Sometimes it is handy to take a test case out of your data when working with group_by() from the dplyr library. I was wondering if there is any fast way to just grab the first group of a grouped dataframe and cast it to a new dataframe.
All I could come up with was this workaround:
library(dplyr)
smalldf <- mtcars %>% group_by(gear) %>% group_split(.) %>% .[[1]]
I have this dataframe
When I try to arrange it to create a ranking variable
df_tablaCruzada<-df_tablaCruzada%>%
arrange(desc(Total)) %>%
mutate(Ranking=1:nrow(df_tablaCruzada))
I get the data frame arranged and the ranking variable is fine but I have lost the original row names
Any idea, please?
regards
Dplyr does't support row.names you may want to use tibble::rownames_to_column()
Example
mtcars %>%
tibble::rownames_to_column()
In your case this should work
df_tablaCruzada<-df_tablaCruzada%>%
tibble::rownames_to_column() %>%
arrange(desc(Total)) %>%
mutate(Ranking=1:nrow(df_tablaCruzada))
you can also use the add_row function of dplyr to replace the mutate in this case
library(tidyverse)
library(ggmosaic) for "happy" dataset.
I feel like this should be a somewhat simple thing to achieve, but I'm having difficulty with percentages when using purrr::map together with table(). Using the "happy" dataset, I want to create a list of frequency tables for each factor variable. I would also like to have rounded percentages instead of counts, or both if possible.
I can create frequency precentages for each factor variable separately with the code below.
with(happy,round(prop.table(table(marital)),2))
However I can't seem to get the percentages to work correctly when using table() with purrr::map. The code below doesn't work...
happy%>%select_if(is.factor)%>%map(round(prop.table(table)),2)
The second method I tried was using tidyr::gather, and calculating the percentage with dplyr::mutate and then splitting the data and spreading with tidyr::spread.
TABLE<-happy%>%select_if(is.factor)%>%gather()%>%group_by(key,value)%>%summarise(count=n())%>%mutate(perc=count/sum(count))
However, since there are different factor variables, I would have to split the data by "key" before spreading using purrr::map and tidyr::spread, which came close to producing some useful output except for the repeating "key" values in the rows and the NA's.
TABLE%>%split(TABLE$key)%>%map(~spread(.x,value,perc))
So any help on how to make both of the above methods work would be greatly appreciated...
You can use an anonymous function or a formula to get your first option to work. Here's the formula option.
happy %>%
select_if(is.factor) %>%
map(~round(prop.table(table(.x)), 2))
In your second option, removing the NA values and then removing the count variable prior to spreading helps. The order in the result has changed, however.
TABLE = happy %>%
select_if(is.factor) %>%
gather() %>%
filter(!is.na(value)) %>%
group_by(key, value) %>%
summarise(count = n()) %>%
mutate(perc = round(count/sum(count), 2), count = NULL)
TABLE %>%
split(.$key) %>%
map(~spread(.x, value, perc))
cols <- data %>% names()
data %>% dplyr::filter_(is.na(cols[1]))
gives zero although it should output some rows, alternatively when calling
data %>% dplyr::filter(is.na("colName"))
output rows
Thus, dynamic filtration not working, any idea what is the alternative?
dplyr::filter(data, is.na(data[, cols[1]]))
This is my first stackoverflow question.
I'm trying to use dplyr to process and output a summary of data grouped by a categorical variable (inj_length_cat3) in my dataset. Actually, I generate this variable (from inj_length) on the fly using mutate(). I also want to output the same summary of the data without grouping. The only way I figured out how to do that is to do the analysis twice over, once with, once without grouping, and then combine the outputs. Ugh.
I'm sure there is a more elegant solution than this and it bugs me. I wonder if anyone would be able to help.
Thanks!
library(dplyr)
df<-data.frame(year=sample(c(2005,2006),20,replace=T),inj_length=sample(1:10,20,replace=T),hiv_status=sample(0:1,20,replace=T))
tmp <- df %>%
mutate(inj_length_cat3 = cut(inj_length, breaks=c(0,3,100), labels = c('<3 years','>3 years')))%>%
group_by(year,inj_length_cat3)%>%
summarise(
r=sum(hiv_status,na.rm=T),
n=length(hiv_status),
p=prop.test(r,n)$estimate,
cilow=prop.test(r,n)$conf.int[1],
cihigh=prop.test(r,n)$conf.int[2]
) %>%
filter(inj_length_cat3%in%c('<3 years','>3 years'))
tmp_all <- df %>%
group_by(year)%>%
summarise(
r=sum(hiv_status,na.rm=T),
n=length(hiv_status),
p=prop.test(r,n)$estimate,
cilow=prop.test(r,n)$conf.int[1],
cihigh=prop.test(r,n)$conf.int[2]
)
tmp_all$inj_length_cat3=as.factor('All')
tmp<-merge(tmp_all,tmp,all=T)
I'm not sure you consider this more elegant, but you can get a solution to work if you first create a dataframe that has all your data twice: once so that you can get the subgroups and once to get the overall summary:
df1 <- rbind(df,df)
df1$inj_length_cat3 <- cut(df$inj_length, breaks=c(0,3,100,Inf),
labels = c('<3 years','>3 years','All'))
df1$inj_length_cat3[-(1:nrow(df))] <- "All"
Now you just need to run your first analysis without mutate():
tmp <- df1 %>%
group_by(year,inj_length_cat3)%>%
summarise(
r=sum(hiv_status,na.rm=T),
n=length(hiv_status),
p=prop.test(r,n)$estimate,
cilow=prop.test(r,n)$conf.int[1],
cihigh=prop.test(r,n)$conf.int[2]
) %>%
filter(inj_length_cat3%in%c('<3 years','>3 years','All'))