My problem is the following:
I'm trying to use R in order to compute numerically this problem.
So I've correctly setup the problem in my console, and then I tried to compute the eigenvectors.
But I expect that the eigenvector associated with lambda = 1 is (1,2,1) instead of what I've got here. So, the scaling is correct (0.4082483 is effectively half of 0.8164966), but I would like to obtain a consistent result.
My original problem is to find a stationary distribution for a Markov Chain using R instead of doing it on paper. So from a probabilistic point of view, my stationary distribution is a vector whose sum of the components is equal to 1. For that reason I was trying to change the scale in order to obtain what I've defined "a consistent result".
How can I do that ?
The eigen vectors returned by R are normalized (for the square-norm). If V is a eigen vector then s * V is a eigen vector as well for any non-zero scalar s. If you want the stationary distribution as in your link, divide by the sum:
V / sum(V)
and you will get (1/4, 1/2, 1/4).
So:
ev <- eigen(t(C))$vectors
ev / colSums(ev)
to get all the solutions in one shot.
C <- matrix(c(0.5,0.25,0,0.5,0.5,0.5,0,0.25,0.5),
nrow=3)
ee <- eigen(t(C))$vectors
As suggested by #Stéphane Laurent in the comments, the scaling of eigenvectors is arbitrary; only the relative value is specified. The default in R is that the sum of squares of the eigenvectors (their norms) are equal to 1; colSums(ee^2) is a vector of 1s.
Following the link, we can see that you want each eigenvector to sum to 1.
ee2 <- sweep(ee,MARGIN=2,STATS=colSums(ee),FUN=`/`)
(i.e., divide each eigenvector by its sum).
(This is a good general solution, but in this case the sum of the second and third eigenvectors are both approximately zero [theoretically, they are exactly zero], so this only really makes sense for the first eigenvector.)
I would like to build a simple structure from motion program according to Tomasi and Kanade [1992]. The article can be found below:
https://people.eecs.berkeley.edu/~yang/courses/cs294-6/papers/TomasiC_Shape%20and%20motion%20from%20image%20streams%20under%20orthography.pdf
This method seems elegant and simple, however, I am having trouble calculating the metric constraints outlined in equation 16 of the above reference.
I am using R and have outlined my work thus far below:
Given a set of images
I want to track the corners of the three cabinet doors and the one picture (black points on images). First we read in the points as a matrix w where
Ultimately, we want to factorize w into a rotation matrix R and shape matrix S that describe the 3 dimensional points. I will spare as many details as I can but a complete description of the maths can be gleaned from the Tomasi and Kanade [1992] paper.
I supply w below:
w.vector=c(0.2076,0.1369,0.1918,0.1862,0.1741,0.1434,0.176,0.1723,0.2047,0.233,0.3593,0.3668,0.3744,0.3593,0.3876,0.3574,0.3639,0.3062,0.3295,0.3267,0.3128,0.2811,0.2979,0.2876,0.2782,0.2876,0.3838,0.3819,0.3819,0.3649,0.3913,0.3555,0.3593,0.2997,0.3202,0.3137,0.31,0.2718,0.2895,0.2867,0.825,0.7703,0.742,0.7251,0.7232,0.7138,0.7345,0.6911,0.1937,0.1248,0.1723,0.1741,0.1657,0.1313,0.162,0.1657,0.8834,0.8118,0.7552,0.727,0.7364,0.7232,0.7288,0.6892,0.4309,0.3798,0.4021,0.3965,0.3844,0.3546,0.3695,0.3583,0.314,0.3065,0.3989,0.3876,0.3857,0.3781,0.3989,0.3593,0.5184,0.4849,0.5147,0.5193,0.5109,0.4812,0.4979,0.4849,0.3536,0.3517,0.4121,0.3951,0.3951,0.3781,0.397,0.348,0.5175,0.484,0.5091,0.5147,0.5128,0.4784,0.4905,0.4821,0.7722,0.7326,0.7326,0.7232,0.7232,0.7119,0.7402,0.7006,0.4281,0.3779,0.3918,0.3863,0.3825,0.3472,0.3611,0.3537,0.8043,0.7628,0.7458,0.7288,0.727,0.7213,0.7364,0.6949,0.5789,0.5491,0.5761,0.5817,0.5733,0.5444,0.5537,0.5379,0.3649,0.3536,0.4177,0.3951,0.3857,0.3819,0.397,0.3461,0.697,0.671,0.6821,0.6821,0.6719,0.6412,0.6468,0.6235,0.3744,0.3649,0.4159,0.3819,0.3781,0.3612,0.3763,0.314,0.7008,0.6691,0.6794,0.6812,0.6747,0.6393,0.6412,0.6235,0.7571,0.7345,0.7439,0.7496,0.7402,0.742,0.7647,0.7213,0.5817,0.5463,0.5696,0.5779,0.5761,0.5398,0.551,0.5398,0.7665,0.7326,0.7439,0.7345,0.7288,0.727,0.7515,0.7062,0.8301,0.818,0.8571,0.8878,0.8766,0.8561,0.858,0.8394,0.4121,0.3876,0.4347,0.397,0.38,0.3631,0.3668,0.2971,0.912,0.8962,0.9185,0.939,0.9259,0.898,0.8887,0.8571,0.3989,0.3781,0.4215,0.3725,0.3612,0.3461,0.3423,0.2782,0.9092,0.8952,0.9176,0.9399,0.925,0.8971,0.8887,0.8571,0.4743,0.4536,0.4894,0.4517,0.446,0.4328,0.4385,0.3706,0.8273,0.8171,0.8571,0.8878,0.8766,0.8543,0.8561,0.8394,0.4743,0.4554,0.4969,0.4668,0.4536,0.4404,0.4536,0.3857)
w=matrix(w.vector,ncol=16,nrow=16,byrow=FALSE)
Then create registered measurement matrix wm according to equation 2 as
by
wm = w - rowMeans(w)
We can decompose wm into a '2FxP' matrix o1 a diagonal 'PxP' matrix e and 'PxP' matrix o2 by using a singular value decomposition.
svdwm <- svd(wm)
o1 <- svdwm$u
e <- diag(svdwm$d)
o2 <- t(svdwm$v) ## dont forget the transpose!
However, because of noise, we only pay attention to the first 3 columns of o1, first 3 values of e and the first 3 rows of o2 by:
o1p <- svdwm$u[,1:3]
ep <- diag(svdwm$d[1:3])
o2p <- t(svdwm$v)[1:3,] ## dont forget the transpose!
Now we can solve for our rhat and shat in equation (14)
by
rhat <- o1p%*%ep^(1/2)
shat <- ep^(1/2) %*% o2p
However, these results are not unique and we still need to solve for R and S by equation (15)
by using the metric constraints of equation (16)
Now I need to find Q. I believe there are two potential methods but am unclear how to employ either.
Method 1 involves solving for B where B=Q%*%solve(Q) then using Cholesky decomposition to find Q. Method 1 appears to be the common choice in literature, however, little detail is given as to how to actually solve the linear system. It is apparent that B is a '3x3' symmetric matrix of 6 unknowns. However, given the metric constraints (equations 16), I don't know how to solve for 6 unknowns given 3 equations. Am I forgetting a property of symmetric matrices?
Method II involves using non-linear methods to estimate Q and is less commonly used in structure from motion literature.
Can anyone offer some advice as to how to go about solving this problem? Thanks in advance and let me know if I need to be more clear in my question.
can be written as .
can be written as .
can be written as .
so our equations are:
So the first equation can be written as:
which is equivalent to
To keep it short we define now:
(I know the spacings are terrably small, but yes, this is a Vector...)
So for all equations in all different Frames f, we can write one big equation:
(sorry for the ugly formulas...)
Now you just need to solve the -Matrix using Cholesky decomposition or whatever...
This question already has answers here:
Closed 11 years ago.
Possible Duplicate:
how to generate pseudo-random positive definite matrix with constraints on the off-diagonal elements?
The user wants to impose a unique, non-trivial, upper/lower bound on the correlation between every pair of variable in a var/covar matrix.
For example: I want a variance matrix in which all variables have 0.9 > |rho(x_i,x_j)| > 0.6, rho(x_i,x_j) being the correlation between variables x_i and x_j.
Thanks.
There are MANY issues here.
First of all, are the pseudo-random deviates assumed to be normally distributed? I'll assume they are, as any discussion of correlation matrices gets nasty if we diverge into non-normal distributions.
Next, it is rather simple to generate pseudo-random normal deviates, given a covariance matrix. Generate standard normal (independent) deviates, and then transform by multiplying by the Cholesky factor of the covariance matrix. Add in the mean at the end if the mean was not zero.
And, a covariance matrix is also rather simple to generate given a correlation matrix. Just pre and post multiply the correlation matrix by a diagonal matrix composed of the standard deviations. This scales a correlation matrix into a covariance matrix.
I'm still not sure where the problem lies in this question, since it would seem easy enough to generate a "random" correlation matrix, with elements uniformly distributed in the desired range.
So all of the above is rather trivial by any reasonable standards, and there are many tools out there to generate pseudo-random normal deviates given the above information.
Perhaps the issue is the user insists that the resulting random matrix of deviates must have correlations in the specified range. You must recognize that a set of random numbers will only have the desired distribution parameters in an asymptotic sense. Thus, as the sample size goes to infinity, you should expect to see the specified distribution parameters. But any small sample set will not necessarily have the desired parameters, in the desired ranges.
For example, (in MATLAB) here is a simple positive definite 3x3 matrix. As such, it makes a very nice covariance matrix.
S = randn(3);
S = S'*S
S =
0.78863 0.01123 -0.27879
0.01123 4.9316 3.5732
-0.27879 3.5732 2.7872
I'll convert S into a correlation matrix.
s = sqrt(diag(S));
C = diag(1./s)*S*diag(1./s)
C =
1 0.0056945 -0.18804
0.0056945 1 0.96377
-0.18804 0.96377 1
Now, I can sample from a normal distribution using the statistics toolbox (mvnrnd should do the trick.) As easy is to use a Cholesky factor.
L = chol(S)
L =
0.88805 0.012646 -0.31394
0 2.2207 1.6108
0 0 0.30643
Now, generate pseudo-random deviates, then transform them as desired.
X = randn(20,3)*L;
cov(X)
ans =
0.79069 -0.14297 -0.45032
-0.14297 6.0607 4.5459
-0.45032 4.5459 3.6549
corr(X)
ans =
1 -0.06531 -0.2649
-0.06531 1 0.96587
-0.2649 0.96587 1
If your desire was that the correlations must ALWAYS be greater than -0.188, then this sampling technique has failed, since the numbers are pseudo-random. In fact, that goal will be a difficult one to achieve unless your sample size is large enough.
You might employ a simple rejection scheme, whereby you do the sampling, then redo it repeatedly until the sample has the desired properties, with the correlations in the desired ranges. This may get tiring.
An approach that might work (but one that I've not totally thought out at this point) is to use the standard scheme as above to generate a random sample. Compute the correlations. I they fail to lie in the proper ranges, then identify the perturbation one would need to make to the actual (measured) covariance matrix of your data, so that the correlations would be as desired. Now, find a zero mean random perturbation to your sampled data that would move the sample covariance matrix in the desired direction.
This might work, but unless I knew that this is actually the question at hand, I won't bother to go any more deeply into it. (Edit: I've thought some more about this problem, and it appears to be a quadratic programming problem, with quadratic constraints, to find the smallest perturbation to a matrix X, such that the resulting covariance (or correlation) matrix has the desired properties.)
This is not a complete answer, but a suggestion of a possible constructive method:
Looking at the characterizations of the positive definite matrices (http://en.wikipedia.org/wiki/Positive-definite_matrix) I think one of the most affordable approaches could be using the Sylvester criterion.
You can start with a trivial 1x1 random matrix with positive determinant and expand it in one row and column step by step while ensuring that the new matrix has also a positive determinant (how to achieve that is up to you ^_^).
Woodship,
"First of all, are the pseudo-random deviates assumed to be normally distributed?"
yes.
"Perhaps the issue is the user insists that the resulting random matrix of deviates must have correlations in the specified range."
Yes, that's the whole difficulty
"You must recognize that a set of random numbers will only have the desired distribution parameters in an asymptotic sense."
True, but this is not the problem here: your strategy works for p=2, but fails for p>2, regardless of sample size.
"If your desire was that the correlations must ALWAYS be greater than -0.188, then this sampling technique has failed, since the numbers are pseudo-random. In fact, that goal will be a difficult one to achieve unless your sample size is large enough."
It is not a sample size issue b/c with p>2 you do not even observe convergence to the right range for the correlations, as sample size growths: i tried the technique you suggest before posting here, it obviously is flawed.
"You might employ a simple rejection scheme, whereby you do the sampling, then redo it repeatedly until the sample has the desired properties, with the correlations in the desired ranges. This may get tiring."
Not an option, for p large (say larger than 10) this option is intractable.
"Compute the correlations. I they fail to lie in the proper ranges, then identify the perturbation one would need to make to the actual (measured) covariance matrix of your data, so that the correlations would be as desired."
Ditto
As for the QP, i understand the constraints, but i'm not sure about the way you define the objective function; by using the "smallest perturbation" off some initial matrix, you will always end up getting the same (solution) matrix: all the off diagonal entries will be exactly equal to either one of the two bounds (e.g. not pseudo random); plus it is kind of an overkill isn't it ?
Come on people, there must be something simpler
I have the matrix system:
A x B = C
A is a by n and B is n by b. Both A and B are unknown but I have partial information about C (I have some values in it but not all) and n is picked to be small enough that the system is expected to be over constrained. It is not required that all rows in A or columns in B are over constrained.
I'm looking for something like least squares linear regression to find a best fit for this system (Note: I known there will not be a single unique solution but all I want is one of the best solutions)
To make a concrete example; all the a's and b's are unknown, all the c's are known, and the ?'s are ignored. I want to find a least squares solution only taking into account the know c's.
[ a11, a12 ] [ c11, c12, c13, c14, ? ]
[ a21, a22 ] [ b11, b12, b13, b14, b15] [ c21, c22, c23, c24, c25 ]
[ a31, a32 ] x [ b21, b22, b23, b24, b25] = C ~= [ c31, c32, c33, ?, c35 ]
[ a41, a42 ] [ ?, ?, c43, c44, c45 ]
[ a51, a52 ] [ c51, c52, c53, c54, c55 ]
Note that if B is trimmed to b11 and b21 only and the unknown row 4 chomped out, then this is almost a standard least squares linear regression problem.
This problem is illposed as described.
Let A, B, and C=5, be scalars. You are asking to solve
a*b=5
which has an infinite number of solutions.
One approach, on the information provided above, is to minimize
the function g defined as
g(A,B) = ||AB-C||^2 = trace((AB-C)*(AB-C))^2
using Newtons method or a quasi-secant approach (BFGS).
(You can easily compute the gradient here).
M* is the transpose of M and multiplication is implicit.
(The norm is the frobenius norm... I removed the
underscore F as it was not displaying properly)
As this is an inherently nonlinear problem, standard linear
algebra approaches do not apply.
If you provide more information, I may be able to help more.
Some more questions: I think the issue is here is that without
more information, there is no "best solution". We need to
determine a more concrete idea of what we are looking for.
One idea, could be a "sparsest" solution. This area is
a hot area of research, with some of the best minds in the
world working here (See Terry Tao et al. work on Nuclear Norm)
This problem although tractable is still hard.
Unfortunately, I am not yet able to comment, so I will add my comments here.
As said below, LM is a great approach to solving this and is just one approach.
along the lines of the Newton type approaches to either
the optimization problem or the nonlinear solving problem.
Here is an idea, using the example you gave above: Lets define
two new vectors, V and U each with 21 elements (exactly the same number of defined
elements in C).
V is precisely the known elements of C, column ordered, so (in matlab notation)
V = [C11; C21; C31; C51; C12; .... ; C55]
U is a vector which is a column ordering of the product AB, LEAVING OUT THE
ELEMENTS CORRESPONDING TO '?' in matrix C. Collecting all the variables into x
we have
x = [a11, a21, .. a52, b11, b21 ..., b25].
f(x) = U (as defined above).
We can now try to solve f(x)=V with your favorite nonlinear least squares method.
As an aside, although a poster below recommended simulated annealing, I recommend
against it. THere are some problems it works, but it is a heuristic. When you have
powerful analytic methods such as Gauss-Newton or LM, I say use them. (in my own
experience that is)
A wild guess: A singular value decomposition might do the trick?
I have no idea on how to deal with your missing values, so I'm going to ignore that problem.
There are no unique solutions. To find a best solution you need some sort of a metric to judge them by. I'm going to suppose you want to use a least squares metric, i.e. the best guess values of A and B are those that minimize sum of the numbers [C_ij-(A B)_ij]^2.
One thing you didn't mention is how to determine the value you are going to use for n. In short, we can come up with 'good' solutions if 1 <= n <= b. This is because 1 <= rank(span(C)) <= b. Where rank(span(C)) = the dimension of the column space of C. Note that this is assuming a >= b. To be more correct we would write 1 <= rank(span(C)) <= min(a,b).
Now, supposing that you have chosen n such that 1 <= n <= b. You are going to minimize the residual sum of squares if you chose the columns of A such that span(A) = span(First n eigen vectors of C). If you don't have any other good reasons, just choose the columns of A to be to first n eigen vectors of C. Once you have chosen A, you can get the values of B in the usual linear regression way. I.e. B = (A'A)^(-1)A' C
You have a couple of options. The Levenberg-Marquadt algorithm is generally recognized as the best LS method. A free implementation is available at here. However, if the calculation is fast and you have a decent number of parameters, I would strongly suggest a Monte Carlo method such as simulated annealing.
You start with some set of parameters in the answer, and then you increase one of them by a random percentage up to a maximum. You then calculate the fitness function for your system. Now, here's the trick. You don't throw away the bad answers. You accept them with a Boltzmann probability distribution.
P = exp(-(x-x0)/T)
where T is a temperature parameter and x-x0 is the current fitness value minus the previous. After x number of iterations, you decrease T by a fixed amount (this is called the cooling schedule). You then repeat this process for another random parameter. As T decreases, fewer poor solutions are chosen, and eventually the procedure becomes a "greedy search" only accepting the solutions that improve the fit. If your system has many free parameters (> 10 or so), this is really the only way to go where you will have any chance of getting to a global minimum. This fitting method takes about 20 minutes to write in code, and a couple of hours to tweak. Hope this helps.
FYI, Wolfram has a nice discussion of this in the context of the traveling salesman problem, and I've been using it very successfully to solve some very difficult global minimization problems. It is slower than LM methods, but much better in most difficult/relatively large cases.
Based on the realization that cutting B to a single column and them removing row with unknowns converts this to very near a known problem, One approach would be to:
seed A with random values.
solve for each column of B independently.
rework the problem to allow solving for each row of A given the B values from step 2.
repeat at step 2 until things settle out.
I have no clue if that is even stable.