Fitting distributions with R - r
Good afternoon. I have a vector 'a' containing 16000 values. I get the descriptive statistics with the help of the following:
library(pastecs)
library(timeDate)
stat.desc(a)
skewness(a)
kurtosis(a)
Especially skewness=-0.5012, kurtosis=420.8073 (1)
Then I build a histogram of my empirical data:
hist(a, col="lightblue", breaks = 140, border="white", main="",
xlab="Value",xlim=c(-0.001,0.001))
After this I try to fit a theoretical distribution to my empirical data. I choose Variance-Gamma distribution and try to get its parameter estimates on my data:
library(VarianceGammma)
a_VG<-vgFit(a)
The parameter estimates are the following:
vgC=-11.7485, sigma=0.4446, theta=11.7193, nu=0.1186 (2)
Further, I create a sample from the Variance-Gamma distribution with the parameters from (2)
and build a histogram of created theoretical values:
VG<-rvg(length(a),vgC=-11.7485,sigma=0.4446,theta=11.7193,nu=0.1186)
hist(VG,breaks=140,col="orange",main="",xlab="Value")
Bu the second histogram differs absolutely from the first (empirical) histogram. Moreover, it is built on the basis of the parameters (2), which I got on the empirical data.
What's wrong with my code? How can I fix it?
P.S. When I type dput(a[abs(a) > 5e-4]) I get:
c(0.000801110480004752, 0.000588162271316861, 0.000555169128569233,
0.000502563410256229, 0.000854633994686438, 0.00593622112246628,
-0.000506168123513007, -0.000502909585836875, 0.000720924373137422,
0.00119141739181039, 0.000548159382141478, -0.000516511318695123,
-0.000744590777740584, 0.000595213912401249, 0.000514055190913965,
-0.000589061375421807, -0.00175392114572581, 0.000745548313668465,
-0.00075910234096277, -0.00059987613053103, 0.000583568488865538,
0.00426484136013094, 0.000610760059768012, 0.000575522836335551,
0.000823785810599276, 0.00181936036509178, -0.00073316272551871,
-0.00184238143420679, -0.000519146793923397, -0.00120324664043103,
-0.000882469414168696, -0.00148118339830283, 0.000929612782487155,
0.000565364610238817, 0.000578158613453894, 0.00060479145432879,
-0.00520576206828594, 0.000708404040882016, 0.00105224485893451,
0.000636486872540587, -0.00359655507585543, 0.000769164650506582,
0.000635701125126786, 0.000570489501935612, -0.000641260260277221,
0.000735092947873994, 0.000757195823062773, 0.000556002742616357,
-0.00207489740356159, -0.000553386431560554, 0.000511326871983186,
0.000504591469525195, -0.000749886905655472, -0.0013939718643865,
-0.000513742626250036, -0.00105021597423516, -0.00156667292147716,
0.000864563166150134, 0.00433724128055069, 0.00053855648931922,
-0.00150732363190365, 0.00052621785349416, 0.000987781100809215,
0.000560725818171903, 0.00176012436713435, -0.000594895431092368,
-0.000686229580335151, 0.00138682284509528, -0.000531964338888358,
-0.00179959148771403, 0.000574543871314503, -0.000686996216439084,
-0.000559043343629995, 0.00055881173674166, -0.000636332688477736,
-0.000623778186703561, -0.00173834148094443, -0.000567224129968125,
-0.00122578683434504, 0.00130960156515414, -0.000548203197176633,
-0.000522749285863711, -0.000820371086264871, 0.000756014225812507,
-0.000714081490558627, -0.000617600335221624, 0.000523639760748651,
-0.000578502663833191, 0.00107478825239227, 0.000612725356974764,
-0.00065509337422931, 0.000505887803587513, -0.000566716376848575,
0.000511727090058756, 0.000572807738912218, -0.000756026937699161,
0.000547948751494332, 0.000628323894238392, -0.000541350489317693,
-0.00133529454372372, -0.000590618859845904, -0.000700581963648972,
0.000735987224462775, 0.000528958898682319, 0.000838250041022448,
-0.000519084424130511, -0.00052258402856431, -0.000538130765869838,
-0.000631819887885854, 0.00054800880764283, 0.00266115500510899,
-0.000839092093771754, 0.000559253571783103, -0.000801028189803432,
-0.000608879021022801, -0.000538018076854385, -0.000689859734395171,
0.00329650346269972, 0.000765494493951024, -0.000689450477848297,
-0.000560199139975737, 0.00159082699266122, -0.00208548663121455,
-0.000598493596793759, 0.000563544422691464, 0.000626996183768824,
-0.000653166846808162, -0.000851350174739807, -0.00140687473245116,
-0.000887003220306326, -0.000765614651347946, -0.00100676206277761,
0.000724714394852555, 0.00108872127644233, -0.000678558537305918,
-0.000705087556212902, 0.000544828152248655, -0.000791700964308362,
0.000606125736727137, -0.00119335967326073, 0.00075413211796338,
0.000526038939010931, 0.00086543737231537, -0.000817788712950573,
-0.000584070926663571, 0.000619657281937691, 0.000680783312420274,
-0.000513831718574664, -0.00050972403875349, -0.00114542220685365,
-0.00070564389723593, -0.01057964950882, -0.000610357922434801,
0.000818264221596365, 0.000940825400308043, -0.000726555639413817,
-0.000591089505560305, 0.000564738888193972, -0.00068515060569041,
0.000668920238348747, -0.00110103375121717, -0.0015480433031172,
0.000663030855223568, 0.000500097431997304, -0.000600730311271391,
-0.000672397772962796, -0.000607852365856587, 0.000536711920570809,
0.000595055206488837, 0.000523123873687581, 0.000977280737528119,
0.000616410821629998, 0.000788593666889881, -0.000671642905915704,
0.000717328711735021, -0.000551853104219902, -0.000565153434708421,
-0.000802585212152707, 0.000536342062561701, 0.000682048510343591,
-0.000541902545439399, 0.000779676683974273, 0.000698841439971787,
0.000559313965908359, -0.00064986819016255, 0.000795421518319017,
0.00364973919549527, 0.000669658692276087, 0.00109045476974678,
0.000514411572742901, 0.000503832507211754, -0.000507376233564116,
0.001232871590787, 0.000561820312542594, -0.000501190337518054,
-0.000769036505996468, -0.000695537959007453, -0.000572065848166048,
-0.00167929926328192, 0.000597078186826749, 0.00710238430870014,
0.000745192112519888, -0.00116091022028009, -0.000791139281769659,
-0.00148898466632552, 0.000565144038962018, -0.000514019821833855,
-0.00148427996685285, -0.000822717245339888, -0.00062922111212238,
-0.000636011367371125, 0.00119640327632808, 0.000548455410294579,
0.000652678152560426, 0.000509244387833618, 0.000961872348987924,
0.000662064072514568, -0.00068116858054168, -0.000569930302445343,
0.00188358126928101, 0.00130560555273895, 0.000593470885775105,
0.00160093110088155, 0.000785262438315115, -0.000912313442922752,
0.000609996052359563, 0.000720137994393966, 0.000568163899000496,
0.00128685533068307, -0.000756787473447318, 0.000765932134255465,
0.00064884753100003, 0.000687571386270847, -0.000582094290400903,
-0.000693177295971736, -0.000601776208094762, 0.000503616387996786,
-0.000615095866544735, -0.000799593899689199, 0.000773750859128342,
-0.000522576090260074, 0.000503578107212022, -0.00104492224837571,
0.000547928732299141, 0.00310304337507183, 0.000893382870797765,
-0.000577792878910799, -0.000647710366578735, -0.00061992948706191,
0.000825702487162516, 0.000606579510524341, 0.000552792484727505,
0.000688600840895504, 0.000505093563534231, -0.000728420573667066,
-0.00157924525963438, -0.000603846616019865, -0.000521941317177976,
0.00150498158245682, -0.000584572670337735, 0.000713757870583365,
0.000524287801789924, 0.00107217649464886, 0.00213147531822244,
0.000566012832157625, -0.00069828890607937, 0.000641567963736378,
-0.000509531713644762, -0.000547564140049417, -0.00115275240244728,
0.000560465768010943, -0.000651807371497171, -0.00096487058986483,
0.000753687665266511, -0.000665599418910645, -0.000691278087025182,
-0.000578010050725553, -0.000685833148198256, 0.000698470819832764,
0.00102943368139208, -0.000725840586788706, 0.00125882415960632,
-0.000630791474954151, -0.000764813558678412, -0.000638539347184164,
0.000654486496518558, 0.000547453642294471, 0.000572020020495501,
-0.000605791001705214, 0.00660211658324172, 0.00114928683282756,
0.000985676480677711, -0.000694668292547718, -0.000528955637964401,
0.000647975568638159, 0.00116454536417443, 0.000506748841724303,
-0.000500925156604382, -0.000567015088082101, 0.00128711230206946,
0.000533633762033858, 0.00505991432758357, 0.000518058378462527,
-0.000592822519784875, 0.00177414999018666, 0.00059845426944527,
-0.000511614433724716, 0.0016614697907098, 0.000852196464322219,
0.00241689725305427, -0.000614317948913978, -0.000729717143318709,
-0.000612900648802039, -0.000727983564232204, -0.000694965869158182,
-0.000527752006066251, -0.000584233784708843, 0.000522097476268968,
0.000543092880677776, 0.000947121210698398, -0.00241810275096377,
0.00181893137435019, 0.000931873879297385, 0.000512116215015013,
0.000724985702444059, -0.000566713495050664, 0.000603953591362227
)
After fitting the data look like the following (empirical histogram-blue, theoretical histogram-orange):
The same when include freq=FALSE in hist
This will all be due to anomalous values in a not represented by the histogram you've shown. This could be the cause of both the very high kurtotsis, and the vgFit() algorithm failing to find a good fit.
Type dput(a[abs(a) > 5e-4]) in the console and copy the output into your question. People then may be able to recreate aomething like the vector a without having to get all 16000 values and debug the vgFit issue.
Thanks for the extra data. There are some extreme values in there, but I don;t think those are what is causing the problem in vgFit. Fitting 4 parameters which can be almost any value is difficult, but you can help it along by rescaling your data to something typical. Try this:
b <- (a-mean(a))/sd(a)
vgf <- vgFit(b)
vgf$param
VG <- rvg(16000, param = vgf$param)
VG_rescaled <- VG*sd(a)+mean(a)
hist(VG_rescaled, breaks=140, col="orange", main="", xlab="Value")
and see if the two histograms are close enough now.
Related
Spatial analysis with R package spatstat, sidebar does not show correct values
I'm trying to create a map with the spatstat package of R so that the sidebar shows the values of the third (preferably) or fourth column of my data frame and that the colors are also reflective of that third (or fourth column) chosen. My script: x=c(6.839887, 6.671494, 6.651083, 6.655289, 6.591903, 6.653641, 6.661709, 6.671664, 6.660044, 6.624659, 6.648162, 6.536877, 6.654134, 6.674678,6.618935, 6.677705, 6.643918, 6.644119, 6.670517, 6.583619, 6.649991, 6.647649, 6.656308, 6.645772, 6.648740, 6.643103, 6.652199, 6.666641,6.633400, 6.621282, 6.635427, 6.646127, 6.630862, 6.657919, 6.671616, 6.622935, 6.648225, 6.676911, 6.640234, 6.719334, 6.653202, 6.656747,6.724692, 6.639747, 6.630575, 6.657916, 6.618957, 6.640006, 6.645280, 6.614058, 6.576136, 6.631994, 6.617391, 6.782351, 6.620072, 6.661061,6.597216, 6.648755, 6.618436, 6.659507, 6.653993, 6.663255, 6.630893, 6.656322, 6.617265, 6.649022, 6.629346, 6.595224, 6.540263, 6.623435,6.652709, 6.608565, 6.618335, 6.645100, 6.790914, 6.643620, 6.462808, 6.680115, 6.716004, 6.668781, 6.765199, 6.674251, 6.647542, 6.724564,6.724556) y=c(17.16749, 17.16727, 17.16678, 17.16673, 17.16813, 17.16663, 17.16652, 17.16636, 17.16629, 17.16856, 17.16521, 17.16519, 17.17002, 17.16465,17.17015, 17.16407, 17.16356, 17.17122, 17.16334, 17.17152, 17.16282, 17.16278, 17.16272, 17.17257, 17.16198, 17.17279, 17.16169, 17.16161,17.16146, 17.17352, 17.17389, 17.16076, 17.17420, 17.16046, 17.15917, 17.17571, 17.15895, 17.15881, 17.15860, 17.15827, 17.15797, 17.15776,17.17761, 17.15664, 17.15622, 17.15610, 17.15571, 17.15561, 17.15527,17.15514, 17.15494, 17.15447, 17.15438, 17.18041, 17.18053, 17.15402,17.18090, 17.15384, 17.18121, 17.15355, 17.15352, 17.15349, 17.18213,17.15242, 17.15201, 17.14978, 17.18591, 17.18688, 17.18707, 17.18761,17.14712, 17.18788, 17.18794, 17.14619, 17.18868, 17.14588, 17.14511,17.14471, 17.14440, 17.14430, 17.19116, 17.19140, 17.14222, 17.14123,17.33627) z=c(32.23228,526.46061, -1300.03539, -376.04329, 139.67322,-913.24800, -526.46061, 354.55511, 483.48424, 161.16141, 182.64960, 419.0196, 75.20866, -225.62598, -1536.40546, -397.53148, -1106.64169, -440.50786, 118.18504,-290.09054, -1471.94089, 440.50786,-848.78343, -1385.98814, -676.87793, -1622.35821, -1450.45271,75.20866, -1557.89365, 161.16141, 376.04329, 354.55511, -32.23228,-1171.10626,-75.20866, 547.94880, -805.80706, 870.27162, -698.36612,-32.23228, -2331.46842, -182.64960, 75.20866, -719.85431,-1837.24009,913.24800, -1106.64169, 698.36612, 483.48424, -676.87793, -3019.09045, 891.75981, 1106.64169, 333.06692, -913.24800,333.06692, 934.73619, 354.55511, 75.20866, -891.75981, -247.11416, -1966.16922, 139.67322, -784.31887, -569.43699, -118.18504,-440.50786, 397.53148, -655.38974, 139.67322, 53.72047, -633.90155,-633.90155, 419.01967, -547.94880, 75.20866, 569.43699, 290.09054, -376.04329, 547.94880, 75.20866, -10.74409, 182.64960,-397.53148, -479.53833 ) w=c(96326.91, 96769.46, 95127.94, 95960.41, 96423.22, 95476.93, 95825.18,96615.67, 96731.03, 96442.47, 96461.73, 96673.36, 96365.44, 96095.53,94914.31, 95941.10, 95302.53, 95902.47, 96403.96, 96037.64, 94972.60,96692.58, 95535.03, 95050.29, 95689.84, 94836.56, 94992.03, 96365.44,94894.87, 96442.47, 96634.90, 96615.67, 96269.09, 95244.36, 96230.54,96788.68, 95573.74, 97076.62, 95670.50, 96269.09, 94193.69, 96134.12,96365.44, 95651.15, 94642.01, 97114.98, 95302.53, 96923.12, 96731.03,95689.84, 93567.91, 97095.80, 97287.46, 96596.43, 95476.93, 96596.43,97134.15, 96615.67, 96365.44, 95496.30, 96076.24, 94525.17, 96423.22,95593.10, 95786.52, 96191.98, 95902.47, 96654.13, 95709.18, 96423.22,96346.17, 95728.52, 95728.52, 96673.36, 95805.85, 96365.44, 96807.89,96557.96, 95960.41, 96788.68, 96365.44, 96288.37, 96461.73,95941.10, 99451.20) shap.lo=data.frame(x,y,z,w) library(spatstat) shap.lo.win <- owin(range(shap.lo[,1]), range(shap.lo[,2])) centroid.owin(shap.lo.win) ; area.owin(shap.lo.win) shap.lo.ppp <- as.ppp(shap.lo[,c(1,2,3)], shap.lo.win) # making a ppp object plot(density(shap.lo.ppp,0.02), col=topo.colors(25), main='', xlab='x', ylab='y') points(x, y) the result is shown below I would like to know why the sidebar shows different values than the ones shown in the third column of my data frame, that is, in addition to displaying no negative values, shows values much larger than those contained in the third column. Is it possible to do this, that is, make the colors and the sidebar represent the third or fourth column of the data frame? I thank the help of all you!
Let me quote directly from the help file for density.ppp: This function is often misunderstood. The result of density.ppp is not a spatial smoothing of the marks or weights attached to the point pattern. To perform spatial interpolation of values that were observed at the points of a point pattern, use Smooth.ppp. The result of density.ppp is not a probability density. It is an estimate of the intensity function of the point process that generated the point pattern data. Intensity is the expected number of random points per unit area. The units of intensity are “points per unit area”. Intensity is usually a function of spatial location, and it is this function which is estimated by density.ppp. The integral of the intensity function over a spatial region gives the expected number of points falling in this region. So try Smooth.ppp (note the upper case S), and see if you can make that produce the results you expected.
Bootstrap p value contradicts p value for likelihood ratio test
I have the same problem as the one posted by #soapsuds here. I did not want to ask a duplicate question but when I tried to edit the original question to provide the reproducible example that was missing in the original post my edits got rejected. Since the reproducible example has a lot of elements, I could not write it as a comment to the original question either, so I provide my code and my reproducible data here, as a separate question. I am trying to compare two models using the likelihood ratio test. From bootstrapping I get a set of 1000 p-values. Here are the numbers I get: chi2 <- c(41.83803376, 69.23970174, 42.5479637, 50.90208302, 39.18366824, 78.88589665, 28.88469406, 34.99980796, 85.80860848, 66.01750186, 29.06286, 46.43221576, 46.50523792, 59.87362884, 46.17274808, 77.97429928, 48.04404216, 12.88592623, 43.1883816, 33.24251471, 53.27310465, 56.92595147, 47.99838583, 46.0718587, 49.0760042, 29.70866297, 66.80696553, 66.61091741, 37.82375112, 50.19760846, 30.99961864, 27.17687828, 37.46944206, 66.36226432, 48.30737714, 43.64410333, 23.78480451, 42.52842793, 60.49309556, 46.29154, 26.96744296, 32.21561396, 48.20316788, 38.73153704, 67.80328765, 55.00664931, 36.74645735, 23.3647159, 56.35290442, 38.11055268, 58.3316501, 36.00500638, 41.36949956, 49.09067881, 64.42712507, 23.97787069, 54.5394799, 87.02114296, 26.01402166, 50.47426712, 38.58006084, 48.47626864, 22.28809699, 58.87590487, 17.59264288, 33.32650413, 67.77868338, 60.95427815, 37.19931376, 36.23280256, 53.54379697, 70.06479334, 41.3482703, 34.54099647, 55.99585144, 30.60500406, 32.02745276, 37.92670127, 44.23450124, 40.38607671, 44.02263294, 40.89874789, 62.74174279, 50.95137406, 47.12851204, 26.03848394, 36.6202765, 61.06296311, 50.17094183, 35.93242228, 41.8913277, 35.19089913, 38.88574534, 66.075866, 26.34296242, 49.99887059, 42.97123036, 34.89006324, 66.5460019, 67.61855859, 48.52166614, 41.41324193, 46.76294302, 14.87650733, 24.11661382, 62.28747719, 43.94865019, 44.20328393, 41.17756328, 43.74055584, 49.46236395, 38.59558107, 42.85073398, 49.81046036, 36.60331917, 39.85328124, 59.31376822, 61.36038822, 52.56707689, 29.19196892, 46.473958, 39.12904163, 38.75057931, 36.32493909, 49.61088785, 33.42904297, 34.73661836, 33.97736002, 37.44094284, 57.73605417, 43.14773064, 42.78707831, 26.84112684, 48.47832871, 45.94043053, 71.13563773, 46.28614795, 42.33386157, 59.31216832, 46.72946806, 47.76027545, 52.45174304, 49.99459367, 59.00971014, 24.03299408, 17.09453132, 37.44112252, 46.6352525, 60.42442286, 39.35194465, 46.57121135, 56.28622077, 59.20354176, 57.72511864, 41.97053375, 27.97077407, 29.70497125, 46.63976021, 40.24305901, 24.84335714, 36.08600444, 61.619572, 69.31377401, 86.91496878, 44.47955842, 44.1230351, 46.12514671, 43.97381958, 71.99269072, 47.01277643, 50.08167664, 27.01076954, 31.32586466, 40.96782215, 19.07024825, 53.00009679, 43.15397869, 42.49652848, 53.47325607, 43.45891027, 42.57719313, 39.40459925, 42.15077856, 52.23784844, 33.07947933, 45.02462309, 59.187763, 51.9198527, 48.3179841, 76.10501177, 34.95091433, 40.75545034, 31.27034043, 39.83209227, 47.87278051, 46.25057806, 62.84591205, 41.24656655, 68.14749236, 53.11576938, 39.20515676, 61.96116013, 35.64665684, 72.52689101, 54.64239536, 34.14169048, 34.32282338, 49.60786171, 50.32976034, 43.83560386, 57.49367366, 81.65759842, 61.59398941, 37.77960776, 30.74484476, 34.72859511, 32.46631033, 37.41725027, 34.04569722, 54.11932007, 34.62264522, 28.36753913, 30.95379445, 84.06354755, 29.32445434, 56.7720931, 33.23951864, 48.61860157, 39.3563214, 32.44713462, 61.25078174, 32.49661836, 40.38508488, 26.73565294, 58.16191656, 61.12461262, 23.701462, 22.14004554, 57.80213129, 57.15936762, 31.51238062, 44.60223083, 30.60135802, 46.96637333, 42.79517081, 56.85541543, 48.79421654, 29.72862307, 41.61735121, 43.37983393, 41.16802781, 61.69637392, 37.29991153, 39.0936012, 57.39158494, 57.55033901, 50.72878897, 34.82491685, 42.66486539, 34.54565803, 55.04161695, 44.56687339, 53.46745359, 57.22210412, 34.8578696, 28.81098073, 51.4033337, 51.9568532, 60.98717632, 62.98817996, 44.1335128, 33.38418814, 59.71059054, 45.82016411, 29.47178401, 30.64995791, 28.52106318, 53.98066153, 64.22209517, 58.29438562, 39.18280924, 38.1302144, 41.90062316, 28.68650929, 69.42769639, 33.79539164, 26.08549507, 55.29167497, 97.25975259, 63.07957724, 56.59002373, 51.40088678, 71.33491023, 46.24955174, 33.90101761, 38.0669817, 52.50993176, 51.84637529, 39.93642798, 61.9268346, 30.25561485, 49.57396856, 44.70170977, 57.00286149, 40.39009586, 63.23642634, 59.23643766, 55.80521902, 68.58421775, 24.04456631, 51.64338572, 61.14103174, 59.29371792, 46.51493959, 43.48297587, 39.99164284, 44.62589755, 58.89385062, 60.96824416, 54.02310453, 43.54420281, 44.24628098, 47.0991445, 58.9015349, 60.54157696, 34.86277089, 33.79969585, 34.57183642, 47.21383117, 55.3529805, 36.49813553, 44.94388291, 29.43134497, 43.41469037, 43.033338, 63.37329389, 38.22029171, 43.2894392, 23.42769168, 55.18117532, 19.39227876, 28.29656641, 28.56075122, 39.57260362, 65.48606054, 31.05339648, 24.87488959, 61.6027878, 59.56983406, 37.53918879, 28.67095839, 36.51499868, 44.43350204, 53.35842664, 48.30182354, 31.03494822, 45.68689659, 46.11113306, 53.89204524, 29.75548276, 35.60906482, 53.35195594, 56.28657675, 44.77245145, 60.20671942, 41.62253735, 40.34528594, 38.48551456, 27.39317425, 51.05414332, 38.41986986, 75.05074423, 34.16773046, 52.18497954, 49.63059496, 28.7365636, 10.59466471, 38.1033901, 52.20531405, 47.031987, 47.45955635, 44.64312012, 50.32229588, 62.40798968, 37.7455721, 31.97746406, 51.17250147, 45.91231295, 66.58450378, 32.68956686, 34.35845347, 70.34703042, 41.47493453, 53.67684859, 35.66735299, 19.76630329, 35.69026569, 76.57475236, 62.11269107, 37.06632602, 57.91686258, 33.95869501, 55.18034702, 66.09725866, 46.80608564, 46.75623531, 55.49605214, 45.7813294, 22.37612777, 62.40414132, 50.51745906, 46.86535062, 54.4172637, 35.44713601, 45.40918234, 43.83215257, 57.14754799, 24.20941074, 44.8145542, 50.79673435, 42.14561269, 32.73720673, 28.51047028, 32.14753623, 28.43006627, 39.50188334, 58.51806717, 37.96898151, 73.14656287, 48.23605238, 75.31273481, 29.57608972, 43.62952257, 30.47534709, 43.24927262, 43.61475563, 53.48883918, 53.85263136, 41.91477406, 56.16405384, 46.21202327, 55.52602904, 49.88481191, 46.31478116, 72.29722834, 40.48187205, 35.31368051, 40.57713079, 34.15725967, 65.85738596, 32.16093944, 32.07117679, 46.44579516, 53.3243447, 69.35531671, 21.70205174, 44.30678622, 40.13349937, 51.7431728, 43.03690121, 26.53566586, 18.74773427, 25.97768442, 66.68668827, 42.97352559, 31.61567696, 61.57362103, 55.07104736, 25.05950764, 53.04884067, 30.47176616, 43.33249885, 44.48360752, 40.59006165, 44.29759954, 69.71063388, 47.70186943, 51.12166943, 40.15048072, 44.96459746, 56.31842906, 57.79593771, 49.19795057, 33.58506451, 42.67650993, 47.96512915, 57.98722437, 42.08107371, 66.85903821, 45.30286487, 38.39187118, 48.02442004, 35.97047743, 56.71378254, 40.51082047, 43.78022461, 60.33208664, 35.78159098, 40.98937317, 36.20547787, 45.2382906, 47.81497885, 20.44519563, 16.68817267, 38.31035896, 38.60590267, 70.75756511, 31.73001452, 45.85476281, 47.11473565, 31.40248172, 42.94971714, 39.34376633, 21.09018956, 31.45915941, 53.82696054, 73.59824534, 31.5694168, 39.02189966, 46.91790827, 60.66603832, 59.81148782, 20.46813743, 54.95108785, 66.71844123, 49.48461319, 25.10459028, 60.26169536, 21.90344297, 63.56310687, 38.70295559, 58.19794152, 25.68981924, 61.4804908, 41.97067608, 22.77156359, 48.51789441, 50.31845297, 42.36456456, 43.35814281, 41.32891651, 35.17106573, 48.45296117, 30.55292595, 55.26758567, 71.25929921, 34.62580089, 43.89804598, 46.06384675, 30.74209253, 47.99143497, 34.02715801, 37.95367551, 45.14366438, 40.73655716, 45.32116105, 48.17651965, 63.54774876, 16.32237452, 54.22730144, 46.02331286, 45.44633826, 53.56976595, 53.96781286, 19.79116777, 42.05820938, 45.48852278, 37.34932167, 45.134461, 49.60637239, 29.99017683, 35.2785614, 71.54855053, 61.55744768, 55.7627296, 37.72455372, 62.51288842, 48.17063649, 65.26648616, 48.4831201, 33.49833137, 32.10986243, 15.42586026, 41.95660905, 30.07072484, 42.33604863, 53.20660203, 48.27036556, 32.92677161, 33.59521848, 44.04333058, 59.30038922, 48.84064622, 63.31815488, 36.01169023, 44.42967033, 23.14247159, 53.6314237, 42.43225997, 28.18151375, 44.0733306, 55.93530003, 30.86515779, 34.10702034, 59.38495522, 57.79906004, 64.86160093, 56.70670687, 43.24880707, 40.00049219, 44.08430336, 17.50391283, 72.81320114, 41.55481964, 63.461066, 50.81938548, 58.7427594, 35.27822458, 33.5188344, 46.13196979, 56.94022883, 66.96258461, 39.19601268, 21.95750575, 51.67252792, 46.51047909, 30.42289547, 46.47496475, 41.6440483, 42.36900563, 68.29398345, 30.14059255, 38.90124252, 40.87014585, 51.33635945, 51.72908337, 50.8177621, 31.65411733, 56.75197699, 47.76885318, 34.18305356, 52.52137441, 48.39806899, 18.34609209, 32.5461584, 60.15104883, 36.29250847, 39.02418361, 34.68801402, 48.02453889, 31.36738248, 42.44522981, 71.79176852, 34.25588794, 38.46866138, 45.01393624, 63.38509325, 32.44823195, 64.59346474, 53.80793998, 41.2889141, 28.86534461, 34.85039051, 37.04622686, 31.83207726, 36.65410743, 27.66293315, 23.11203257, 41.61059067, 19.97321534, 59.879676, 39.84187157, 47.324581, 38.24903991, 41.0234849, 62.30809429, 48.47191326, 23.26696808, 29.91547934, 78.39181209, 41.86240014, 33.53717515, 39.63756903, 74.86377649, 56.30173648, 40.29403413, 59.12602764, 47.23561802, 51.32370456, 45.44426051, 55.54666292, 58.85362888, 38.30516953, 46.11300177, 37.96931091, 41.01315149, 63.09345867, 26.74145771, 31.37447907, 39.26896396, 65.35880308, 60.0670218, 45.48057201, 29.76683425, 51.39638136, 46.12180705, 60.72093818, 45.01613513, 37.04611291, 31.32979098, 57.82548455, 29.89919764, 38.77980495, 55.71511912, 66.9872235, 48.74616069, 32.87503301, 56.10335632, 28.72445387, 41.00675821, 55.22238115, 38.56391412, 21.82487917, 51.87394855, 41.62740713, 72.32943223, 49.85456187, 41.76869194, 55.686196, 46.18471338, 52.57455653, 23.03383172, 51.460223, 45.88045256, 47.91709836, 53.09464847, 65.17159616, 48.0076358, 42.50038253, 50.57143193, 22.05776575, 25.5770314, 57.41889173, 37.07408252, 69.83286794, 53.31690771, 36.14562381, 35.3626014, 70.74448842, 30.01870438, 41.95755074, 64.41141845, 48.12704663, 29.33183678, 47.45391445, 35.76760392, 17.57864013, 42.66918162, 27.84884911, 37.83419437, 56.38203205, 32.93395446, 19.45549279, 48.49557175, 63.74692618, 48.36501421, 38.45370018, 63.77499738, 43.40984685, 61.28735474, 47.00513455, 31.82012086, 40.85624032, 32.79590137, 43.79441893, 47.93350586, 26.44410209, 22.71480768, 41.74097624, 29.7828174, 35.24077319, 37.1436077, 63.62150539, 35.27952907, 30.9258966, 35.22384343, 45.0069715, 47.38652625, 60.86474384, 53.19528479, 37.61239521, 64.78497877, 39.50008676, 43.11733875, 34.67761458, 55.21401193, 57.22836509, 30.10411603, 30.03903287, 53.62027996, 40.63516283, 50.229386, 39.59707517, 55.53993024, 62.31160356, 48.65142538, 59.51279601, 51.46268896, 36.70086545, 45.73324953, 39.82026282, 51.51657943, 39.9507342, 26.65847555, 18.11032673, 41.57393548, 37.24804734, 59.78878572, 42.18870686, 57.73556775, 29.83442692, 24.27687775, 44.54663257, 48.40426261, 34.13830576, 64.47843419, 53.82888778, 45.77073351, 41.95910655, 56.25654343, 42.44938602, 18.92651056, 62.89841562, 42.28210051, 60.01632343, 56.38799965, 53.56842386, 71.059581, 59.21196097, 72.29678294, 40.0820475, 74.53163756, 46.35508897, 48.65592196, 36.69711286, 54.84914739, 57.62299813, 63.0750109, 25.53592874, 19.43203054, 63.18532427, 54.79806194, 28.75123602, 47.68037559, 36.06887062, 48.53619627, 42.05208952, 14.47366507, 26.25183654, 57.37741978, 24.92962789, 47.85306044, 35.55674275, 43.62606531, 51.98445971, 57.10441923, 45.20539557, 43.22417529, 48.20941756, 37.12416781, 39.54238987, 45.31000358, 24.59001204, 32.61256929, 31.61553515, 55.76617515, 57.82479513, 34.12465645, 52.1634834, 50.140277, 34.5334757, 70.76112738, 47.22161503, 35.44101995, 54.50312705, 47.74706989, 21.04494842, 42.42698916, 57.8551517, 49.67127478, 67.6702045, 30.64335682, 31.87819093, 45.79096976, 42.72129981, 56.22043416, 22.12571532, 31.93377902, 31.9561172, 60.28281847, 37.49005649, 30.63141229, 22.82707918, 29.55804713, 55.79929136, 39.64043613, 31.79538118, 61.92391469, 19.30462724, 37.00041938, 61.26446455, 47.10048686, 34.70929308, 33.34157984, 49.28331646, 39.9565451, 48.80158593, 29.25279435, 49.96980394, 68.7766356, 49.61949286, 18.80600378, 52.93721773, 24.29791779, 67.69568275, 54.22725318, 35.67531845, 58.05037476, 70.54029077, 55.59508174, 42.07974012, 61.62117032, 44.47174079, 40.13197612, 61.19863058, 35.16748823, 54.79320966, 46.40640448, 41.99222891, 53.33216862, 19.04146695, 29.60278169, 38.43089591, 61.22497978, 32.04678119, 30.77915985, 38.02625789, 74.25140223, 30.44626923, 42.69951906, 28.99988779, 49.76041564, 30.86941271, 58.65788956, 62.64967161, 23.5689175, 42.21941421, 54.88455829, 38.10115824, 24.12341961, 32.84464782, 81.72102673, 42.42771851, 37.75191241, 32.05927543, 43.55812503, 64.79161154, 61.05179286, 53.24693267, 36.29056269, 61.49030629, 53.68500702, 65.93501988, 50.7243041, 51.72139759, 64.80610623, 58.2860023, 33.16444766, 42.7872046, 55.14190562, 39.14341079, 36.05577261, 30.03351742, 24.16526837, 47.94163599, 52.55045103, 56.60625705, 61.6878126, 23.13212844, 50.50369148, 47.79873905, 47.01238239, 35.9159739, 53.18067189, 48.42928497, 67.48879213, 37.37609292, 19.7749038, 47.87115046, 48.90378974) p.values <- c(9.92E-11, 8.72E-17, 6.90E-11, 9.71E-13, 3.86E-10, 6.58E-19, 7.68E-08, 3.30E-09, 1.98E-20, 4.47E-16, 7.01E-08, 9.48E-12, 9.14E-12, 1.01E-14, 1.08E-11, 1.04E-18, 4.17E-12, 0.000331062, 4.97E-11, 8.14E-09, 2.90E-13, 4.53E-14, 4.27E-12, 1.14E-11, 2.46E-12, 5.02E-08, 2.99E-16, 3.31E-16, 7.74E-10, 1.39E-12, 2.58E-08, 1.86E-07, 9.29E-10, 3.75E-16, 3.64E-12, 3.94E-11, 1.08E-06, 6.97E-11, 7.38E-15, 1.02E-11, 2.07E-07, 1.38E-08, 3.84E-12, 4.86E-10, 1.81E-16, 1.20E-13, 1.35E-09, 1.34E-06, 6.06E-14, 6.68E-10, 2.21E-14, 1.97E-09, 1.26E-10, 2.44E-12, 1.00E-15, 9.74E-07, 1.52E-13, 1.07E-20, 3.39E-07, 1.21E-12, 5.26E-10, 3.34E-12, 2.35E-06, 1.68E-14, 2.74E-05, 7.79E-09, 1.83E-16, 5.84E-15, 1.07E-09, 1.75E-09, 2.53E-13, 5.74E-17, 1.27E-10, 4.17E-09, 7.26E-14, 3.16E-08, 1.52E-08, 7.35E-10, 2.91E-11, 2.08E-10, 3.25E-11, 1.60E-10, 2.36E-15, 9.47E-13, 6.65E-12, 3.35E-07, 1.44E-09, 5.53E-15, 1.41E-12, 2.04E-09, 9.65E-11, 2.99E-09, 4.49E-10, 4.34E-16, 2.86E-07, 1.54E-12, 5.56E-11, 3.49E-09, 3.42E-16, 1.98E-16, 3.27E-12, 1.23E-10, 8.01E-12, 0.000114784, 9.07E-07, 2.97E-15, 3.37E-11, 2.96E-11, 1.39E-10, 3.75E-11, 2.02E-12, 5.21E-10, 5.91E-11, 1.69E-12, 1.45E-09, 2.74E-10, 1.34E-14, 4.75E-15, 4.16E-13, 6.56E-08, 9.28E-12, 3.97E-10, 4.82E-10, 1.67E-09, 1.87E-12, 7.39E-09, 3.77E-09, 5.58E-09, 9.42E-10, 3.00E-14, 5.08E-11, 6.10E-11, 2.21E-07, 3.34E-12, 1.22E-11, 3.33E-17, 1.02E-11, 7.69E-11, 1.35E-14, 8.15E-12, 4.82E-12, 4.41E-13, 1.54E-12, 1.57E-14, 9.47E-07, 3.56E-05, 9.42E-10, 8.55E-12, 7.65E-15, 3.54E-10, 8.83E-12, 6.27E-14, 1.42E-14, 3.01E-14, 9.27E-11, 1.23E-07, 5.03E-08, 8.53E-12, 2.24E-10, 6.22E-07, 1.89E-09, 4.17E-15, 8.40E-17, 1.13E-20, 2.57E-11, 3.08E-11, 1.11E-11, 3.33E-11, 2.16E-17, 7.05E-12, 1.47E-12, 2.02E-07, 2.18E-08, 1.55E-10, 1.26E-05, 3.34E-13, 5.06E-11, 7.08E-11, 2.62E-13, 4.33E-11, 6.79E-11, 3.44E-10, 8.45E-11, 4.92E-13, 8.85E-09, 1.95E-11, 1.43E-14, 5.78E-13, 3.62E-12, 2.69E-18, 3.38E-09, 1.73E-10, 2.24E-08, 2.77E-10, 4.55E-12, 1.04E-11, 2.24E-15, 1.34E-10, 1.52E-16, 3.14E-13, 3.82E-10, 3.50E-15, 2.37E-09, 1.65E-17, 1.45E-13, 5.12E-09, 4.67E-09, 1.88E-12, 1.30E-12, 3.57E-11, 3.39E-14, 1.62E-19, 4.22E-15, 7.92E-10, 2.94E-08, 3.79E-09, 1.21E-08, 9.54E-10, 5.38E-09, 1.89E-13, 4.00E-09, 1.00E-07, 2.64E-08, 4.79E-20, 6.12E-08, 4.89E-14, 8.15E-09, 3.11E-12, 3.53E-10, 1.22E-08, 5.02E-15, 1.19E-08, 2.09E-10, 2.33E-07, 2.41E-14, 5.36E-15, 1.12E-06, 2.53E-06, 2.90E-14, 4.02E-14, 1.98E-08, 2.41E-11, 3.17E-08, 7.22E-12, 6.08E-11, 4.69E-14, 2.84E-12, 4.97E-08, 1.11E-10, 4.51E-11, 1.40E-10, 4.01E-15, 1.01E-09, 4.04E-10, 3.57E-14, 3.29E-14, 1.06E-12, 3.61E-09, 6.50E-11, 4.16E-09, 1.18E-13, 2.46E-11, 2.63E-13, 3.89E-14, 3.55E-09, 7.98E-08, 7.52E-13, 5.67E-13, 5.74E-15, 2.08E-15, 3.07E-11, 7.56E-09, 1.10E-14, 1.30E-11, 5.67E-08, 3.09E-08, 9.27E-08, 2.02E-13, 1.11E-15, 2.26E-14, 3.86E-10, 6.62E-10, 9.60E-11, 8.51E-08, 7.93E-17, 6.12E-09, 3.27E-07, 1.04E-13, 6.08E-23, 1.99E-15, 5.37E-14, 7.53E-13, 3.01E-17, 1.04E-11, 5.80E-09, 6.84E-10, 4.28E-13, 6.00E-13, 2.62E-10, 3.56E-15, 3.79E-08, 1.91E-12, 2.29E-11, 4.35E-14, 2.08E-10, 1.83E-15, 1.40E-14, 8.00E-14, 1.22E-16, 9.41E-07, 6.66E-13, 5.31E-15, 1.36E-14, 9.09E-12, 4.28E-11, 2.55E-10, 2.39E-11, 1.66E-14, 5.80E-15, 1.98E-13, 4.14E-11, 2.90E-11, 6.75E-12, 1.66E-14, 7.20E-15, 3.54E-09, 6.11E-09, 4.11E-09, 6.36E-12, 1.01E-13, 1.53E-09, 2.03E-11, 5.79E-08, 4.43E-11, 5.38E-11, 1.71E-15, 6.32E-10, 4.72E-11, 1.30E-06, 1.10E-13, 1.06E-05, 1.04E-07, 9.08E-08, 3.16E-10, 5.85E-16, 2.51E-08, 6.12E-07, 4.20E-15, 1.18E-14, 8.96E-10, 8.58E-08, 1.51E-09, 2.63E-11, 2.78E-13, 3.65E-12, 2.53E-08, 1.39E-11, 1.12E-11, 2.12E-13, 4.90E-08, 2.41E-09, 2.79E-13, 6.26E-14, 2.21E-11, 8.54E-15, 1.11E-10, 2.13E-10, 5.52E-10, 1.66E-07, 8.99E-13, 5.70E-10, 4.59E-18, 5.06E-09, 5.05E-13, 1.86E-12, 8.29E-08, 0.001134145, 6.71E-10, 5.00E-13, 6.98E-12, 5.62E-12, 2.36E-11, 1.30E-12, 2.79E-15, 8.06E-10, 1.56E-08, 8.46E-13, 1.24E-11, 3.35E-16, 1.08E-08, 4.58E-09, 4.97E-17, 1.19E-10, 2.36E-13, 2.34E-09, 8.75E-06, 2.31E-09, 2.12E-18, 3.24E-15, 1.14E-09, 2.73E-14, 5.63E-09, 1.10E-13, 4.29E-16, 7.84E-12, 8.04E-12, 9.36E-14, 1.32E-11, 2.24E-06, 2.80E-15, 1.18E-12, 7.60E-12, 1.62E-13, 2.62E-09, 1.60E-11, 3.58E-11, 4.04E-14, 8.64E-07, 2.17E-11, 1.02E-12, 8.47E-11, 1.05E-08, 9.32E-08, 1.43E-08, 9.71E-08, 3.28E-10, 2.01E-14, 7.19E-10, 1.20E-17, 3.78E-12, 4.02E-18, 5.38E-08, 3.97E-11, 3.38E-08, 4.82E-11, 4.00E-11, 2.60E-13, 2.16E-13, 9.53E-11, 6.67E-14, 1.06E-11, 9.22E-14, 1.63E-12, 1.01E-11, 1.85E-17, 1.98E-10, 2.81E-09, 1.89E-10, 5.08E-09, 4.85E-16, 1.42E-08, 1.49E-08, 9.42E-12, 2.83E-13, 8.22E-17, 3.18E-06, 2.81E-11, 2.37E-10, 6.33E-13, 5.37E-11, 2.59E-07, 1.49E-05, 3.45E-07, 3.18E-16, 5.55E-11, 1.88E-08, 4.26E-15, 1.16E-13, 5.56E-07, 3.25E-13, 3.39E-08, 4.62E-11, 2.56E-11, 1.88E-10, 2.82E-11, 6.87E-17, 4.96E-12, 8.68E-13, 2.35E-10, 2.01E-11, 6.16E-14, 2.91E-14, 2.31E-12, 6.82E-09, 6.46E-11, 4.34E-12, 2.64E-14, 8.76E-11, 2.92E-16, 1.69E-11, 5.79E-10, 4.21E-12, 2.00E-09, 5.04E-14, 1.96E-10, 3.67E-11, 8.01E-15, 2.21E-09, 1.53E-10, 1.78E-09, 1.74E-11, 4.68E-12, 6.14E-06, 4.41E-05, 6.03E-10, 5.19E-10, 4.04E-17, 1.77E-08, 1.27E-11, 6.70E-12, 2.10E-08, 5.62E-11, 3.55E-10, 4.38E-06, 2.04E-08, 2.19E-13, 9.57E-18, 1.92E-08, 4.19E-10, 7.40E-12, 6.76E-15, 1.04E-14, 6.06E-06, 1.24E-13, 3.13E-16, 2.00E-12, 5.43E-07, 8.30E-15, 2.87E-06, 1.55E-15, 4.93E-10, 2.37E-14, 4.01E-07, 4.47E-15, 9.27E-11, 1.82E-06, 3.27E-12, 1.31E-12, 7.58E-11, 4.56E-11, 1.29E-10, 3.02E-09, 3.38E-12, 3.25E-08, 1.05E-13, 3.13E-17, 4.00E-09, 3.46E-11, 1.14E-11, 2.95E-08, 4.28E-12, 5.43E-09, 7.24E-10, 1.83E-11, 1.74E-10, 1.67E-11, 3.90E-12, 1.57E-15, 5.34E-05, 1.79E-13, 1.17E-11, 1.57E-11, 2.50E-13, 2.04E-13, 8.64E-06, 8.86E-11, 1.54E-11, 9.88E-10, 1.84E-11, 1.88E-12, 4.34E-08, 2.86E-09, 2.71E-17, 4.30E-15, 8.18E-14, 8.15E-10, 2.65E-15, 3.91E-12, 6.54E-16, 3.33E-12, 7.13E-09, 1.46E-08, 8.58E-05, 9.33E-11, 4.17E-08, 7.69E-11, 3.00E-13, 3.71E-12, 9.57E-09, 6.79E-09, 3.21E-11, 1.35E-14, 2.78E-12, 1.76E-15, 1.96E-09, 2.64E-11, 1.50E-06, 2.42E-13, 7.32E-11, 1.10E-07, 3.16E-11, 7.49E-14, 2.77E-08, 5.22E-09, 1.30E-14, 2.90E-14, 8.03E-16, 5.06E-14, 4.82E-11, 2.54E-10, 3.15E-11, 2.87E-05, 1.43E-17, 1.15E-10, 1.64E-15, 1.01E-12, 1.80E-14, 2.86E-09, 7.06E-09, 1.11E-11, 4.49E-14, 2.77E-16, 3.83E-10, 2.79E-06, 6.56E-13, 9.11E-12, 3.47E-08, 9.28E-12, 1.09E-10, 7.56E-11, 1.41E-16, 4.02E-08, 4.46E-10, 1.63E-10, 7.78E-13, 6.37E-13, 1.01E-12, 1.84E-08, 4.94E-14, 4.80E-12, 5.02E-09, 4.26E-13, 3.48E-12, 1.84E-05, 1.16E-08, 8.79E-15, 1.70E-09, 4.19E-10, 3.87E-09, 4.21E-12, 2.14E-08, 7.27E-11, 2.39E-17, 4.83E-09, 5.56E-10, 1.96E-11, 1.70E-15, 1.22E-08, 9.21E-16, 2.21E-13, 1.31E-10, 7.76E-08, 3.56E-09, 1.15E-09, 1.68E-08, 1.41E-09, 1.44E-07, 1.53E-06, 1.11E-10, 7.85E-06, 1.01E-14, 2.75E-10, 6.02E-12, 6.23E-10, 1.50E-10, 2.94E-15, 3.35E-12, 1.41E-06, 4.51E-08, 8.45E-19, 9.79E-11, 6.99E-09, 3.06E-10, 5.04E-18, 6.22E-14, 2.18E-10, 1.48E-14, 6.29E-12, 7.83E-13, 1.57E-11, 9.13E-14, 1.70E-14, 6.05E-10, 1.12E-11, 7.19E-10, 1.51E-10, 1.97E-15, 2.33E-07, 2.13E-08, 3.69E-10, 6.24E-16, 9.17E-15, 1.54E-11, 4.87E-08, 7.55E-13, 1.11E-11, 6.58E-15, 1.95E-11, 1.15E-09, 2.18E-08, 2.86E-14, 4.55E-08, 4.74E-10, 8.38E-14, 2.73E-16, 2.91E-12, 9.83E-09, 6.88E-14, 8.34E-08, 1.52E-10, 1.08E-13, 5.30E-10, 2.99E-06, 5.92E-13, 1.10E-10, 1.82E-17, 1.66E-12, 1.03E-10, 8.50E-14, 1.08E-11, 4.14E-13, 1.59E-06, 7.31E-13, 1.26E-11, 4.45E-12, 3.18E-13, 6.87E-16, 4.25E-12, 7.07E-11, 1.15E-12, 2.65E-06, 4.25E-07, 3.52E-14, 1.14E-09, 6.45E-17, 2.84E-13, 1.83E-09, 2.74E-09, 4.07E-17, 4.28E-08, 9.33E-11, 1.01E-15, 3.99E-12, 6.10E-08, 5.63E-12, 2.22E-09, 2.76E-05, 6.48E-11, 1.31E-07, 7.70E-10, 5.97E-14, 9.53E-09, 1.03E-05, 3.31E-12, 1.41E-15, 3.54E-12, 5.61E-10, 1.39E-15, 4.44E-11, 4.93E-15, 7.08E-12, 1.69E-08, 1.64E-10, 1.02E-08, 3.65E-11, 4.41E-12, 2.71E-07, 1.88E-06, 1.04E-10, 4.83E-08, 2.91E-09, 1.10E-09, 1.51E-15, 2.86E-09, 2.68E-08, 2.94E-09, 1.96E-11, 5.83E-12, 6.11E-15, 3.02E-13, 8.63E-10, 8.35E-16, 3.28E-10, 5.16E-11, 3.89E-09, 1.08E-13, 3.88E-14, 4.09E-08, 4.23E-08, 2.43E-13, 1.83E-10, 1.37E-12, 3.12E-10, 9.16E-14, 2.93E-15, 3.06E-12, 1.22E-14, 7.30E-13, 1.38E-09, 1.36E-11, 2.78E-10, 7.10E-13, 2.60E-10, 2.43E-07, 2.08E-05, 1.13E-10, 1.04E-09, 1.06E-14, 8.29E-11, 3.00E-14, 4.71E-08, 8.34E-07, 2.48E-11, 3.47E-12, 5.13E-09, 9.76E-16, 2.19E-13, 1.33E-11, 9.32E-11, 6.36E-14, 7.25E-11, 1.36E-05, 2.18E-15, 7.90E-11, 9.41E-15, 5.95E-14, 2.50E-13, 3.47E-17, 1.42E-14, 1.85E-17, 2.44E-10, 5.97E-18, 9.87E-12, 3.05E-12, 1.38E-09, 1.30E-13, 3.17E-14, 1.99E-15, 4.34E-07, 1.04E-05, 1.88E-15, 1.34E-13, 8.23E-08, 5.02E-12, 1.90E-09, 3.24E-12, 8.89E-11, 0.000142133, 3.00E-07, 3.60E-14, 5.95E-07, 4.59E-12, 2.48E-09, 3.98E-11, 5.59E-13, 4.13E-14, 1.77E-11, 4.88E-11, 3.83E-12, 1.11E-09, 3.21E-10, 1.68E-11, 7.09E-07, 1.12E-08, 1.88E-08, 8.16E-14, 2.87E-14, 5.17E-09, 5.11E-13, 1.43E-12, 4.19E-09, 4.03E-17, 6.34E-12, 2.63E-09, 1.55E-13, 4.85E-12, 4.49E-06, 7.34E-11, 2.82E-14, 1.82E-12, 1.93E-16, 3.10E-08, 1.64E-08, 1.32E-11, 6.31E-11, 6.48E-14, 2.55E-06, 1.60E-08, 1.58E-08, 8.22E-15, 9.19E-10, 3.12E-08, 1.77E-06, 5.43E-08, 8.03E-14, 3.05E-10, 1.71E-08, 3.57E-15, 1.11E-05, 1.18E-09, 4.99E-15, 6.74E-12, 3.83E-09, 7.73E-09, 2.22E-12, 2.60E-10, 2.83E-12, 6.35E-08, 1.56E-12, 1.10E-16, 1.87E-12, 1.45E-05, 3.44E-13, 8.25E-07, 1.91E-16, 1.79E-13, 2.33E-09, 2.55E-14, 4.51E-17, 8.90E-14, 8.76E-11, 4.16E-15, 2.58E-11, 2.37E-10, 5.16E-15, 3.03E-09, 1.34E-13, 9.61E-12, 9.16E-11, 2.82E-13, 1.28E-05, 5.30E-08, 5.67E-10, 5.09E-15, 1.51E-08, 2.89E-08, 6.98E-10, 6.88E-18, 3.43E-08, 6.38E-11, 7.24E-08, 1.74E-12, 2.76E-08, 1.88E-14, 2.47E-15, 1.21E-06, 8.16E-11, 1.28E-13, 6.72E-10, 9.04E-07, 9.98E-09, 1.57E-19, 7.33E-11, 8.03E-10, 1.50E-08, 4.12E-11, 8.33E-16, 5.56E-15, 2.94E-13, 1.70E-09, 4.45E-15, 2.35E-13, 4.66E-16, 1.06E-12, 6.40E-13, 8.26E-16, 2.27E-14, 8.47E-09, 6.10E-11, 1.12E-13, 3.94E-10, 1.92E-09, 4.25E-08, 8.84E-07, 4.39E-12, 4.19E-13, 5.32E-14, 4.02E-15, 1.51E-06, 1.19E-12, 4.72E-12, 7.05E-12, 2.06E-09, 3.04E-13, 3.42E-12, 2.12E-16, 9.74E-10, 8.71E-06, 4.55E-12, 2.69E-12) While p-values range from 6.08038E-23 to 0.001134145, the bootstrapped p-value I get is 0.4995005 and I don't understand why. I am using the following function to find the bootstrapped p-value: (1+sum(logit.boot$t[,2] > logit.boot$t0[2]))/(1+logit.boot$R) where logit.boot$t[,2] takes on values from the p.values vector, logit.boot$t0[2] equals 2.664684e-11 and logit.boot$R = 1000. EDIT Here is the code I used for bootstrapping: logit.bootstrap <- function(data, indices){ d <- data[indices, ] Mf1 <- glm(Y ~ A + B + C, data = d, family = "binomial") data.setM1 <- na.omit(d[, all.vars(formula(Mf1))]) M1.io <- glm(Y ~ A + B, data = data.setM1, family = "binomial") my.test <- lrtest(Mf1, M1.io) return(c(my.test$"Chisq"[2], my.test$"Pr(>Chisq)"[2])) } logit.boot <- boot(data=my.data, statistic=logit.bootstrap, R=1000) # 10'000 samples
In the result of the boot function, t0 should the p value on the original data, and t is some p values which are generated from random resampling/permutation on the original data. And in your case, you shouldn't use (1+sum(logit.boot$t[,2] > logit.boot$t0[2]))/(1+logit.boot$R) to get information from your bootstrapped p values, you may use quantile(logit.boot$t[,2], c(0.025,0.975)) or something like this to obtain a bootstrapped 95% confidence interval on your p value. This is not very meaningful, since the meaning of p value is already a probability (confidence level), why do you bother to obtain a confidence interval for p value? And the validness of the bootstrap method relies on the correctness of your parametric model. So if you want to use non-parametric approach toward this problem, I think you need to find some other approaches instead of this one.
How to fit a loess curve over this decomposed time series data in R?
We have time series data with some seasonality from the past 4 years. We want to predict the general rise in trend next year. For this, we decomposed the time series and observed the trend line: However, this trend line is placed in the middle of the values rather than the values themselves. We are not satisfied with simply extrapolating this trend line since it falls very short of expected traffic. Since we are interested in only the general rise in trend and not the seasonality, we remove the seasonality from the components: mydata <- read.csv("values.csv") mydataseries <- ts(mydata, start=c(2012,1,1),frequency = 365.25 mydataseriescomponents <- decompose(mydataseries) mydataseriesminusseasons <- mydataseries - mydataseriescomponents$seasonal We are now trying to fit a loess() curve in R around this time series data minus the seasonal component, that is mydataseriesminusseasons: 855154881.9 1027395443 1132284155 944870172.3 898459083.9 845115286.7 204393180.2 -75788428.32 -184120868.7 -164634776 -190543808.7 -43973009.39 -452418843.2 -1065106918 -1194545584 -1250333168 -379435027.4 -151057609.1 134304962.6 37020062.65 -307740042.8 -309480234.5 -388529539.7 -379333445.3 -193124460 -663765015.3 -100597898.3 -327949890.1 -429500583.5 -1321506072 -1444202356 -369913100.7 -715237274.1 -83507361.25 -328296509.9 -409957935.1 -1351211680 -533631519.6 -882845870.8 -711202595.9 -147504975.3 -361087020.5 -392960561 -456709751.2 -1065209981 -2062128692 -1112973164 -914751976.5 -1377070656 -1903432323 -2110392180 -1984477186 -1434481986 -988902503.8 -944477878.3 -1388889111 -1559730054 -1668752977 -1590459585 -1528272998 -850923022 -542720361.8 -791860111.9 -1057854181 -852120155.6 -810625768.1 -56185632.59 576968488.7 691371629.9 160486150.2 -308533580.1 -261619133.2 -404620378.3 740114544.5 1006206606 622867052.1 -71219884.82 -39173777.42 -533631907.8 -709943766.3 -565909169.9 -968499911.2 -1056539190 -1266350530 -1445031918 -1579156208 -1550356091 -1316401212 -899907725.4 -681646243 -996858524.4 -1261573594 -1620842348 -1529532466 -1107218074 287538766 303061371.4 -382291371.7 -639757694.3 -737369705.5 -732118809.2 -393825621.1 -810602326.3 -1044759123 -1410535140 -1636325717 -1646415420 -1514426422 -1241825553 31448256.14 64762654.11 -513468522.6 -676115681.9 -191498426 -86743267.18 80585792.24 538395944.8 262807408.8 -156283609.7 -72157485.31 -56386961.34 -14257457.85 233362524.8 495465812.9 354441383.3 74975465.29 28985451.46 187381822.2 517857439.4 940857149.4 1397097814 1965769992 1735207534 1568036010 1496104390 1647402384 928936108 1372629124 1417356139 1168474219 1080545493 996524274.5 988026158.1 1060004940 1315522041 1444552768 1438503151 1174067300 1063743311 1086528293 1310565938 1542624917 1504331433 1280216655 1726223821 1670308928 1120574360 1084897870 1285908119 1232985139 1101293494 1081075441 881717495.1 975005126.7 1058436909 1290433280 1288259727 1038856967 1006240656 891910425.2 920601850.4 981585788.8 1536507833 1546018200 1149902811 1230460988 1191817042 1161287112 1273239958 1590385882 1538451838 1242359113 913747727.7 888013837.2 934884821.1 1198395868 1277044767 1235456131 963043028 925500611.4 921906159.7 957528730.9 934517634.5 1183155135 1155142736 893512199.3 829955361 839182104.7 904102148.6 972879836.6 1227504663 1192420215 904137203.4 944756516 1375037708 1328414157 1779424344 1921248556 1899629843 1773839270 1565431502 1592386775 1825650269 1404794363 1393784791 1416771770 1288386476 1289239680 815093905.4 681990799.1 783953618.4 1103067833 1182429773 933897907.8 874114515.6 787403408.5 860338795 1052657878 1297180989 1245476158 1014316130 1004606484 735958898.4 575505161.4 588750452.3 803692654.7 833093724.3 531996754.3 199110366.8 -18901281.1 -6413198.146 -33290860.64 252073940.6 203247618.9 -164091120.7 -501720846.4 -865543851.3 -856086326 -612355346.3 400846624.1 511862726 288735892.8 -127533264.3 -940372573.2 -155917893.1 -699989731.6 -320401187.5 -277824927.9 -705440125.7 -1042182377 -1206106831 -1339738778 -165282703.3 222304361.4 136773204.1 -224139914.3 -271723348.1 -288223577.8 -285482682.4 -1057479814 -1059799528 -960773269.6 -1378106942 -1682462197 -1880270405 -1877392694 -1621410466 -1218560480 387109224.3 85424610.03 -558048286.6 -432347510.8 -107370046 224698124.4 732906395.5 -523071744.4 -1239504492 -1798916179 -2065361083 -1987860160 -1725292219 -1109123667 -971275176.7 -1420498329 -1889158526 -1136864728 -1002777887 647298007.9 1277421457 248465769.8 -377527211.2 -724681515.2 -967478152.4 -947666627.1 -734506065.3 -408053802.2 -241421840.8 -363715586.3 -829237162.5 -929529173.2 -260432788.4 -67756618.13 242997207.2 567370574.9 128921994 -159670249.1 -226982681.8 -240623081 -26502753.8 311495394.1 477285225.3 198408156.8 -195753985.4 -271887709.5 -196538766.7 -72464893.44 180860168.9 360960891.9 147945699.2 -29352193.17 325127464.9 960490365.6 1453481987 1424677454 1207446280 537281902.1 -167977127.5 -505612366.5 -1460096451 -1554214240 -1472813276 -1158137635 -1079634747 -1400116741 -1623247577 -1720625509 -1291068926 -541823228.2 423680238 828606261.2 651175802 588260033.4 511022741 644493024.6 696908085.1 949150687.9 1037411745 754948966.3 790033725.6 1053226989 1170333305 1056602964 1081413405 1135864583 971795777.8 855154881.9 1027395443 1132284155 944870172.3 896319497.9 845115286.7 204393180.2 -75788428.32 -184120868.7 -164634776 -190543808.7 -43973009.39 -452418843.2 -1065106918 -1194545584 -1250333168 -379435027.4 -151057609.1 139705076.6 37020062.65 -307740042.8 -309480234.5 -388529539.7 -379333445.3 -193124460 1308430606 -100597898.3 -327949890.1 -429500583.5 -1321506072 -1444202356 -369913100.7 1419976593 180125360.7 -328296509.9 -409957935.1 -1351211680 -533631519.6 1246061777 1639641696 272442819.7 -361087020.5 -392960561 -456709751.2 1014735303 478499133.8 -748455756.5 -914751976.5 -1377070656 -1903432323 -2110392180 -1984477186 -1434481986 -988902503.8 -944477878.3 -1388889111 -1559730054 -1668752977 -1590459585 -1528272998 -850923022 -542720361.8 -791860111.9 -1057854181 -852120155.6 -810625768.1 -56185632.59 576968488.7 681069818.9 160486150.2 -308533580.1 -261619133.2 -404620378.3 740114544.5 1006206606 622867052.1 -71219884.82 -39173777.42 -533631907.8 -709943766.3 -565909169.9 1641890896 1588111061 880069519.6 1090752417 1278890698 1335767912 1519822543 1812984581 1334545973 426228457.6 456951496.9 1228693380 1312355639 1637418032 691968559 303061371.4 -382291371.7 -639757694.3 -737369705.5 -732118809.2 -408383535.1 1630144553 1548715666 747397223.2 884268460.1 1205537489 1226277745 1637844137 477586396.1 64762654.11 -513468522.6 -676115681.9 -191498426 -86743267.18 80585792.24 538395944.8 262807408.8 -156283609.7 -72157485.31 -56386961.34 -14257457.85 233362524.8 495465812.9 354441383.3 74975465.29 28985451.46 187381822.2 517857439.4 940857149.4 1397097814 1479492584 1206235886 1230335054 1209244303 1772074811 1693077942 1461745247 1417356139 1168474219 1080545493 996524274.5 988026158.1 1059643199 1314652245 1440434637 1438503151 1174067300 1063743311 1086528293 1310565938 1542624917 1504331433 1280216655 1726223821 1670308928 1863627651 1882123871 2055914335 1992301669 1579375771 1533925079 1762629244 1838997943 1897919645 2107505072 1997289608 1464337865 1415561153 1676756233 1700040307 1783398157 1624554189 1546018200 1149902811 1230460988 1191817042 1161373475 1273239958 1590385882 1538451838 1242359113 913747727.7 888013837.2 934884821.1 1198395868 1277044767 1235456131 963043028 925500611.4 921906159.7 957528730.9 934517634.5 1183155135 1151401692 893512199.3 829955361 839182104.7 904102148.6 972879836.6 1227504663 1192420215 904137203.4 944756516 1375037708 1328414157 1193178073 1253502729 1251928059 1185271006 1244858293 1231640212 1171269572 1343448619 1393784791 1416771770 1288386476 1289239680 815093905.4 681990799.1 783953618.4 1103067833 1182429773 933897907.8 874114515.6 787403408.5 860338795 1052657878 1297180989 1245476158 1014316130 1004606484 735958898.4 575505161.4 588750452.3 803692654.7 833093724.3 531996754.3 199110366.8 -18901281.1 -6413198.146 -33290860.64 252073940.6 203247618.9 -164091120.7 -501720846.4 -865543851.3 -856086326 -612355346.3 400846624.1 511862726 288735892.8 -127533264.3 -940372573.2 -155917893.1 -699989731.6 -320401187.5 -277824927.9 -705440125.7 -1042182377 -1206106831 -1339738778 -165282703.3 222304361.4 136773204.1 -224139914.3 -271723348.1 -288223577.8 -285482682.4 410687500.7 1631841798 1553281634 713309450.5 649367763.9 960215164.3 1049107976 1148989485 1678375251 1164709303 183895982 465208739.4 766073381.2 586658157 853178118.4 1317822533 1674419406 693138111.6 610057420.2 928861116.6 1021382975 1317392280 1950890283 1753467250 679132043.8 530667904.1 1923321662 2445945599 2224779498 2205640478 2617939193 1771677175 1773936492 2444894838 2401384689 2491268212 2581667225 2449579792 1593738389 1956098689 2378730864 235226517.6 -67756618.13 242997207.2 567370574.9 128921994 -159670249.1 -226982681.8 -240623081 -26502753.8 311495394.1 477285225.3 198408156.8 -195753985.4 -271887709.5 -196538766.7 -72464893.44 180860168.9 360960891.9 147945699.2 -29352193.17 325127464.9 960490365.6 1453481987 1424677454 1207446280 537281902.1 -167977127.5 -505612366.5 1404374892 1613823539 1849271413 1936762445 1513383047 1256267888 1553901607 1655449233 1979063830 2224098910 2147758870 1612601292 1277373178 1489383946 1406268621 1510782787 1555473157 1721503681 1473734831 1214127421 1427159815 1454163770 1559572239 1693448937 1686056516 1534649610 1402815411 1597472633 1479661974 1572474919 1758527502 1912156129 2007806540 2577055685 3079863351 3189154952 3084552356 3020184398 3019956688 2361199448 1906290720 1878596097 1894542086 54727454.63 -151057609.1 134304962.6 37020062.65 -307740042.8 -309480234.5 -388529539.7 -379333445.3 -193124460 -663765015.3 -100597898.3 -327949890.1 -429500583.5 1538626202 1943756793 142960155.3 -715237274.1 -83507361.25 -328296509.9 -409957935.1 1469349471 -6715352.565 -882845870.8 -711202595.9 -147504975.3 -361087020.5 -392960561 -456709751.2 -1065125015 1006714631 2153142496 1804378762 1673270778 2693842453 3029003743 3091803034 2506604564 2457560591 2027821010 1756470132 2064844611 2119623546 2162263280 2002164168 1694641809 616667238.2 178971439.1 187991217 342780020.4 452558045.9 1221341191 1928282804 1898438088 2350801273 3271266186 3102579205 3404316683 1296736764 1006206606 622867052.1 -71219884.82 -39173777.42 777976197.2 831608580.7 1173972977 574093131.8 145884449.2 125630390.6 140647407.2 -1948845.745 -20569346.72 170376510.8 416953573.6 394780276 210086267.6 240846310.9 -4692367.437 13267344.2 462459409.2 1638331860 1368251762 844946221.3 908678722.7 858991700.5 821130809.8 1087001122 501346560.7 49030467.37 -115293555.8 -42916860.95 -94506694.82 65744337.46 214422930.7 1246493179 948746467.1 450984956.4 906168925.1 55072855.99 -86742286.18 80586773.24 538396925.8 262808389.8 -156282628.7 -72156504.31 -56385980.34 -14256476.85 233363505.8 495466793.9 354442365.3 74976446.29 28986433.46 187382803.2 517858420.4 940858130.4 1397098796 1479493565 1206236868 1230336035 1209245284 1021481495 1358007248 1908140672 1690817796 1450430426 1573572004 1548289864 1518408336 1551340078 1800682764 1691240562 1675755235 1422581675 1551622923 1630779709 1361558060 1542625898 1504332415 1280217636 1726224802 1670309909 1120575341 1084898851 1285909100 1226741796 1101294475 1081076422 881718476.1 975006107.7 1058437890 1290434261 1288260708 1038857948 1006241637 891911406.2 920602831.4 981586769.8 1536508814 1546019181 1149903793 1230461969 1191818023 1161288092 1273240939 1590386863 1538452819 1242360094 913748708.7 888014818.2 934885802.1 1198396849 1277045748 1235457112 963044009 925501591.4 921907140.7 957529712.9 934518615.5 1183156116 1151402673 893513180.3 829956342 839183085.7 904103129.6 972880817.6 1227505644 1192421196 904138184.4 944757497 1375038689 1328415139 1193189782 1253504218 1251929547 1185272494 1244859781 1231641700 1171271060 1343450107 1393786279 1416773258 1288387964 1289241168 1276942382 1223342782 1265179173 1582950274 1549362846 1289741511 1522844687 1575762386 1623981295 1140018366 1297182477 1245477646 1014317618 1004607972 3339996446 2617836416 2598501271 2725463672 2379954942 2430902194 3387783330 4057325882 3941464221 4026010913 3593315188 3218647755 2899429341 3156298547 3453939489 3535652872 3957490786 2127115167 1652343230 1644069350 1408460965 3374914231 1354451507 3451778958 4125068975 3062203905 2860803149 3523217492 3446260128 4086491216 1353224655 1786887688 1329952369 1262946794 1434089723 1426765711 1394483892 3184736742 3585370070 2492338381 2870647454 3422458727 3496074936 3440427221 3488297885 3411694273 1862226333 2347786389 2984492965 2832984919 2706245540 2975365013 2750770215 2329108891 2668972592 3485974677 3498308730 3651172133 4020199587 3953317903 2733969884 2903235323 3953139670 4668898648 4652525612 4073702669 3715845753 3017343417 4181519935 4751974434 4619926728 4594101972 4732221475 4318140179 3780497707 4451918052 5012718317 4833179055 5653878208 5807608123 5396558840 4198373572 4884875793 5677377778 5912605893 5944449107 5747882280 5227572313 4478777171 4801671568 5862958412 6148995450 6002089979 5948770595 5519491673 4863435104 5079255850 5868770156 5542293262 4248733096 2766041977 2732273377 2763007960 3709017196 5826881003 5418281457 4464795375 4353979464 4041806357 3642750843 3991233296 4574288639 4505497973 4507525662 3759850718 2770466566 1884370202 2017997394 2536894291 2394368239 2561217637 2329522814 2238153751 1823017685 1985828850 2534460960 2292248472 2008277139 1792241233 1777656572 1763197595 1863541282 2165268053 2093475484 2045555081 1853852293 1858329332 1755509088 1713779365 1790957115 1574452597 1579659809 1670558649 1766876466 1623856630 2694719637 3768836252 3933201414 3980190714 4955559887 4938681336 4365493305 4568797166 5264823884 5274383182 5433866314 5417386015 5045165577 4013353224 4858457348 5313474135 5517720717 4442688396 4160415512 4888461743 3958104821 4567324340 5323056776 5488909281 4557331369 5223549360 4326783309 3764876526 4571173289 5423886480 5493146693 5626783987 4769215133 3238864341 3322242772 3840761593 4440231932 3952228746 3826102990 3642814617 3683433336 3290239564 3679644227 4401886050 4271007289 4331924299 4217934600 4322830334 3958867188 4735975510 5434096780 5704487461 5359613448 5223744170 3712806728 2381705672 2316848053 2396344551 1960261326 2098710139 1955760687 2933140424 2967171559 3746036475 5150516737 5103739176 4799974487 4940976107 4470787625 2874748403 3370617116 4116000776 3907376783 3879136871 3858305272 3498190930 2968939532 3482738547 4592541370 4548237451 4039300654 3954893868 3196099484 2977703338 3645589701 4866174649 5072864386 5232041565 5275606802 4693688082 3245094491 3790221336 4772983985 4581973930 4331144672 4167962637 3622317542 3760217425 4483667233 5577532419 5303025177 5677698961 5720893489 5385575901 4466914817 5021515141 5865735715 5703914224 5678717816 5600943246 5110447244 4590128626 4877035122 5442054864 5540200590 5229513831 4574668437 3734155348 2825747731 2665659550 3218611753 3177069031 3225833078 2857378098 2605242926 2290489544 2556941031 3052363819 3023655743 3139325913 3183875762 3084641745 2584707861 2573111682 2596449197 3119292036 3103807890 3003440326 3050225234 2639037382 2719271674 3174072606 2288642761 2407051251 2769659370 2792708736 2422258872 2550055714 3094896689 3167462954 3145311598 2982505987 2846929030 2410677820 2528516371 3317404595 3405548963 3264859256 3217887704 3076794348 2682319143 2752574869 3546644862 3387139453 3465822066 3527697761 3304648740 2671176465 2775904656 3369489444 3186975051 3265608930 3125970955 2336383605 2101672532 2227649209 3046717349 3161392531 3174174168 3069526988 3140929673 2396972936 2491933483 3274873818 3471396399 3449881421 3260944652 3059846681 2300326480 2410144424 3280639160 3165080129 1880734112 2026731745 1851573264 1593311358 1623039610 1888090770 1983714225 1990135314 1884610261 1966858510 1881518298 1817889199 2209334095 2213195958 3180360773 3506589476 3266458246 2314386847 2203488644 2979775043 2887785856 3029641480 2854946175 2971200632 2338656676 2508827357 3221768984 3271647981 1494100499 2557318665 2566743784 2024262236 2326858931 2898711691 2629767554 2418419575 2529673112 2517326919 2394071701 2882872031 3958018274 4398615549 4850186215 4769908627 3875047506 3686152334 3944845885 4407300286 5483421647 5150638137 5610203814 4608824221 3183456836 4173041229 5250468129 5281994707 5707036828 5352424541 5755606494 4561838923 5206514812 6017273753 5965257129 6031374315 6079040231 4379684817 2770833772 3855818791 4754914912 4592227424 4426284753 4410453960 4025381538 3174239722 3637497533 4441638488 4174099821 3906145103 3894032411 3032325960 2296152859 3634154800 5013642209 4862468183 4819578542 4516969809 3607317085 2438327317 3732908830 5107431888 4696140901 1856348267 1237864483 406427050.9 166776835.3 1498808575 1828048545 1624152578 1349901570 1420774156 998226407.7 1012022910 1532830520 1859891754 1422784584 1300680502 1969725485 1936125754 1730921235 2284540775 2480696530 2271292433 2177291835 2174315253 1943550394 1789789173 2208387982 2445973421 2180115879 2053590351 2057128187 1868753587 1794479025 2093710971 2310482091 1882157273 1506021669 1535469156 2038211764 2132884419 2539631965 2937476532 2237006540 1897259543 801631140.7 589473184.2 116334380.3 674275361.3 1282712559 1119202007 1004676722 781599593.7 1184057471 1405174402 2414122535 3215047803 3117104932 2843730513 2338714670 1830982498 1282357057 1398445510 1709185553 1343346425 1299455992 1382754660 1451688601 1355952002 1395566041 1646971917 1518132724 1378268909 1383505613 1477733701 1396182586 1340692285 1513095775 952400088.2 654084246.7 626929432.3 700786606 523798987.3 1212948425 1567710490 1072360130 1057312922 876650104.6 1532682661 1439342205 1801524855 2099113224 1992935512 2063753470 1849349346 1589462235 1341435771 1147947080 2071354378 2006092710 2105408195 1234206054 656144711.4 1208902786 1232216105 2213555415 2017146411 1991371378 994748835.5 1523018258 551904050.2 4489317425 7011882149 7509029269 7405531928 6627086822 5118361296 2929515389 4386298474 6193577031 6201888044 5600929516 5249637157 4071570693 3812427933 4814958529 6581889904 6706593436 6538328968 5770674289 5146640592 3869631764 5168489883 7218970135 7319257013 6818980598 6581026441 4463128268 2549197744 2751600290 3586655201 3073231312 2610229695 2664878334 2445857027 3333286739 5342397336 8218514365 7400486992 7351969323 6170498161 6166815740 4938259613 5123232548 6952344511 7484834076 7975757356 6042108897 3954139391 2561409558 3636287452 6659637045 6610145475 6303751643 5790815423 5286756045 532871596.2 2403662106 2933984545 2177296758 1954486433 1713519574 1459802901 4020142932 5383799348 6858179971 7112822894 6327294007 5759923625 5042533123 3796835736 5750880779 7453820307 7335397513 6962686301 7790660114 6724956363 5003169135 6701050938 7992041249 7756326177 7913301179 7741411043 6785177818 6284270117 6963921883 7785974652 7574222100 7588499293 5788919572 4105788142 2859825648 2924210471 4069907537 3895077405 3979654780 2075329893 1979403277 1632081713 1877890303 2412917344 3763581680 3726439732 3673898152 3345262416 2191053212 2548906553 3841133834 3846853011 3492242728 3479185981 3290714847 2514060721 2645599322 2791855040 3791586130 However, we are not familiar with the form of the loess() function and it seems to expect a formula which we do not know. We tried the following: y <- c(mydata) x <- 1:1614 lo <- loess(y~x) We get the error: Error in model.frame.default(formula = y ~ x) : invalid type (list) for variable 'y' How do we fit a loess curve around the values to get the general trend line? Also, after removing the seasonal component we have some negative values for some reason. Would this affect the loess() curve?
Resampling multivariate time series in R
I have a set of bivariate time series and want to resample them to the same length. I thought that it might be a good idea to use the mean length of all time series, since I wanted to avoid that some series will be shortened or extended too much. My first naive idea was using the resample method of the signal package, and resample each dimension of a series separately. I don't like this idea very much, since I have the fear that the alignment between the dimensions might suffer from the independent resampling, but I hoped this effect might be negligible. My current problem is that the resampling of the data creates artifacts at the end and beginning of a series. It seems that the resample method assumes that the series starts from zero. Now I'm wondering if there is a more suitable resampling method which in the best case is readily available (in R) and maybe also supports bivariate time series. Plot: http://i.stack.imgur.com/3OwAt.png Code example: example <- c(-2014.1, -2014.1, -2014.1, -2014, -2014, -2013.9, -2013.9, -2013.7, -2013.5, -2013.4, -2013.1, -2012.9, -2012.6, -2012.4, -2012, -2011.7, -2011.4, -2011, -2010.5, -2010.1, -2009.5, -2009.1, -2008.6, -2008, -2007.5, -2006.9, -2006.4, -2005.7, -2005.1, -2004.4, -2003.7, -2003, -2002.4, -2001.5, -2000.7, -1999.9, -1999.1, -1998.2, -1997.4, -1996.5, -1995.6, -1994.6, -1993.6, -1992.6, -1991.7, -1990.7, -1989.7, -1988.9, -1987.9, -1986.9, -1985.9, -1984.9, -1984, -1983, -1982.1, -1981.1, -1980.1, -1979.2, -1978.2, -1977.2, -1976.4, -1975.4, -1974.4, -1973.4, -1972.4, -1971.5, -1970.5, -1969.6, -1968.6, -1967.6, -1966.6, -1965.7, -1964.7, -1963.9, -1962.9, -1961.9, -1960.9, -1959.9, -1958.9, -1957.9, -1956.9, -1955.9, -1955, -1954, -1953, -1952.1, -1951.5, -1951.1, -1950.6, -1950.1, -1949.6, -1949.2, -1948.7, -1948.2, -1947.9, -1947.4, -1946.9, -1946.4, -1945.9, -1945.4, -1944.9, -1944.4, -1943.9, -1943.4, -1943, -1942.5, -1942, -1941.5, -1941, -1940.6, -1940.1, -1939.6, -1939.1, -1938.7, -1938.2, -1937.7, -1937.2, -1936.7, -1936.2, -1935.7, -1935.4, -1934.9, -1934.4, -1933.9, -1933.4, -1932.9, -1932.4, -1931.9, -1931.4, -1931, -1930.5, -1930, -1929.5, -1929, -1928.6, -1928.1, -1927.6, -1927.1, -1926.6, -1926.2, -1925.7, -1925.2, -1924.7, -1924.4, -1923.9, -1923.4, -1922.9, -1922.4, -1921.9, -1921.4, -1920.9, -1920.4, -1919.9, -1919.4, -1919, -1918.5, -1918, -1917.5, -1917, -1916.6, -1916.1, -1915.6, -1915.1, -1914.6, -1914.2, -1913.7, -1913.2, -1912.7, -1912.2, -1911.7, -1911.4, -1910.9, -1910.4, -1909.9, -1909.4, -1908.9, -1908.4, -1907.9, -1907.5, -1906.9, -1906.5, -1906, -1905.5, -1905, -1904.6, -1904, -1903.6, -1903.1, -1902.7, -1902.2, -1901.7, -1901.2, -1900.7, -1900.4, -1899.9, -1899.4, -1898.9, -1898.4, -1897.9, -1897.4, -1896.9, -1896.4, -1895.9, -1895.2, -1895, -1894.5, -1894, -1893.6, -1893.1, -1892.6, -1892.1, -1891.6, -1891.2, -1890.7, -1890.2, -1889.7, -1889.2, -1888.9, -1888.4, -1887.9, -1887.4, -1886.9, -1886.4, -1885.6, -1885.4, -1884.9, -1884.5, -1884, -1883.5, -1883, -1882.5, -1882.1, -1881.6, -1881.1, -1880.6, -1880.2, -1879.7, -1879.2, -1878.7, -1878.4, -1877.9, -1877.4, -1876.9, -1876.1, -1875.6, -1875.1, -1874.6, -1874.1, -1873.6, -1873.2, -1872.7, -1872.2, -1871.7, -1871.4, -1870.7, -1870.4, -1869.9, -1869.4, -1868.9, -1868.4, -1867.9, -1867.4, -1867.2, -1866.4, -1866, -1865.5, -1865, -1864.5, -1864.1, -1863.6, -1863.1, -1862.6, -1862.1, -1861.7, -1861.2, -1860.7, -1860.2, -1859.7, -1859.4, -1858.9, -1858.4, -1857.9, -1857.4, -1856.9, -1856.4, -1855.9, -1855.4, -1854.9, -1854.5, -1854, -1853.5, -1853.1, -1852.6, -1852.1, -1851.6, -1851.1, -1850.7, -1850.2, -1849.7, -1849.2) plot(example, t="l", main="Original") plot(resample(example,250,length(example)), t="l", main="Resampled")
geometric standard deviation for a log normal distribution
I am trying to calculate geometric standard deviation of each log normal distribution. In the below,for example, I have x data in first row, wich is bin size (from 10 to 1000), and corresponding five y data in the next rows. 10 10.9854 12.0679 13.2571 14.5635 15.9986 17.5751 19.307 21.2095 23.2995 25.5955 28.1177 30.8884 33.9322 37.2759 40.9492 44.9843 49.4171 54.2868 59.6362 65.5129 71.9686 79.0604 86.8511 95.4095 104.811 115.14 126.486 138.95 152.642 167.683 184.207 202.359 222.3 244.205 268.27 294.705 323.746 355.648 390.694 429.193 471.487 517.947 568.987 625.055 686.649 754.312 828.643 910.298 1000 0.0170496 0.0239502 0.0332355 0.0455609 0.0616994 0.0825406 0.109082 0.142408 0.18366 0.233988 0.294489 0.366137 0.449692 0.545614 0.653963 0.774317 0.905696 1.04651 1.19455 1.34698 1.50043 1.65109 1.79482 1.92739 2.04464 2.1427 2.21822 2.26854 2.29184 2.28729 2.25505 2.19628 2.11309 2.00838 1.8857 1.74903 1.60258 1.45057 1.29705 1.1457 0.999738 0.861783 0.733851 0.617327 0.513004 0.421137 0.341527 0.273605 0.216532 0.169284 0.564795 0.577687 0.5902 0.602296 0.61394 0.625095 0.635728 0.645804 0.655292 0.664162 0.672384 0.679932 0.686781 0.692908 0.698293 0.702918 0.706767 0.709826 0.712086 0.713539 0.71418 0.714007 0.71302 0.711223 0.708621 0.705224 0.701043 0.696093 0.69039 0.683953 0.676803 0.668965 0.660464 0.651327 0.641585 0.631268 0.620408 0.609041 0.5972 0.584922 0.572243 0.559201 0.545833 0.532178 0.518272 0.504155 0.489863 0.475433 0.460903 0.446307 1.88874 1.99575 2.1007 2.20265 2.30064 2.39374 2.48101 2.56155 2.63452 2.69913 2.75466 2.80051 2.83615 2.86117 2.87529 2.87836 2.87032 2.85127 2.82144 2.78116 2.7309 2.67121 2.60276 2.52629 2.44262 2.35262 2.2572 2.15731 2.0539 1.94791 1.84027 1.73188 1.62359 1.51621 1.41048 1.30706 1.20656 1.1095 1.01631 0.927365 0.842942 0.763252 0.688433 0.618555 0.553629 0.493609 0.4384 0.387865 0.341834 0.300104 0.190679 0.206669 0.223365 0.240726 0.258699 0.277225 0.296235 0.315651 0.335385 0.355342 0.375418 0.395503 0.41548 0.435228 0.454622 0.473532 0.491829 0.509384 0.526069 0.541758 0.556333 0.569679 0.58169 0.592269 0.60133 0.608797 0.614608 0.618714 0.62108 0.621687 0.620529 0.617615 0.612971 0.606636 0.598663 0.589119 0.578082 0.565642 0.5519 0.536964 0.52095 0.503979 0.486178 0.467675 0.4486 0.429082 0.409249 0.389225 0.36913 0.34908 1.63196 1.69464 1.75432 1.81053 1.8628 1.9107 1.95381 1.99177 2.02423 2.0509 2.07155 2.08598 2.09406 2.09572 2.09094 2.07977 2.06231 2.03872 2.00922 1.97406 1.93356 1.88808 1.83801 1.78377 1.72583 1.66463 1.60068 1.53447 1.46647 1.39719 1.32709 1.25664 1.18628 1.11642 1.04745 0.979718 0.913557 0.849249 0.787045 0.727157 0.669765 0.615008 0.562995 0.513798 0.467461 0.423997 0.383394 0.345615 0.310603 0.27828 So, I have five log normal distributions. (Actually, I have hundreds log normal distributions to be calculated.) Then, I want to calculate each geometric standard deviation, which does not seem to be implemented in r packages. R package ("psych") provides a tool to calculate geometric standard deviation, but not for such data I have.. Instead, it can be calculated following the equation below, http://www.eng.utoledo.edu/~akumar/IAP1/lung/calculateDiameter.htm But, I have no idea how to calculate using such equation in r. Hope someone help me to calculate a geometric standard deviation of each log normal distribution either using r package or calculating the equation. Thanks a lot for your help, in advance. S
The easiest way is probably using: exp(sd(log(x)))