I've been asked to provide standardized coefficients for a glmer model, but am not sure how to obtain them. Unfortunately, the beta function does not work on glmer models:
Error in UseMethod("beta") :
no applicable method for 'beta' applied to an object of class "c('glmerMod', 'merMod')"
Are there other functions I could use, or would I have to write one myself?
Another problem is that the model contains several continuous predictors (which operate on similar scales) and 2 categorical predictors (one with 4 levels, one with six levels). The purpose of using the standardized coefficients would be to compare the impact of the categorical predictors to those of the continuous ones, and I'm not sure that standardized coefficients are the appropriate way to do so. Are standardized coefficients an acceptable approach?
The model is as follows:
model=glmer(cbind(nr_corr,maximum-nr_corr) ~ (condition|SUBJECT) + categorical_1 + categorical_2 + continuous_1 + continuous_2 + continuous_3 + continuous_4 + categorical_1:categorical_2 + categorical_1:continuous_3, data, control=glmerControl(optimizer="bobyqa", optCtrl=list(maxfun=100000)), family = binomial)
reghelper::beta simply standardizes the numeric variables in our dataset. So assuming your catagorical variables are factors rather than numeric dummy variables or other contrast encodings we can fairly simply standardize the numeric variables in our dataset
vars <- grep('^continuous(.*)?', all.vars(formula(model)))
f <- function(var, data)
scale(data[[var]])
data[, vars] <- lapply(vars, f, data = data)
update(model, data = data)
Now for the more general case we can more or less just as easily create our own beta.merMod function. However we will need to take into account whether or not it makes sense to standardize y. For example if we have a poisson model only positive integer values makes sense. In addition a question becomes whether or not to scale the random slope effects or not, and whether it makes sense to ask this question in the first place. In it I assume that categorical variables are encoded as character or factor and not numeric or integer.
beta.merMod <- function(model,
x = TRUE,
y = !family(model) %in% c('binomial', 'poisson'),
ran_eff = FALSE,
skip = NULL,
...){
# Extract all names from the model formula
vars <- all.vars(form <- formula(model))
lhs <- all.vars(form[[2]])
# Get random effects from the
ranef <- names(ranef(model))
# Remove ranef and lhs from vars
rhs <- vars[!vars %in% c(lhs, ranef)]
# extract the data used for the model
env <- environment(form)
call <- getCall(model)
data <- get(dname <- as.character(call$data), envir = env)
# standardize the dataset
vars <- character()
if(isTRUE(x))
vars <- c(vars, rhs)
if(isTRUE(y))
vars <- c(vars, lhs)
if(isTRUE(ran_eff))
vars <- c(vars, ranef)
data[, vars] <- lapply(vars, function(var){
if(is.numeric(data[[var]]))
data[[var]] <- scale(data[[var]])
data[[var]]
})
# Update the model and change the data into the new data.
update(model, data = data)
}
The function works for both linear and generalized linear mixed effect models (not tested for nonlinear models), and is used just like other beta functions from reghelper
library(reghelper)
library(lme4)
# Linear mixed effect model
fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
fm2 <- beta(fm1)
fixef(fm1) - fixef(fm2)
(Intercept) Days
-47.10279 -19.68157
# Generalized mixed effect model
data(cbpp)
# create numeric variable correlated with period
cbpp$nv <-
rnorm(nrow(cbpp), mean = as.numeric(levels(cbpp$period))[as.numeric(cbpp$period)])
gm1 <- glmer(cbind(incidence, size - incidence) ~ nv + (1 | herd),
family = binomial, data = cbpp)
gm2 <- beta(gm1)
fixef(gm1) - fixef(gm2)
(Intercept) nv
0.5946322 0.1401114
Note however that unlike beta the function returns the updated model not a summary of the model.
Another problem is that the model contains several continuous predictors (which operate on similar scales) and 2 categorical predictors (one with 4 levels, one with six levels). The purpose of using the standardized coefficients would be to compare the impact of the categorical predictors to those of the continuous ones, and I'm not sure that standardized coefficients are the appropriate way to do so. Are standardized coefficients an acceptable approach?
Now that is a great question and one better suited for stats.stackexchange, and not one I'm certain of the answer to.
Again, thank you so much, Oliver! For anybody who is interested in the answer regarding the last part of my question,
Another problem is that the model contains several continuous
predictors (which operate on similar scales) and 2 categorical
predictors (one with 4 levels, one with six levels). The purpose of
using the standardized coefficients would be to compare the impact of
the categorical predictors to those of the continuous ones, and I'm
not sure that standardized coefficients are the appropriate way to do
so. Are standardized coefficients an acceptable approach?
you can find the answer here. The tl;dr is that using standardized regression coefficients is not the best approach for mixed models anyways, let alone one such as mine...
Related
I'm dealing with problems of three parts that I can solve separately, but now I need to solve them together:
extremely skewed, over-dispersed dependent count variable (the number of incidents while doing something),
necessity to include random effects,
lots of missing values -> multiple imputation -> 10 imputed datasets.
To solve the first two parts, I chose a quasi-Poisson mixed-effect model. Since stats::glm isn't able to include random effects properly (or I haven't figured it out) and lme4::glmer doesn't support the quasi-families, I worked with glmer(family = "poisson") and then adjusted the std. errors, z statistics and p-values as recommended here and discussed here. So I basically turn Poisson mixed-effect regression into quasi-Poisson mixed-effect regression "by hand".
This is all good with one dataset. But I have 10 of them.
I roughly understand the procedure of analyzing multiple imputed datasets – 1. imputation, 2. model fitting, 3. pooling results (I'm using mice library). I can do these steps for a Poisson regression but not for a quasi-Poisson mixed-effect regression. Is it even possible to A) pool across models based on a quasi-distribution, B) get residuals from a pooled object (class "mipo")? I'm not sure. Also I'm not sure how to understand the pooled results for mixed models (I miss random effects in the pooled output; although I've found this page which I'm currently trying to go through).
Can I get some help, please? Any suggestions on how to complete the analysis (addressing all three issues above) would be highly appreciated.
Example of data is here (repre_d_v1 and repre_all_data are stored in there) and below is a crucial part of my code.
library(dplyr); library(tidyr); library(tidyverse); library(lme4); library(broom.mixed); library(mice)
# please download "qP_data.RData" from the last link above and load them
## ===========================================================================================
# quasi-Poisson mixed model from single data set (this is OK)
# first run Poisson regression on df "repre_d_v1", then turn it into quasi-Poisson
modelSingle = glmer(Y ~ Gender + Age + Xi + Age:Xi + (1|Country) + (1|Participant_ID),
family = "poisson",
data = repre_d_v1)
# I know there are some warnings but it's because I share only a modified subset of data with you (:
printCoefmat(coef(summary(modelSingle))) # unadjusted coefficient table
# define quasi-likelihood adjustment function
quasi_table = function(model, ctab = coef(summary(model))) {
phi = sum(residuals(model, type = "pearson")^2) / df.residual(model)
qctab = within(as.data.frame(ctab),
{`Std. Error` = `Std. Error`*sqrt(phi)
`z value` = Estimate/`Std. Error`
`Pr(>|z|)` = 2*pnorm(abs(`z value`), lower.tail = FALSE)
})
return(qctab)
}
printCoefmat(quasi_table(modelSingle)) # done, makes sense
## ===========================================================================================
# now let's work with more than one data set
# object "repre_all_data" of class "mids" contains 10 imputed data sets
# fit model using with() function, then pool()
modelMultiple = with(data = repre_all_data,
expr = glmer(Y ~ Gender + Age + Xi + Age:Xi + (1|Country) + (1|Participant_ID),
family = "poisson"))
summary(pool(modelMultiple)) # class "mipo" ("mipo.summary")
# this has quite similar structure as coef(summary(someGLM))
# but I don't see where are the random effects?
# and more importantly, I wanted a quasi-Poisson model, not just Poisson model...
# ...but here it is not possible to use quasi_table function (defined earlier)...
# ...and that's because I can't compute "phi"
This seems reasonable, with the caveat that I'm only thinking about the computation, not whether this makes statistical sense. What I'm doing here is computing the dispersion for each of the individual fits and then applying it to the summary table, using a variant of the machinery that you posted above.
## compute dispersion values
phivec <- vapply(modelMultiple$analyses,
function(model) sum(residuals(model, type = "pearson")^2) / df.residual(model),
FUN.VALUE = numeric(1))
phi_mean <- mean(phivec)
ss <- summary(pool(modelMultiple)) # class "mipo" ("mipo.summary")
## adjust
qctab <- within(as.data.frame(ss),
{ std.error <- std.error*sqrt(phi_mean)
statistic <- estimate/std.error
p.value <- 2*pnorm(abs(statistic), lower.tail = FALSE)
})
The results look weird (dispersion < 1, all model results identical), but I'm assuming that's because you gave us a weird subset as a reproducible example ...
I have a bit of an issue. I am trying to develop some code that will allow me to do the following: 1) run a logistic regression analysis, 2) extract the estimates from the logistic regression analysis, and 3) use those estimates to create another logistic regression formula that I can use in a subsequent simulation of the original model. As I am, relatively new to R, I understand I can extract these coefficients 1-by-1 through indexing, but it is difficult to "scale" this to models with different numbers of coefficients. I am wondering if there is a better way to extract the coefficients and setup the formula. Then, I would have to develop the actual variables, but the development of these variables would have to be flexible enough for any number of variables and distributions. This appears to be easily done in Mplus (example 12.7 in the Mplus manual), but I haven't figured this out in R. Here is the code for as far as I have gotten:
#generating the data
set.seed(1)
gender <- sample(c(0,1), size = 100, replace = TRUE)
age <- round(runif(100, 18, 80))
xb <- -9 + 3.5*gender + 0.2*age
p <- 1/(1 + exp(-xb))
y <- rbinom(n = 100, size = 1, prob = p)
#grabbing the coefficients from the logistic regression model
matrix_coef <- summary(glm(y ~ gender + age, family = "binomial"))$coefficients
the_estimates <- matrix_coef[,1]
the_estimates
the_estimates[1]
the_estimates[2]
the_estimates[3]
I just cannot seem to figure out how to have R create the formula with the variables (x's) and the coefficients from the original model in a flexible manner to accommodate any number of variables and different distributions. This is not class assignment, but a necessary piece for the research that I am producing. Any help will be greatly appreciated, and please, treat this as a teaching moment. I really want to learn this.
I'm not 100% sure what your question is here.
If you want to simulate new data from the same model with the same predictor variables, you can use the simulate() method:
dd <- data.frame(y, gender, age)
## best practice when modeling in R: take the variables from a data frame
model <- glm(y ~ gender + age, data = dd, family = "binomial")
simulate(model)
You can create multiple replicates by specifying the nsim= argument (or you can simulate anew every time through a for() loop)
If you want to simulate new data from a different set of predictor variables, you have to do a little bit more work (some model types in R have a newdata= argument, but not GLMs alas):
## simulate new model matrix (including intercept)
simdat <- cbind(1,
gender = rbinom(100, prob = 0.5, size = 1),
age = sample(18:80, size = 100, replace = TRUE))
## extract inverse-link function
invlink <- family(model)$linkinv
## sample new values
resp <- rbinom(n = 100, size = 1, prob = invlink(simdat %*% coef(model)))
If you want to do this later from coefficients that have been stored, substitute the retrieved coefficient vector for coef(model) in the code above.
If you want to flexibly construct formulas, reformulate() is your friend — but I don't see how it fits in here.
If you want to (say) re-fit the model 1000 times to new responses simulated from the original model fit (same coefficients, same predictors: i.e. a parametric bootstrap), you can do something like this.
nsim <- 1000
res <- matrix(NA, ncol = length(coef(model)), nrow = nsim)
for (i in 1:nsim) {
## simulate returns a list (in this case, of length 1);
## extract the response vector
newresp <- simulate(model)[[1]]
newfit <- update(model, newresp ~ .)
res[i,] <- coef(newfit)
}
You don't have to store coefficients - you can extract/compute whatever model summaries you like (change the number of columns of res appropriately).
Let’s say your data matrix including age and gender, or whatever predictors, is X. Then you can use X on the right-hand side of your glm formula, get xb_hat <- X %*% the_estimates (or whatever other data matrix replacing X as long as it has same columns) and plug xb_hat into whatever link function you want.
I appreciate broom.mixed ability to capture mixed-effects modeling in nice tidy formats. In assessing assumptions for the linear mixed effects model, I am finding that the augment function is particularly useful. However, the documentation fails to state what all the columns are for augment.merMod().
library(lme4)
library(broom.mixed)
set.seed(101)
dd <- expand.grid(f1 = factor(1:3),
f2 = LETTERS[1:2], g=1:9, rep=1:15,
KEEP.OUT.ATTRS=FALSE)
summary(mu <- 5*(-4 + with(dd, as.integer(f1) + 4*as.numeric(f2))))
dd$y <- rnbinom(nrow(dd), mu = mu, size = 0.5)
m.nb <- glmer.nb(y ~ f1*f2 + (1|g), data=dd, verbose=FALSE)
head(augment(m.nb))
Here is what the documentation says:
augment returns one row for each original observation, with columns (each prepended by a .) added. Included are the columns
.fitted predicted values
.resid residuals
.fixed predicted values with no random effects
Also added for "merMod" objects, but not for "mer" objects, are values from the response object within the model (of type lmResp, glmResp, nlsResp, etc). These include ".mu", ".offset", ".sqrtXwt", ".sqrtrwt", ".eta".
What are these columns: ".mu", ".sqrtXwt", ".sqrtrwt", ".eta" ? Is .fitted the predicted values on the model scale? And .mu on the response scale (in other words, the inverse link function is applied to predicted values)?
I am using lapply to perform several glm regressions on one dependent variable by one independent variable at a time. but I'm not sure how to extract the P values at a time.
There are 200 features in my dataset, but the code below only gave me the P value of feature#1. How can I get a matrix of all P values of the 200 features?
valName<- as.data.frame(colnames(repeatData))
featureName<-valName[3,]
lapply(featureName,
function(var) {
formula <- as.formula(paste("outcome ~", var))
fit.logist <- glm(formula, data = repeatData, family = binomial)
summary(fit.logist)
Pvalue<-coef(summary(fit.logist))[,'Pr(>|z|)']
})
I
I simplified your code a little bit; (1) used reformulate() (not really different, just prettier) (2) returned only the p-value for the focal variable (not the intercept p-value). (If you leave out the 2, you'll get a 2-row matrix with intercept and focal-variable p-values.)
My example uses the built-in mtcars data set, with an added (fake) binomial response.
repeatData <- data.frame(outcome=rbinom(nrow(mtcars), size=1, prob=0.5), mtcars)
ff <- function(var) {
formula <- reformulate(var, response="outcome")
fit.logist <- glm(formula, data = repeatData, family = binomial)
coef(summary(fit.logist))[2, 'Pr(>|z|)']
}
## skip first column (response variable).
sapply(names(repeatData)[-1], ff)
I am struggling to understand how, in R, to generate predictive simulations for new data using a multilevel linear regression model with a single set of random intercepts. Following the example on pp. 146-147 of this text, I can execute this task for a simple linear model with no random effects. What I can't wrap my head around is how to extend the set-up to accommodate random intercepts for a factor added to that model.
I'll use iris and some fake data to show where I'm getting stuck. I'll start with a simple linear model:
mod0 <- lm(Sepal.Length ~ Sepal.Width, data = iris)
Now let's use that model to generate 1,000 predictive simulations for 250 new cases. I'll start by making up those cases:
set.seed(20912)
fakeiris <- data.frame(Sepal.Length = rnorm(250, mean(iris$Sepal.Length), sd(iris$Sepal.Length)),
Sepal.Width = rnorm(250, mean(iris$Sepal.Length), sd(iris$Sepal.Length)),
Species = sample(as.character(unique(iris$Species)), 250, replace = TRUE),
stringsAsFactors=FALSE)
Following the example in the aforementioned text, here's what I do to get 1,000 predictive simulations for each of those 250 new cases:
library(arm)
n.sims = 1000 # set number of simulations
n.tilde = nrow(fakeiris) # set number of cases to simulate
X.tilde <- cbind(rep(1, n.tilde), fakeiris[,"Sepal.Width"]) # create matrix of predictors describing those cases; need column of 1s to multiply by intercept
sim.fakeiris <- sim(mod0, n.sims) # draw the simulated coefficients
y.tilde <- array(NA, c(n.sims, n.tilde)) # build an array to hold results
for (s in 1:n.sims) { y.tilde[s,] <- rnorm(n.tilde, X.tilde %*% sim.fakeiris#coef[s,], sim.fakeiris#sigma[s]) } # use matrix multiplication to fill that array
That works fine, and now we can do things like colMeans(y.tilde) to inspect the central tendencies of those simulations, and cor(colMeans(y.tilde), fakeiris$Sepal.Length) to compare them to the (fake) observed values of Sepal.Length.
Now let's try an extension of that simple model in which we assume that the intercept varies across groups of observations --- here, species. I'll use lmer() from the lme4 package to estimate a simple multilevel/hierarchical model that matches that description:
library(lme4)
mod1 <- lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris)
Okay, that works, but now what? I run:
sim.fakeiris.lmer <- sim(mod1, n.sims)
When I use str() to inspect the result, I see that it is an object of class sim.merMod with three components:
#fixedef, a 1,000 x 2 matrix with simulated coefficients for the fixed effects (the intercept and Sepal.Width)
#ranef, a 1,000 x 3 matrix with simulated coefficients for the random effects (the three species)
#sigma, a vector of length 1,000 containing the sigmas associated with each of those simulations
I can't wrap my head around how to extend the matrix construction and multiplication used for the simple linear model to this situation, which adds another dimension. I looked in the text, but I could only find an example (pp. 272-275) for a single case in a single group (here, species). The real-world task I'm aiming to perform involves running simulations like these for 256 new cases (pro football games) evenly distributed across 32 groups (home teams). I'd greatly appreciate any assistance you can offer.
Addendum. Stupidly, I hadn't looked at the details on simulate.merMod() in lme4 before posting this. I have now. It seems like it should do the trick, but when I run simulate(mod0, nsim = 1000, newdata = fakeiris), the result has only 150 rows. The values look sensible, but there are 250 rows (cases) in fakeiris. Where is that 150 coming from?
One possibility is to use the predictInterval function from the merTools package. The package is about to be submitted to CRAN, but the current developmental release is available for download from GitHub,
install.packages("devtools")
devtools::install_github("jknowles/merTools")
To get the median and a 95% credible interval of 100 simulations:
mod1 <- lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris)
out <- predictInterval(mod1, newdata=fakeiris, level=0.95,
n.sims=100, stat="median")
By default, predictInterval includes the residual variation, but you can
turn that feature off with:
out2 <- predictInterval(mod1, newdata=fakeiris, level=0.95,
n.sims=100, stat="median",
include.resid.var=FALSE)
Hope this helps!
This might help: it doesn't use sim(), but instead uses mvrnorm() to draw the new coefficients from the sampling distribution of the fixed-effect parameters, uses a bit of internal machinery (setBeta0) to reassign the internal values of the fixed-effect coefficients. The internal values of the random effect coefficients are automatically resampled by simulate.merMod using the default argument re.form=NA. However, the residual variance is not resampled -- it is held fixed across the simulations, which isn't 100% realistic.
In your use case, you would specify newdata=fakeiris.
library(lme4)
mod1 <- lmer(Sepal.Length ~ Sepal.Width + (1 | Species), data = iris)
simfun <- function(object,n=1,newdata=NULL,...) {
v <- vcov(object)
b <- fixef(object)
betapars <- MASS::mvrnorm(n,mu=b,Sigma=v)
npred <- if (is.null(newdata)) {
length(predict(object))
} else nrow(newdata)
res <- matrix(NA,npred,n)
for (i in 1:n) {
mod1#pp$setBeta0(betapars[i,])
res[,i] <- simulate(mod1,newdata=newdata,...)[[1]]
}
return(res)
}
ss <- simfun(mod1,100)