This question already has answers here:
Convert row names into first column
(9 answers)
Closed 2 years ago.
Hi,
I just transposed a large data set and I realised that the first row doesn't have a column name. I have included an extract of the dataset, I tried to use names(df)[1] <- "Year" but it changed the variable name for the second column instead of the first. Is there a way I can include a variable name for the first column?
df <- structure(list(Construction = c("3209.4", "3307.0", "3519.3", "3693.0",
"3545.1", "3620.2"), Manufacturing = c(" 654.9", " 692.9", " 785.1",
" 810.1", " 744.8", " 793.6")), row.names = c("1975 1Q", "1975 2Q",
"1975 3Q", "1975 4Q", "1976 1Q", "1976 2Q"), class = "data.frame")
df
#> Construction Manufacturing
#> 1975 1Q 3209.4 654.9
#> 1975 2Q 3307.0 692.9
#> 1975 3Q 3519.3 785.1
#> 1975 4Q 3693.0 810.1
#> 1976 1Q 3545.1 744.8
#> 1976 2Q 3620.2 793.6
Created on 2020-09-03 by the reprex package (v0.3.0)
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.0.2 (2020-06-22)
#> os macOS Catalina 10.15.5
#> system x86_64, darwin17.0
#> ui X11
#> language (EN)
#> collate en_AU.UTF-8
#> ctype en_AU.UTF-8
#> tz Australia/Melbourne
#> date 2020-09-03
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
#> backports 1.1.9 2020-08-24 [1] CRAN (R 4.0.2)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 4.0.2)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 4.0.2)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.2)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.2)
#> devtools 2.3.1 2020-07-21 [1] CRAN (R 4.0.2)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 4.0.2)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.2)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.1)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.2)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
#> glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.2)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.2)
#> knitr 1.29 2020-06-23 [1] CRAN (R 4.0.2)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 4.0.2)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 4.0.2)
#> pkgbuild 1.1.0 2020-07-13 [1] CRAN (R 4.0.2)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 4.0.2)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
#> processx 3.4.3 2020-07-05 [1] CRAN (R 4.0.2)
#> ps 1.3.4 2020-08-11 [1] CRAN (R 4.0.2)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 4.0.2)
#> remotes 2.2.0 2020-07-21 [1] CRAN (R 4.0.2)
#> rlang 0.4.7 2020-07-09 [1] CRAN (R 4.0.2)
#> rmarkdown 2.3 2020-06-18 [1] CRAN (R 4.0.2)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 4.0.2)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 4.0.2)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 4.0.2)
#> usethis 1.6.1 2020-04-29 [1] CRAN (R 4.0.2)
#> withr 2.2.0 2020-04-20 [1] CRAN (R 4.0.2)
#> xfun 0.16 2020-07-24 [1] CRAN (R 4.0.2)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)
#>
#> [1] /Library/Frameworks/R.framework/Versions/4.0/Resources/library
It is the row.names and not a column. If we need to create a column with row names, use rownames_to_column from tibble
library(tibble)
library(dplyr)
df <- df %>%
rownames_to_column('Year')
Related
Trying to rbind a data.table containing an IDate (result of fread) to a data.frame containing a character converts the IDate to its internal integer representation. Probably this is by design, but if not it's a bug. fread supports IDate since data.table 1.13.0 (see https://github.com/Rdatatable/data.table/blob/master/NEWS.md).
The example below shows that the data.table method of rbind can deal with it correctly (throw an error), but the data.frame method of rbind does not.
I don't know how and where this can/should be fixed.
library(data.table)
df1 <- data.frame(date = "2020-11-05")
dt1 <- data.table(date = "2020-11-05")
dt2 <- fread("date\n2020-11-05")
rbind(dt1, dt2) # ok -- throws error: rbind.data.table
#> Error in rbindlist(l, use.names, fill, idcol): Class attribute on column 1 of item 2 does not match with column 1 of item 1.
## not ok -- converts int representation of IDate to character: rbind.data.frame
rbind(df1, dt2)
#> date
#> 1 2020-11-05
#> 2 18571
## the other way round: ok -- throws an error: rbind.data.table
rbind(dt2, df1)
#> Error in rbindlist(l, use.names, fill, idcol): Class attribute on column 1 of item 2 does not match with column 1 of item 1.
### solution
dt3 <- fread("date\n2020-11-05", colClasses = "character")
rbind(dt1, dt3)
#> date
#> 1: 2020-11-05
#> 2: 2020-11-05
Created on 2020-11-05 by the reprex package (v0.3.0)
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.0.3 (2020-10-10)
#> os Debian GNU/Linux 10 (buster)
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate de_AT.UTF-8
#> ctype de_AT.UTF-8
#> tz Europe/Vienna
#> date 2020-11-05
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
#> backports 1.2.0 2020-11-02 [1] CRAN (R 4.0.3)
#> callr 3.5.1 2020-10-13 [1] CRAN (R 4.0.3)
#> cli 2.1.0 2020-10-12 [1] CRAN (R 4.0.3)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.2)
#> data.table * 1.13.2 2020-10-19 [1] CRAN (R 4.0.3)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.2)
#> devtools 2.3.2 2020-09-18 [1] CRAN (R 4.0.3)
#> digest 0.6.27 2020-10-24 [1] CRAN (R 4.0.3)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.2)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.2)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.2)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.3)
#> glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.2)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.2)
#> knitr 1.30 2020-09-22 [1] CRAN (R 4.0.3)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 4.0.2)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 4.0.2)
#> pkgbuild 1.1.0 2020-07-13 [1] CRAN (R 4.0.3)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 4.0.2)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
#> processx 3.4.4 2020-09-03 [1] CRAN (R 4.0.3)
#> ps 1.4.0 2020-10-07 [1] CRAN (R 4.0.3)
#> R6 2.5.0 2020-10-28 [1] CRAN (R 4.0.3)
#> remotes 2.2.0 2020-07-21 [1] CRAN (R 4.0.3)
#> rlang 0.4.8 2020-10-08 [1] CRAN (R 4.0.3)
#> rmarkdown 2.5 2020-10-21 [1] CRAN (R 4.0.3)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 4.0.2)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
#> stringi 1.5.3 2020-09-09 [1] CRAN (R 4.0.3)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
#> testthat 3.0.0 2020-10-31 [1] CRAN (R 4.0.3)
#> usethis 1.6.3 2020-09-17 [1] CRAN (R 4.0.3)
#> withr 2.3.0 2020-09-22 [1] CRAN (R 4.0.3)
#> xfun 0.19 2020-10-30 [1] CRAN (R 4.0.3)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)
#>
#> [1] /usr/local/lib/R/site-library
#> [2] /usr/lib/R/site-library
#> [3] /usr/lib/R/library
Is there a way to prevent a command from printing any output?
I was using the nnet function from the package with the same name and it printed some information that I didn't need, making noise in the output of my own program. I found out that with the parameter trace=FALSE the function would run quietly, but now I'm wondering what would happen if a function didn't accept such an argument.
In other words, would it be possible to temporarily disable the output in R?
Edit
To be more specific, I mean the standard output, the one you have with print. For example, something like this:
print("a")
disable_output()
print("b")
enable_output()
print("c")
with the following output:
[1] "a"
[1] "c"
I think you can divert output globally only to a file (I do not know if you can completely disable it). You can look at ?sink as a starting point.
On the other hand, you can use:
?capture.output: Evaluates its arguments with the output being returned as a character string or sent to a file.
and
?invisible: Return a (temporarily) invisible copy of an object.
To write a function which evaluates its arguments without throwing any (standard) output (note, it could be useful to include ?force in the function's body to force the evaluation of its argument):
invisible(capture.output(print("foo")))
without_output <- function(x) {
invisible(capture.output(force(x)))
}
without_output(print("foo"))
Created on 2020-09-07 by the reprex package (v0.3.0)
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 4.0.2 (2020-06-22)
#> os Ubuntu 20.04.1 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Rome
#> date 2020-09-07
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.0.2)
#> backports 1.1.9 2020-08-24 [1] CRAN (R 4.0.2)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 4.0.2)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 4.0.2)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 4.0.2)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 4.0.2)
#> devtools 2.3.1 2020-07-21 [1] CRAN (R 4.0.2)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 4.0.2)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 4.0.2)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 4.0.2)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 4.0.2)
#> fs 1.5.0 2020-07-31 [1] CRAN (R 4.0.2)
#> glue 1.4.2 2020-08-27 [1] CRAN (R 4.0.2)
#> highr 0.8 2019-03-20 [1] CRAN (R 4.0.2)
#> htmltools 0.5.0 2020-06-16 [1] CRAN (R 4.0.2)
#> knitr 1.29 2020-06-23 [1] CRAN (R 4.0.2)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 4.0.2)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 4.0.2)
#> pkgbuild 1.1.0 2020-07-13 [1] CRAN (R 4.0.2)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 4.0.2)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.0.2)
#> processx 3.4.3 2020-07-05 [1] CRAN (R 4.0.2)
#> ps 1.3.4 2020-08-11 [1] CRAN (R 4.0.2)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 4.0.2)
#> remotes 2.2.0 2020-07-21 [1] CRAN (R 4.0.2)
#> rlang 0.4.7 2020-07-09 [1] CRAN (R 4.0.2)
#> rmarkdown 2.3 2020-06-18 [1] CRAN (R 4.0.2)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 4.0.2)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.0.2)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 4.0.2)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 4.0.2)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 4.0.2)
#> usethis 1.6.1 2020-04-29 [1] CRAN (R 4.0.2)
#> withr 2.2.0 2020-04-20 [1] CRAN (R 4.0.2)
#> xfun 0.16 2020-07-24 [1] CRAN (R 4.0.2)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 4.0.2)
#>
#> [1] /home/cl/R/x86_64-pc-linux-gnu-library/4.0
#> [2] /usr/local/lib/R/site-library
#> [3] /usr/lib/R/site-library
#> [4] /usr/lib/R/library
In the following code, I defined a tibble df with two columns: name column contains a character vector of c("a", "b", "c"), and data column contains a list of tibbles, each with the column value. Then I'd like to change the column name of each tibble's value column to the character in the corresponding row, e.g. "a", "b" and "c". To manipulate the tibble in a row-wise manner, I used dplyr::rowwise(), but then I found that the changes taking effect on the first element (changing the column name to "a") also took effect on the rest of the elements (since after the first row, the printed tibble before the change of the column name showed the column name of "a"). And therefore, it can be expected that the change of column names to the following elements in the column failed, since there were no longer column names of "value" (all changed to "a"). Do I have to use a purrr::map() function here instead of the tidier row-wise tibble manipulation?
Would you please give me an answer using rowwise-mutate_at method? Thanks.
library(tidyverse)
#> Warning: 程辑包'tidyverse'是用R版本3.6.3 来建造的
#> Warning: 程辑包'ggplot2'是用R版本3.6.1 来建造的
#> Warning: 程辑包'tibble'是用R版本3.6.3 来建造的
#> Warning: 程辑包'tidyr'是用R版本3.6.1 来建造的
#> Warning: 程辑包'readr'是用R版本3.6.1 来建造的
#> Warning: 程辑包'purrr'是用R版本3.6.1 来建造的
#> Warning: 程辑包'dplyr'是用R版本3.6.3 来建造的
#> Warning: 程辑包'stringr'是用R版本3.6.1 来建造的
#> Warning: 程辑包'forcats'是用R版本3.6.3 来建造的
df <- tibble::tibble(name = c("a", "b", "c"),
data = list(tibble::tibble(value = 1:10)))
df_mutate <- df %>%
dplyr::rowwise() %>%
dplyr::mutate_at("data", ~ {
print(.x)
colnames(.x)[colnames(.x) %in% "value"] <- name
list(.x)
}) %>%
dplyr::ungroup()
#> # A tibble: 10 x 1
#> value
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
#> 7 7
#> 8 8
#> 9 9
#> 10 10
#> # A tibble: 10 x 1
#> a
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
#> 7 7
#> 8 8
#> 9 9
#> 10 10
#> # A tibble: 10 x 1
#> a
#> <int>
#> 1 1
#> 2 2
#> 3 3
#> 4 4
#> 5 5
#> 6 6
#> 7 7
#> 8 8
#> 9 9
#> 10 10
Created on 2020-06-19 by the reprex package (v0.3.0)
devtools::session_info()
#> - Session info ---------------------------------------------------------------
#> setting value
#> version R version 3.6.0 (2019-04-26)
#> os Windows Server x64
#> system x86_64, mingw32
#> ui RTerm
#> language (EN)
#> collate Chinese (Simplified)_China.936
#> ctype Chinese (Simplified)_China.936
#> tz Asia/Taipei
#> date 2020-06-19
#>
#> - Packages -------------------------------------------------------------------
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.1)
#> backports 1.1.5 2019-10-02 [1] CRAN (R 3.6.1)
#> broom 0.5.6 2020-04-20 [1] CRAN (R 3.6.3)
#> callr 3.4.0 2019-12-09 [1] CRAN (R 3.6.2)
#> cellranger 1.1.0 2016-07-27 [1] CRAN (R 3.6.1)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 3.6.3)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.1)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.1)
#> DBI 1.1.0 2019-12-15 [1] CRAN (R 3.6.2)
#> dbplyr 1.4.2 2019-06-17 [1] CRAN (R 3.6.3)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.1)
#> devtools 2.2.1 2019-09-24 [1] CRAN (R 3.6.1)
#> digest 0.6.23 2019-11-23 [1] CRAN (R 3.6.2)
#> dplyr * 1.0.0 2020-05-29 [1] CRAN (R 3.6.3)
#> ellipsis 0.3.0 2019-09-20 [1] CRAN (R 3.6.1)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.1)
#> fansi 0.4.0 2018-10-05 [1] CRAN (R 3.6.1)
#> forcats * 0.5.0 2020-03-01 [1] CRAN (R 3.6.3)
#> fs 1.3.1 2019-05-06 [1] CRAN (R 3.6.1)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 3.6.1)
#> ggplot2 * 3.2.1 2019-08-10 [1] CRAN (R 3.6.1)
#> glue 1.4.1 2020-05-13 [1] CRAN (R 3.6.3)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.1)
#> haven 2.2.0 2019-11-08 [1] CRAN (R 3.6.3)
#> highr 0.8 2019-03-20 [1] CRAN (R 3.6.1)
#> hms 0.5.2 2019-10-30 [1] CRAN (R 3.6.2)
#> htmltools 0.4.0 2019-10-04 [1] CRAN (R 3.6.1)
#> httr 1.4.1 2019-08-05 [1] CRAN (R 3.6.1)
#> jsonlite 1.6 2018-12-07 [1] CRAN (R 3.6.1)
#> knitr 1.26 2019-11-12 [1] CRAN (R 3.6.2)
#> lattice 0.20-38 2018-11-04 [2] CRAN (R 3.6.0)
#> lazyeval 0.2.2 2019-03-15 [1] CRAN (R 3.6.1)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 3.6.3)
#> lubridate 1.7.4 2018-04-11 [1] CRAN (R 3.6.2)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.1)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.1)
#> modelr 0.1.6 2020-02-22 [1] CRAN (R 3.6.3)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.1)
#> nlme 3.1-143 2019-12-10 [1] CRAN (R 3.6.2)
#> pillar 1.4.3 2019-12-20 [1] CRAN (R 3.6.2)
#> pkgbuild 1.0.6 2019-10-09 [1] CRAN (R 3.6.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.0)
#> pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.6.1)
#> prettyunits 1.0.2 2015-07-13 [1] CRAN (R 3.6.1)
#> processx 3.4.1 2019-07-18 [1] CRAN (R 3.6.1)
#> ps 1.3.0 2018-12-21 [1] CRAN (R 3.6.1)
#> purrr * 0.3.3 2019-10-18 [1] CRAN (R 3.6.1)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.2)
#> Rcpp 1.0.3 2019-11-08 [1] CRAN (R 3.6.2)
#> readr * 1.3.1 2018-12-21 [1] CRAN (R 3.6.1)
#> readxl 1.3.1 2019-03-13 [1] CRAN (R 3.6.1)
#> remotes 2.1.0 2019-06-24 [1] CRAN (R 3.6.1)
#> reprex 0.3.0 2019-05-16 [1] CRAN (R 3.6.3)
#> rlang 0.4.6 2020-05-02 [1] CRAN (R 3.6.3)
#> rmarkdown 2.0 2019-12-12 [1] CRAN (R 3.6.2)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.1)
#> rvest 0.3.5 2019-11-08 [1] CRAN (R 3.6.3)
#> scales 1.1.0 2019-11-18 [1] CRAN (R 3.6.2)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.1)
#> stringi 1.4.3 2019-03-12 [1] CRAN (R 3.6.0)
#> stringr * 1.4.0 2019-02-10 [1] CRAN (R 3.6.1)
#> testthat 2.3.1 2019-12-01 [1] CRAN (R 3.6.2)
#> tibble * 3.0.1 2020-04-20 [1] CRAN (R 3.6.3)
#> tidyr * 1.0.0 2019-09-11 [1] CRAN (R 3.6.1)
#> tidyselect 1.1.0 2020-05-11 [1] CRAN (R 3.6.3)
#> tidyverse * 1.3.0 2019-11-21 [1] CRAN (R 3.6.3)
#> usethis 1.5.1 2019-07-04 [1] CRAN (R 3.6.1)
#> utf8 1.1.4 2018-05-24 [1] CRAN (R 3.6.1)
#> vctrs 0.3.0 2020-05-11 [1] CRAN (R 3.6.3)
#> withr 2.1.2 2018-03-15 [1] CRAN (R 3.6.1)
#> xfun 0.11 2019-11-12 [1] CRAN (R 3.6.2)
#> xml2 1.2.2 2019-08-09 [1] CRAN (R 3.6.1)
#> yaml 2.2.0 2018-07-25 [1] CRAN (R 3.6.0)
#>
#> [1] C:/Users/xzhu/Documents/R/win-library/3.6
#> [2] C:/Program Files/R/R-3.6.0/library
Yes, you can use map2 :
library(dplyr)
df %>% mutate(data = purrr::map2(name, data, ~{names(.y) <- .x;.y}))
Or Map in base R :
df$data <- Map(function(x, y) {names(y) <- x;y}, df$name, df$data)
If you want to use rowwise a similar approach would be :
df %>% rowwise() %>% mutate(data = {names(data) <- name;list(data)})
I'm reading over some R code, and I've come across a line that where the function prototype doesn't seem to match what I've seen in the library's api (fabletools).
fitted_model = a_time_series %>%
filter(date <= tsibble::year(someyear)) %>%
fabletools::model(arima = ARIMA(time)
...Where time is a column from a a_time_series. How do I tell what arima model this is using?
(e.g. arima(1,1,1) or arima(0,1,1) ,etc)
I've checked this documentation however, the function prototypes don't seem to match.
You can identify the ARIMA output by looking at the formatted output in the console. If you need to obtain this display as text, you can use the format() function.
library(fable)
#> Loading required package: fabletools
library(tsibble)
library(dplyr)
tourism %>%
group_by(Purpose) %>%
summarise(Trips = sum(Trips)) %>%
model(auto_arima = ARIMA(Trips)) %>%
mutate(format(auto_arima))
#> # A mable: 4 x 3
#> # Key: Purpose [4]
#> Purpose auto_arima `format(auto_arima)`
#> <chr> <model> <chr>
#> 1 Business <ARIMA(0,1,1)(0,1,1)[4]> <ARIMA(0,1,1)(0,1,1)[4]>
#> 2 Holiday <ARIMA(0,1,1)(0,1,1)[4]> <ARIMA(0,1,1)(0,1,1)[4]>
#> 3 Other <ARIMA(0,1,1)(1,0,0)[4]> <ARIMA(0,1,1)(1,0,0)[4]>
#> 4 Visiting <ARIMA(1,0,1)(2,1,0)[4]> <ARIMA(1,0,1)(2,1,0)[4]>
Created on 2020-06-12 by the reprex package (v0.3.0)
Session info
devtools::session_info()
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 3.6.2 (2019-12-12)
#> os Ubuntu 18.04.4 LTS
#> system x86_64, linux-gnu
#> ui X11
#> language en_AU:en
#> collate en_AU.UTF-8
#> ctype en_AU.UTF-8
#> tz Australia/Melbourne
#> date 2020-06-12
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> anytime 0.3.7 2020-01-20 [1] CRAN (R 3.6.1)
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.1)
#> backports 1.1.7 2020-05-13 [1] RSPM (R 3.6.3)
#> callr 3.4.3 2020-03-28 [1] CRAN (R 3.6.2)
#> cli 2.0.2 2020-02-28 [1] RSPM (R 3.6.2)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.1)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.1)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.1)
#> devtools 2.2.2 2020-02-17 [1] RSPM (R 3.6.2)
#> digest 0.6.25 2020-02-23 [1] RSPM (R 3.6.2)
#> distributional 0.1.0.9000 2020-06-10 [1] local
#> dplyr * 1.0.0 2020-05-29 [1] CRAN (R 3.6.2)
#> ellipsis 0.3.1 2020-05-15 [1] CRAN (R 3.6.2)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.1)
#> fable * 0.2.1 2020-06-11 [1] local
#> fabletools * 0.2.0 2020-06-11 [1] local
#> fansi 0.4.1 2020-01-08 [1] RSPM (R 3.6.2)
#> farver 2.0.3 2020-01-16 [1] CRAN (R 3.6.1)
#> feasts 0.1.4 2020-06-04 [1] local
#> fs 1.4.1 2020-04-04 [1] RSPM (R 3.6.3)
#> generics 0.0.2 2018-11-29 [1] CRAN (R 3.6.1)
#> ggplot2 3.3.1 2020-05-28 [1] CRAN (R 3.6.2)
#> glue 1.4.1.9000 2020-05-26 [1] Github (tidyverse/glue#a605000)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.1)
#> highr 0.8 2019-03-20 [1] CRAN (R 3.6.1)
#> htmltools 0.4.0 2019-10-04 [1] CRAN (R 3.6.1)
#> knitr 1.28 2020-02-06 [1] RSPM (R 3.6.2)
#> lattice 0.20-38 2018-11-04 [2] CRAN (R 3.6.2)
#> lifecycle 0.2.0.9000 2020-03-19 [1] Github (r-lib/lifecycle#355dcba)
#> lubridate 1.7.8 2020-04-06 [1] RSPM (R 3.6.3)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.1)
#> memoise 1.1.0 2017-04-21 [1] CRAN (R 3.6.1)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.1)
#> nlme 3.1-142 2019-11-07 [2] CRAN (R 3.6.2)
#> pillar 1.4.4 2020-05-25 [1] Github (r-lib/pillar#2f5ad11)
#> pkgbuild 1.0.8 2020-05-07 [1] RSPM (R 3.6.3)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.1)
#> pkgload 1.1.0 2020-05-29 [1] CRAN (R 3.6.2)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.2)
#> processx 3.4.2 2020-02-09 [1] RSPM (R 3.6.2)
#> progressr 0.6.0 2020-05-19 [1] CRAN (R 3.6.2)
#> ps 1.3.3 2020-05-08 [1] RSPM (R 3.6.3)
#> purrr 0.3.4 2020-04-17 [1] RSPM (R 3.6.3)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.1)
#> Rcpp 1.0.4.6 2020-04-09 [1] CRAN (R 3.6.2)
#> remotes 2.1.1 2020-02-15 [1] RSPM (R 3.6.2)
#> rlang 0.4.6.9000 2020-05-20 [1] Github (r-lib/rlang#691b5a8)
#> rmarkdown 2.1 2020-01-20 [1] CRAN (R 3.6.2)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.1)
#> scales 1.1.1 2020-05-11 [1] RSPM (R 3.6.3)
#> sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 3.6.1)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 3.6.2)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 3.6.1)
#> testthat 2.3.2 2020-03-02 [1] RSPM (R 3.6.3)
#> tibble 3.0.1 2020-04-20 [1] RSPM (R 3.6.3)
#> tidyr 1.1.0 2020-05-20 [1] RSPM (R 3.6.3)
#> tidyselect 1.1.0 2020-05-11 [1] RSPM (R 3.6.3)
#> tsibble * 0.9.0 2020-06-02 [1] Github (tidyverts/tsibble#c837e83)
#> urca 1.3-0 2016-09-06 [1] CRAN (R 3.6.1)
#> usethis 1.5.1.9000 2020-01-31 [1] Github (r-lib/usethis#7d8b066)
#> utf8 1.1.4 2018-05-24 [1] CRAN (R 3.6.1)
#> vctrs 0.3.0.9000 2020-05-28 [1] Github (r-lib/vctrs#373e1ce)
#> withr 2.2.0 2020-04-20 [1] RSPM (R 3.6.3)
#> xfun 0.13 2020-04-13 [1] RSPM (R 3.6.3)
#> yaml 2.2.1 2020-02-01 [1] RSPM (R 3.6.2)
#>
#> [1] /home/mitchell/R/x86_64-pc-linux-gnu-library/3.6
#> [2] /opt/R/3.6.2/lib/R/library
I am using hrbrthemes::theme_ipsum() with most of my plots, but now I'm encountering odd behaviour while using ggupset: An extra "at" above the x-axis label that I can neither find the origin of nor can get rid of.
If anyone could try to explain what's going on here (and how to get rid of it), that'd be great.
Note that I tried both the current CRAN and GitHub versions of hrbrthemes.
Demonstration:
library(ggplot2)
library(dplyr, warn.conflicts = FALSE)
library(ggupset) # https://github.com/const-ae/ggupset
library(hrbrthemes) # https://github.com/hrbrmstr/hrbrthemes
# starting with a perfectly normal upset plot from ggupset's README
p <- tidy_movies %>%
distinct(title, year, length, .keep_all = TRUE) %>%
head(100) %>% # smaller dataset for faster(ish) plotting
ggplot(aes(x=Genres)) +
geom_bar() +
scale_x_upset(order_by = "degree") +
labs(x = "x-label for demonstration purposes")
looks fine:
p
#> Warning: Removed 30 rows containing non-finite values (stat_count).
Now with theme_ipsum() the easy way
p_hrbr <- p + hrbrthemes::theme_ipsum()
But nope, something seems to conflict here.
p_hrbr
#> Warning: Removed 30 rows containing non-finite values (stat_count).
#> Error: Insufficient values in manual scale. 2 needed but only 0 provided.
But in my actual usecase I set the theme globally, like so:
theme_set(hrbrthemes::theme_ipsum())
The original plot, now with theme_ipsum. Notice the x-axis on the bottom right.
p
#> Warning: Removed 30 rows containing non-finite values (stat_count).
I can't find any label set to "at". at what?
p$labels
#> $x
#> [1] "x-label for demonstration purposes"
#>
#> $y
#> [1] "count"
#>
#> $weight
#> [1] "weight"
Resetting to the default theme:
theme_set(theme_gray())
It's gone
p
#> Warning: Removed 30 rows containing non-finite values (stat_count).
Session info
devtools::session_info(pkgs = c("ggplot2", "hrbrthemes", "ggupset"))
#> ─ Session info ───────────────────────────────────────────────────────────────
#> setting value
#> version R version 3.6.3 (2020-02-29)
#> os macOS Catalina 10.15.3
#> system x86_64, darwin15.6.0
#> ui X11
#> language (EN)
#> collate en_US.UTF-8
#> ctype en_US.UTF-8
#> tz Europe/Berlin
#> date 2020-03-24
#>
#> ─ Packages ───────────────────────────────────────────────────────────────────
#> package * version date lib source
#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 3.6.0)
#> backports 1.1.5 2019-10-02 [1] CRAN (R 3.6.0)
#> base64enc 0.1-3 2015-07-28 [1] CRAN (R 3.6.0)
#> callr 3.4.2 2020-02-12 [1] CRAN (R 3.6.2)
#> cli 2.0.2 2020-02-28 [1] CRAN (R 3.6.2)
#> colorspace 1.4-1 2019-03-18 [1] CRAN (R 3.6.0)
#> crayon 1.3.4 2017-09-16 [1] CRAN (R 3.6.0)
#> desc 1.2.0 2018-05-01 [1] CRAN (R 3.6.0)
#> digest 0.6.25 2020-02-23 [1] CRAN (R 3.6.0)
#> ellipsis 0.3.0 2019-09-20 [1] CRAN (R 3.6.0)
#> evaluate 0.14 2019-05-28 [1] CRAN (R 3.6.0)
#> extrafont 0.17 2014-12-08 [1] CRAN (R 3.6.0)
#> extrafontdb 1.0 2012-06-11 [1] CRAN (R 3.6.0)
#> fansi 0.4.1 2020-01-08 [1] CRAN (R 3.6.0)
#> farver 2.0.3 2020-01-16 [1] CRAN (R 3.6.0)
#> gdtools 0.2.1 2019-10-14 [1] CRAN (R 3.6.0)
#> ggplot2 * 3.3.0 2020-03-05 [1] CRAN (R 3.6.2)
#> ggupset * 0.1.0 2019-03-06 [1] CRAN (R 3.6.0)
#> glue 1.3.2 2020-03-12 [1] CRAN (R 3.6.0)
#> gtable 0.3.0 2019-03-25 [1] CRAN (R 3.6.0)
#> highr 0.8 2019-03-20 [1] CRAN (R 3.6.0)
#> hrbrthemes * 0.8.0 2020-03-24 [1] Github (hrbrmstr/hrbrthemes#a599f17)
#> htmltools 0.4.0 2019-10-04 [1] CRAN (R 3.6.0)
#> isoband 0.2.0 2019-04-06 [1] CRAN (R 3.6.0)
#> jsonlite 1.6.1 2020-02-02 [1] CRAN (R 3.6.0)
#> knitr 1.28 2020-02-06 [1] CRAN (R 3.6.2)
#> labeling 0.3 2014-08-23 [1] CRAN (R 3.6.0)
#> lattice 0.20-38 2018-11-04 [2] CRAN (R 3.6.3)
#> lifecycle 0.2.0 2020-03-06 [1] CRAN (R 3.6.2)
#> magrittr 1.5 2014-11-22 [1] CRAN (R 3.6.0)
#> markdown 1.1 2019-08-07 [1] CRAN (R 3.6.0)
#> MASS 7.3-51.5 2019-12-20 [2] CRAN (R 3.6.3)
#> Matrix 1.2-18 2019-11-27 [2] CRAN (R 3.6.3)
#> mgcv 1.8-31 2019-11-09 [2] CRAN (R 3.6.3)
#> mime 0.9 2020-02-04 [1] CRAN (R 3.6.0)
#> munsell 0.5.0 2018-06-12 [1] CRAN (R 3.6.0)
#> nlme 3.1-144 2020-02-06 [2] CRAN (R 3.6.3)
#> pillar 1.4.3 2019-12-20 [1] CRAN (R 3.6.0)
#> pkgbuild 1.0.6 2019-10-09 [1] CRAN (R 3.6.0)
#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 3.6.0)
#> pkgload 1.0.2 2018-10-29 [1] CRAN (R 3.6.0)
#> praise 1.0.0 2015-08-11 [1] CRAN (R 3.6.0)
#> prettyunits 1.1.1 2020-01-24 [1] CRAN (R 3.6.0)
#> processx 3.4.2 2020-02-09 [1] CRAN (R 3.6.0)
#> ps 1.3.2 2020-02-13 [1] CRAN (R 3.6.0)
#> R6 2.4.1 2019-11-12 [1] CRAN (R 3.6.0)
#> RColorBrewer 1.1-2 2014-12-07 [1] CRAN (R 3.6.0)
#> Rcpp 1.0.4 2020-03-17 [1] CRAN (R 3.6.0)
#> rlang 0.4.5 2020-03-01 [1] CRAN (R 3.6.0)
#> rmarkdown 2.1 2020-01-20 [1] CRAN (R 3.6.0)
#> rprojroot 1.3-2 2018-01-03 [1] CRAN (R 3.6.0)
#> rstudioapi 0.11 2020-02-07 [1] CRAN (R 3.6.0)
#> Rttf2pt1 1.3.8 2020-01-10 [1] CRAN (R 3.6.0)
#> scales 1.1.0 2019-11-18 [1] CRAN (R 3.6.0)
#> stringi 1.4.6 2020-02-17 [1] CRAN (R 3.6.0)
#> stringr 1.4.0 2019-02-10 [1] CRAN (R 3.6.0)
#> systemfonts 0.1.1 2019-07-01 [1] CRAN (R 3.6.0)
#> testthat 2.3.2 2020-03-02 [1] CRAN (R 3.6.0)
#> tibble 2.1.3 2019-06-06 [1] CRAN (R 3.6.0)
#> tinytex 0.20 2020-02-25 [1] CRAN (R 3.6.0)
#> utf8 1.1.4 2018-05-24 [1] CRAN (R 3.6.0)
#> vctrs 0.2.4 2020-03-10 [1] CRAN (R 3.6.0)
#> viridisLite 0.3.0 2018-02-01 [1] CRAN (R 3.6.0)
#> withr 2.1.2 2018-03-15 [1] CRAN (R 3.6.0)
#> xfun 0.12 2020-01-13 [1] CRAN (R 3.6.0)
#> yaml 2.2.1 2020-02-01 [1] CRAN (R 3.6.0)
#>
#> [1] /Users/Lukas/Library/R/3.6
#> [2] /Library/Frameworks/R.framework/Versions/3.6/Resources/library
Created on 2020-03-24 by the reprex package (v0.3.0)
Update 2020-03-24: The author of ggupset has responded on GitHub and is taking a look.
The issue was caused by ggupset, and has since been fixed.
If anyone else has encountered this, you can use the current development version: remotes::install_github("const-ae/ggupset"), or wait for the CRAN release in the near future.