How does Sledgehammer translate lambda-abstractions to ATPs? - isabelle

In Extending Sledgehammer with SMT solvers there is this claim:
Lambda-abstractions are rewritten to Turner combinators or transformed into explicit functions using lambda-abstractions.
The linked reference, Translating higher-order clauses to first-order clauses does not clarify how are this method synchronized. Do we use both of them always? Is one preferred to the other?

According to mediatum.ub.tum.de/doc/1097834/1097834.pdf the choice of method is tailored for each prover.

Related

What is the difference between a combinator and a higher order function?

I have always thought the definition of both of these were functions that take other functions as arguments. I understand the domain of each is different, but what are their defining characteristics?
Well, let me try to kind of derive their defining characteristics from their different domains ;)
First of all, in their usual context combinators are higher order functions. But as it turns out, context is an important thing to keep in mind when talking about differences of these two terms:
Higher Order Functions
When we think of higher order functions, the first thing usually mentioned is "oh, they (also) take at least one function as an argument" (thinking of fold, etc)... as if they were something special because of that. Which - depending on context - they are.
Typical context: functional programming, haskell, any other (usually typed) language where functions are first class citizens (like when LINQ made C# even more awesome)
Focus: let the caller specify/customize some functionality of this function
Combinators
Combinators are somewhat special functions, primitive ones do not even mind what they are given as arguments (argument type often does not matter at all, so passing functions as arguments is not a problem at all). So can the identity-combinator also be called "higher order function"??? Formally: No, it does not need a function as argument! But hold on... in which context would you ever encounter/use combinators (like I, K, etc) instead of just implementing desired functionality "directly"? Answer: Well, in purely functional context!
This is not a law or something, but I can really not think of a situation where you would see actual combinators in a context where you suddenly pass pointers, hash-tables, etc. to a combinator... again, you can do that, but in such scenarios there should really be a better way than using combinators.
So based on this "weak" law of common sense - that you will work with combinators only in a purely functional context - they inherently are higher order functions. What else would you have available to pass as arguments? ;)
Combining combinators (by application only, of course - if you take it seriously) always gives new combinators that therefore also are higher order functions, again. Primitive combinators usually just represent some basic behaviour or operation (thinking of S, K, I, Y combinators) that you want to apply to something without using abstractions. But of course the definition of combinators does not limit them to that purpose!
Typical context: (untyped) lambda calculus, combinatory logic (surprise)
Focus: (structurally) combine existing combinators/"building blocks" to something new (e.g. using the Y-combinator to "add recursion" to something that is not recursive, yet)
Summary
Yes, as you can see, it might be more of a contextual/philosophical thing or about what you want to express: I would never call the K-combinator (definition: K = \a -> \b -> a) "higher order function" - although it is very likely that you will never see K being called with something else than functions, therefore "making" it a higher order function.
I hope this sort of answered your question - formally they certainly are not the same, but their defining characteristics are pretty similar - personally I think of combinators as functions used as higher order functions in their typical context (which usually is somewhere between special an weird).
EDIT: I have adjusted my answer a little bit since - as it turned out - it was slightly "biased" by personal experience/imression. :) To get an even better idea about correctly distinguishing combinators from HOFs, read the comments below!
EDIT2: Taking a look at HaskellWiki also gives a technical definition for combinators that is pretty far away from HOFs!

Explanation of combinators for the working man

What is a combinator??
Is it "a function or definition with no free variables" (as defined on SO)?
Or how about this: according to John Hughes in his well-known paper on Arrows, "a combinator is a function which builds program fragments from program fragments", which is advantageous because "... the programmer using combinators constructs much of the desired program automatically, rather than writing every detail by hand". He goes on to say that map and filter are two common examples of such combinators.
Some combinators which match the first definition:
S
K
Y
others from To Mock a Mockingbird (I may be wrong -- I haven't read this book)
Some combinators which match the second definition:
map
filter
fold/reduce (presumably)
any of >>=, compose, fmap ?????
I'm not interested in the first definition -- those would not help me to write a real program (+1 if you convince me I'm wrong). Please help me understand the second definition. I think map, filter, and reduce are useful: they allow me to program at a higher level -- fewer mistakes, shorter and clearer code. Here are some of my specific questions about combinators:
What are more examples of combinators such as map, filter?
What combinators do programming languages often implement?
How can combinators help me design a better API?
How do I design effective combinators?
What are combinators similar to in a non-functional language (say, Java), or what do these languages use in place of combinators?
Update
Thanks to #C. A. McCann, I now have a somewhat better understanding of combinators. But one question is still a sticking point for me:
What is the difference between a functional program written with, and one written without, heavy use of combinators?
I suspect the answer is that the combinator-heavy version is shorter, clearer, more general, but I would appreciate a more in-depth discussion, if possible.
I'm also looking for more examples and explanations of complex combinators (i.e. more complex than fold) in common programming languages.
I'm not interested in the first definition -- those would not help me to write a real program (+1 if you convince me I'm wrong). Please help me understand the second definition. I think map, filter, and reduce are useful: they allow me to program at a higher level -- fewer mistakes, shorter and clearer code.
The two definitions are basically the same thing. The first is based on the formal definition and the examples you give are primitive combinators--the smallest building blocks possible. They can help you to write a real program insofar as, with them, you can build more sophisticated combinators. Think of combinators like S and K as the machine language of a hypothetical "combinatory computer". Actual computers don't work that way, of course, so in practice you'll usually have higher-level operations implemented behind the scenes in other ways, but the conceptual foundation is still a useful tool for understanding the meaning of those higher-level operations.
The second definition you give is more informal and about using more sophisticated combinators, in the form of higher-order functions that combine other functions in various ways. Note that if the basic building blocks are the primitive combinators above, everything built from them is a higher-order function and a combinator as well. In a language where other primitives exist, however, you have a distinction between things that are or are not functions, in which case a combinator is typically defined as a function that manipulates other functions in a general way, rather than operating on any non-function things directly.
What are more examples of combinators such as map, filter?
Far too many to list! Both of those transform a function that describes behavior on a single value into a function that describes behavior on an entire collection. You can also have functions that transform only other functions, such as composing them end-to-end, or splitting and recombining arguments. You can have combinators that turn single-step operations into recursive operations that produce or consume collections. Or all kinds of other things, really.
What combinators do programming languages often implement?
That's going to vary quite a bit. There're relatively few completely generic combinators--mostly the primitive ones mentioned above--so in most cases combinators will have some awareness of any data structures being used (even if those data structures are built out of other combinators anyway), in which case there are typically a handful of "fully generic" combinators and then whatever various specialized forms someone decided to provide. There are a ridiculous number of cases where (suitably generalized versions of) map, fold, and unfold are enough to do almost everything you might want.
How can combinators help me design a better API?
Exactly as you said, by thinking in terms of high-level operations, and the way those interact, instead of low-level details.
Think about the popularity of "for each"-style loops over collections, which let you abstract over the details of enumerating a collection. These are just map/fold operations in most cases, and by making that a combinator (rather than built-in syntax) you can do things such as take two existing loops and directly combine them in multiple ways--nest one inside the other, do one after the other, and so on--by just applying a combinator, rather than juggling a whole bunch of code around.
How do I design effective combinators?
First, think about what operations make sense on whatever data your program uses. Then think about how those operations can be meaningfully combined in generic ways, as well as how operations can be broken down into smaller pieces that are connected back together. The main thing is to work with transformations and operations, not direct actions. When you have a function that just does some complicated bit of functionality in an opaque way and only spits out some sort of pre-digested result, there's not much you can do with that. Leave the final results to the code that uses the combinators--you want things that take you from point A to point B, not things that expect to be the beginning or end of a process.
What are combinators similar to in a non-functional language (say, Java), or what do these languages use in place of combinators?
Ahahahaha. Funny you should ask, because objects are really higher-order thingies in the first place--they have some data, but they also carry around a bunch of operations, and quite a lot of what constitutes good OOP design boils down to "objects should usually act like combinators, not data structures".
So probably the best answer here is that instead of combinator-like things, they use classes with lots of getter and setter methods or public fields, and logic that mostly consists of doing some opaque, predefined action.

What are the core concepts in functional programming?

In object-oriented programming, we might say the core concepts are:
encapsulation
inheritance,
polymorphism
What would that be in functional programming?
There's no community consensus on what are the essential concepts in functional programming. In
Why Functional Programming Matters (PDF), John Hughes argues that they are higher-order functions and lazy evaluation. In Wearing the Hair Shirt: A Retrospective on Haskell, Simon Peyton Jones says the real essential is not laziness but purity. Richard Bird would agree. But there's a whole crowd of Scheme and ML programmers who are perfectly happy to write programs with side effects.
As someone who has practiced and taught functional programming for twenty years, I can give you a few ideas that are widely believed to be at the core of functional programming:
Nested, first-class functions with proper lexical scoping are at the core. This means you can create an anonymous function at run time, whose free variables may be parameters or local variables of an enclosing function, and you get a value you can return, put into data structures, and so on. (This is the most important form of higher-order functions, but some higher-order functions (like qsort!) can be written in C, which is not a functional language.)
Means of composing functions with other functions to solve problems. Nobody does this better than John Hughes.
Many functional programmers believe purity (freedom from effects, including mutation, I/O, and exceptions) is at the core of functional programming. Many functional programmers do not.
Polymorphism, whether it is enforced by the compiler or not, is a core value of functional programmers. Confusingly, C++ programmers call this concept "generic programming." When polymorphism is enforced by the compiler it is generally a variant of Hindley-Milner, but the more powerful System F is also a powerful basis for functional languages. And with languages like Scheme, Erlang, and Lua, you can do functional programming without a static type system.
Finally, a large majority of functional programmers believe in the value of inductively defined data types, sometimes called "recursive types". In languages with static type systems these are generally known as "algebraic data types", but you will find inductively defined data types even in material written for beginning Scheme programmers. Inductively defined types usually ship with a language feature called pattern matching, which supports a very general form of case analysis. Often the compiler can tell you if you have forgotten a case. I wouldn't want to program without this language feature (a luxury once sampled becomes a necessity).
In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast to the imperative programming style, which emphasizes changes in state. Functional programming has its roots in the lambda calculus, a formal system developed in the 1930s to investigate function definition, function application, and recursion. Many functional programming languages can be viewed as embellishments to the lambda calculus. - Wikipedia
In a nutshell,
Lambda Calculus
Higher Order Functions
Immutability
No side-effects
Not directly an answer to your question, but I'd like to point out that "object-oriented" and functional programming aren't necessarily at odds. The "core concepts" you cite have more general counterparts which apply just as well to functional programming.
Encapsulation, more generally, is modularisation. All purely functional languages that I know of support modular programming. You might say that those languages implement encapsulation better than the typical "OO" variety, since side-effects break encapsulation, and pure functions have no side-effects.
Inheritance, more generally, is logical implication, which is what a function represents. The canonical subclass -> superclass relation is a kind of implicit function. In functional languages, this is expressed with type classes or implicits (I consider implicits to be the more general of these two).
Polymorphism in the "OO" school is achieved by means of subtyping (inheritance). There is a more general kind of polymorphism known as parametric polymorphism (a.k.a. generics), which you will find to be supported by pure-functional programming languages. Additionally, some support "higher kinds", or higher-order generics (a.k.a. type constructor polymorphism).
What I'm trying to say is that your "core concepts of OO" aren't specific to OO in any way. I, for one, would argue that there aren't any core concepts of OO, in fact.
Let me repeat the answer I gave at one discussion in the Bangalore Functional Programming group:
A functional program consists only of functions. Functions compute
values from their inputs. We can contrast this with imperative
programming, where as the program executes, values of mutable
locations change. In other words, in C or Java, a variable called X
refers to a location whose value change. But in functional
programming X is the name of a value (not a location). Any where that
X is in scope, it has the same value (i.e, it is referentially
transparent). In FP, functions are also values. They can be passed as
arguments to other functions. This is known as higher-order functional
programming. Higher-order functions let us model an amazing variety of
patterns. For instance, look at the map function in Lisp. It
represents a pattern where the programmer needs to do 'something' to
every element of a list. That 'something' is encoded as a function and
passed as an argument to map.
As we saw, the most notable feature of FP is it's side-effect
freeness. If a function does something more than computing a value
from it's input, then it is causing a side-effect. Such functions are
not allowed in pure FP. It is easy to test side-effect free functions.
There is no global state to set-up before running the test and there
is no global state to check after running the test. Each function can
be tested independently just by providing it's input and examining the
return value. This makes it easy to write automated tests. Another
advantage of side-effect freeness is that it gives you better control
on parallelism.
Many FP languages treat recursion and iteration correctly. They does this by
supporting something called tail-recursion. What tail-recursion is -
if a function calls itself, and it is the last thing it does, it
removes the current stack frame right away. In other words, if a
function calls itself tail-recursively a 1000 times, it does not grow
the stack a 1000 deep. This makes special looping constructs
unnecessary in these languages.
Lambda Calculus is the most boiled down version of an FP language.
Higher level FP languages like Haskell get compiled to Lambda
Calculus. It has only three syntactic constructs but still it is
expressive enough to represent any abstraction or algorithm.
My opinion is that FP should be viewed as a meta-paradigm. We can
write programs in any style, including OOP, using the simple
functional abstractions provided by the Lambda Calculus.
Thanks,
-- Vijay
Original discussion link: http://groups.google.co.in/group/bangalore-fp/browse_thread/thread/4c2cfa7985d7eab3
Abstraction, the process of making a function by parameterizing over some part of an expression.
Application, the process of evaluating a function by replacing its parameters with specific values.
At some level, that's all there is to it.
Though the question is older, thought of sharing my view as reference.
Core Concept in FP is "FUNCTION"
FP gives KISS(Keep It Simple Sxxxxx) programming paradigm (once you get the FP ideas, you will literally start hating the OO paradigm)
Here is my simple FP comparison with OO Design Patterns. Its my perspective of seeing FP and pls correct me if there is any discrepancy from actual.

Mathematical notation of programming concepts

There are many methods for representing structure of a program (like UML class diagrams etc.). I am interested if there is a convention which describes programs in a strict, mathematical way. I am especially interested in the use of mathematical notation for this purpose.
An example: Classes are represented as sets (fields, properties) and functions (operating on the elements of sets). A parent class' fields are a subset of child class'. Functions are described in pseudocode which has to look like this and that...
I know that Z Notation has been used to some extent in the formal verification of software, such as the Tokeneer project.
Z Notation
Z Reference Manual
http://www.amazon.com/Concrete-Mathematics-Foundation-Computer-Science/dp/0201558025
Yes, there is, Floyd-Hoare Logic.
There are a lot of way, but i think most of them are inconvenient for expressing the structure since the structure is often not expressable in default mathematical concepts. The main exception is of course functional programing languages. Think about folds (catamorphisme), groups, algebra's etc.
For imperative programming I know of the existence of Z, which uses (pure and extended) lambda calculus set theory and (first order) predicate logic. However, i dont think it's very convenient. The only upside of using mathematics to express structure is the fact that you can prove stuff about it. But if you want to do that, take a look at JML, Spec# or Eiffel.
Depends on what you're trying to accomplish, but going down this road with specific languages can get you into trouble.
For example, see the circle-ellipse discussion on C++ FAQ Lite.
This book applies the deductive method
to programming by affiliating programs
with the abstract mathematical
theories that enable them work. [...]
I believe that Elements of Programming by Alexander Stepanov and Paul McJones, is pretty close to what you are looking for.
Concepts
A concept is a description of
requirements on one or more types
stated in terms of the existence and
properties of procedures, type
attributes, and type functions defined
on the types.
Z, which has already been mentioned, is pretty much what you describe. There are some variants of it for object-oriented modelling, but I think you can get quite far with "standard Z's" schemas if you wish to model classes.
There's also Alloy, which is newer and inspired by Z. Its notation is perhaps a bit closer to object-orientation. It is also analysable, i.e. you can check the models you create whether they fulfill certain conditions, but it cannot prove that properties hold, just attempt to refute within a finite scope.
The article Dependable Software by Design is a nice introduction to Alloy and its ilk, along with a table of available similar tools.
You are looking for functional programming. There are several functional programming languages, and they are all based on a fundamental mathematical theory called the Lambda calculus. Programs written in a functional programming language such as LISP are a mathematical representation of themselves. ;-)
There is a mathematical language which actually describes a program or rather it's operations. You take the initial state and then transform this state until you reach the desired target state. The transformations yield the program code which must be executed.
See the Wikipedia article about Hoare logic.
The basic idea is that for every function (no matter if you put that into a class or into an old style function), you have a pre- and a post-condition. For example, the precondition can be that you have an array which has >= 0 elements. the post-condition is that every element[i] must by <= element[j] for every i <= j.
The usual description would be "the function sorts the array". But the mathematical terms allow you to transform the input (which must match the precondition) into the output (which must match the postcondition).
It's a bit unwieldy to use, especially for more complex programs but some of the examples are pretty impressive. Often, you get really compact code as the result which looks quite complex but works at first try.
I'd like to suggest Algebra of Programming. It's a calculational approach to programs, using Relational Algebra, and Galois Connections.
If you have further interest on this topic, you can find an amazing paper, here, by Shin-Cheng Mu, and José Nuno Oliveira (slides).
Using Relational Algebra and First-Order Logic, also has a nice synergy with Alloy, Functional Programming, and Design by Contract (easily applied to Object-Oriented Programming).

Defining point of functional programming

I can enumerate many features of functional programming, but when my friend asked me Could you define functional programming for me? I couldn't.
I would say that the defining point of pure functional programming is that all computation is done in functions with no side effects. That is, functions take inputs and return values, but do not change any hidden state, In this paradigm, functions more closely model their mathematical cousins.
This was nailed down for me when I started playing with Erlang, a language with a write-once stack. However, it should be clarified that there is a difference between a programming paradigm, and a programming language. Languages that are generally referred to as functional provide a number of features that encourage or enforce the functional paradigm (e.g., Erlang with it's write-once stack, higher order functions, closures, etc.). However the functional programming paradigm can be applied in many languages (with varying degrees of pain).
A lot of the definitions so far have emphasized purity, but there are many languages that are considered functional that are not at all pure (e.g., ML, Scheme). I think the key properties that make a language "functional" are:
Higher-order functions. Functions are a built-in datatype no different from integers and booleans. Anonymous functions are easy to create and idiomatic (e.g., lambdas).
Everything is an expression. In imperative languages, a distinction is made between statements, which mutate state and affect control flow, and expressions, which yield values. In functional languages (even impure functional languages), expression evaluation is the fundamental unit of execution.
Given these two properties, you naturally get the behavior we think of as functional (e.g., expressing computations in terms of folds and maps). Eliminating mutable state is a way to make things even more functional.
From wikipedia:
In computer science, functional programming is a programming paradigm that treats computation as the evaluation of mathematical functions and avoids state and mutable data. It emphasizes the application of functions, in contrast with the imperative programming style that emphasizes changes in state.
Using a functional approach gives the following benefits:
Concurrent programming is much easier in functional languages.
Functions in FP can never cause side effects - this makes unit testing much easier.
Hot Code Deployment in production environments is much easier.
Functional languages can be reasoned about mathematically.
Lazy evaluation provides potential for performance optimizations.
More expressive - closures, pattern matching, advanced type systems etc. allow programmers to 'say what they mean' more readily.
Brevity - for some classes of program a functional solution is significantly more concise.
There is a great article with more detail here.
Being able to enumerate the features is more useful than trying to define the term itself, as people will use the term "functional programming" in a variety of contexts with many shades of meaning across a continuum, whereas the individual features have individually crisper definitions that are more universally agreed upon.
Below are the features that come to mind. Most people use the term "functional programming" to refer to some subset of those features (the most common/important ones being "purity" and "higher-order functions").
FP features:
Purity (a.k.a. immutability, eschewing side-effects, referential transparency)
Higher-order functions (e.g. pass a function as a parameter, return it as a result, define anonymous function on the fly as a lambda expression)
Laziness (a.k.a. non-strict evaluation, most useful/usable when coupled with purity)
Algebraic data types and pattern matching
Closures
Currying / partial application
Parametric polymorphism (a.k.a. generics)
Recursion (more prominent as a result of purity)
Programming with expressions rather than statements (again, from purity)
...
The more features from the above list you are using, the more likely someone will label what you are doing "functional programming" (and the first two features--purity and higher-order functions--are probably worth the most extra bonus points towards your "FP score").
I have to add that functional programming tends to also abstract control structures of your program as well as the domain - e.g., you no longer do a 'for loop' on some list of things, but you 'map' it with some function to produce the output.
i think functional programming is a state of mind as well as the definition given above.
There are two separate definitions:
The older definition (first-class functions) has been given by Chris Conway.
The newer definition (avoiding side effects like mutation) has been given by John Stauffer. This is more generally known as purely functional programming.
This is a source of much confusion...
It's like drawing a picture by using vectors instead of bitmaps - tell the painter how to change the picture instead of what the picture looks like at each step.
It's application of functions as opposed to changing the state.
I think John Stauffer mostly has the definition. I would also add that you need to be able to pass functions around. Essentially you need high order functions, meaning you can pass functions around easily (although passing blocks is good enough).
For example a very popular functional call is map. It is basically equivalent to
list is some list of items
OutList is some empty list
foreach item in list
OutList.append(function(item))
return OutList
so that code is expressed as map(function, list). The revolutionary concept is that function is a function. Javascript is a great example of a language with high order functions. Basically functions can be treated like a variable and passed into functions or returned from functions. C++ and C have function pointers which can be used similarly. .NET delegates can also be used similarly.
then you can think of all sorts of cool abstractions...
Do you have a function AddItemsInList, MultiplyItemsInList, etc..?
Each function takes (List) and returns a single result
You could create (note, many languages do not allow you to pass + around as a function but it seems the clearest way to express the concept)....
AggregateItemsInList(List, combinefunction, StepFunction)
Increment functions work on indexes...better would be to make them work on list using list operations like next and for incTwo next next if it exists....
function incNormal(x) {
return x + 1
}
function incTwo(x) {
return x + 2
}
AggregateItemsInList(List, +, incNormal)
Want to do every other item?
AggegateItemsInList(List, +, incTwo)
Want to multiply?
AggregateItemsInList(List, *, incNormal)
Want to add exam scores together?
function AddScores (studenta, studentb) {
return studenta.score + studentb.score
}
AggregateItemsInList(ListOfStudents, AddScores, incOne)
High order functions are a very powerful abstraction. Instead of having to write custom methods for numbers, strings, students, etc.. you have one aggregate method that loops through a list of anything and you just have to create the addition operation for each data type.

Resources