. Values must be finite and non-missing.
bandwidth A vector of length equal to the number of columns in the queryData matrix, or length one when queryData is a vector. This
value will be used in the kernel density estimate for steepest ascent
classification. The default is one for each dimension.
I'm not an expert in mean-shift clustering, but the only banwidth specifications I have found in the literature is that bandwidth is scalar or positive definite, symmetric matrix, not a vector. So is this the technical trick to represent the bandwidth and the value of bandwidth have to be the same for each dimension? Or maybe it can vary?
The other issue is that even setting the same value of bandwidth in meanShiftR package as in MeanShift::msClustering, but just replicated to match the number of columns, I've obtained totally different results, in particular much larger number of cluster. Also, the modes were rather very similar and not representative of the dataset. That made me wonder if this package works correct. Have someone even used meanShiftR? If so, maybe you could present any example as the documentation is not clear enough for me?
This isn't actually different.
One scalar per query point.

8 point algorithm for estimating Fundamental Matrix

I'm watching a lecture about estimating the fundamental matrix for use in stereo vision using the 8 point algorithm. I understand that once we recover the fundamental matrix between two cameras we can compute the epipolar line on one camera given a point on the other. To my understanding this epipolar line (after it's been rectified) makes it easy to find feature correspondences, because we are simply matching features along a 1D line.
The confusion comes from the fact that 8-point algorithm itself requires at least 8 feature correspondences to estimate the Fundamental Matrix.
So, we are finding point correspondences to recover a matrix that is used to find point correspondences?
This seems like a chicken-egg paradox so I guess I'm misunderstanding something.
The fundamental matrix can be precomputed. This leads to two advantages:
You can use a nice environment in which features can be matched easily (like using a chessboard) to compute the fundamental matrix.
You can use more computationally expensive operations like a sequence of SIFT, FLANN and RANSAC across the entire image since you only need to do that once.
After getting the fundamental matrix, you can find correspondences in a noisy environment more efficiently than using the same method when you compute the fundamental matrix.

Graph partitioning optimization

The problem
I have a set of locations on a plane (actually they are pins in a KML file) and I want to partition this graph into subgraphs. Connectivity is pretty good - as with all real world road networks - so I assume that if two locations are close they have some kind of connection. The resulting set of subgraphs should adhere to these constraints:
Every node has to be covered by a subgraph
Every node should be in exactly 1 subgraph
Every node within a subgraph should be close to each other (L2 norm distances)
Every subgraph should contain at least 5 locations
The amount of subgraphs should be minimal
Right now the amount of locations is no more than 100 so I thought about brute forcing through every possibility but this obviously won't scale well.
I thought about using some k-Nearest-Neighbors algorithm (e.g. using QuickGraph) but I can't get my head around where to start and how to extend/shrink the subgraphs on the way. Maybe it's possible to map this problem to another problem that can easily be solved with some numerical procedure (e.g. Simplex) ...
Maybe someone has experience in this kind of optimization problems and is willing to help me find a solution? I don't have access to Mathematica/Matlab or the like ... but sufficient .NET programming skills and hmm Excel :-)
Thanks a lot!
As soon as there are multiple criteria that need to be appeased in the best possible way simultanously, it is usually starting to get difficult.
A numerical solution could work as follows: You could define yourself a utility function, that maps partitionings of your locations to positive real values, describing how "good" a partition is by assigning it a "rating" (good could be high "bad" could be near zero).
Once you have such a function assigning partitions their according "values", you simply need to optimize it and then you hopefully obtain a good solution if you defined your utility function reasonably. Evolutionary algorithms are good at that task since your utility function is probably analytically too complex to solve due to its discrete nature.
The problem is then only how you assign "values" to partitions via this utility function. This is then your task. It can be done for example by weighing each criterion with a factor and summing the results up, or even more complex functions (least squares etc.). The factors you use in the definition of the utility function are tuning parameters and can be varied until the result seems to be good.
Some CA software wold help a lot for testing if you can get your hands on one, bit I guess to obtain a black box solver for your partitioning problem, you need to implement the complete procedure yourself using a language of your choice.

What is the meaning of "Inf" in S_Dbw output in R commander?

I have ran clv package which consists of S_Dbw and SD validity indexes for clustering purposes in R commander. (http://cran.r-project.org/web/packages/clv/index.html)
I evaluated my clustering results from DBSCAN, K-Means, Kohonen algorithms with S_Dbw index. but for all these three algorithms S_Dbw is "Inf".
Is it "Infinite" meaning? Why did i confront with "Inf". Is there any problem in my clustering results?
In general, when is S_Dbw index result "Inf"?
Be careful when comparing different algorithms with such an index.
The reason is that the index is pretty much an algorithm in itself. One particular clustering will necessarily be the "best" for each index. The main difference between an index and an actual clustering algorithm is that the index doesn't tell you how to find the "best" solution.
Some examples: k-means minimizes the distances from cluster members to cluster centers. Single-link hierarchical clustering will find the partition with the optimal minimum distance between partitions. Well, DBSCAN will find the partitioning of the dataset, where all density-connected points are in the same partition. As such, DBSCAN is optimal - if you use the appropriate measure.
Seriously. Do not assume that because one algorithm scores higher than another in a particular measure means that the algorithm works better. All that you find out this way is that a particular algorithm is more (cor-)related to a particular measure. Think of it as a kind of correlation between the measure and the algorithm, on a conceptual level.
Using a measure for comparing different results of the same algorithm is different. Then obviously there shouldn't be a benefit from one algorithm over itself. There might still be a similar effect with respect to parameters. For example the in-cluster distances in k-means obviously should go down when you increase k.
In fact, many of the measures are not even well-defined on DBSCAN results. Because DBSCAN has the concept of noise points, which the indexes do not AFAIK.
Do not assume that the measure will either give you an indication of what is "true" or "correct". And even less, what is useful or new. Because you should be using cluster analysis not to find a mathematical optimum of a particular measure, but to learn something new and useful about your data. Which probably is not some measure number.
Back to the indices. They usually are totally designed around k-means. From a short look at S_Dbw I have the impression that the moment one "cluster" consists of a single object (e.g. a noise object in DBSCAN), the value will become infinity - aka: undefined. It seems as if the authors of that index did not consider this corner case, but only used it on toy data sets where such situations did not arise. The R implementation can't fix this, without diverting from the original index and instead turning it into yet another index. Handling noise objects and singletons is far from trivial. I have not yet seen an index that doesn't fail in one way or another - typically, a solution such as "all objects are noise" will either score perfect, or every clustering can trivially be improved by putting each noise object to the nearest non-singleton cluster. If you want your algorithm to be able to say "this object doesn't belong to any cluster" then I do not know any appropriate index.
The IEEE floating point standard defines Inf and -Inf as positive and negative infinity respectively. It means your result was too large to represent in the given number of bits.

Resources