I am trying to reuse an existing airflow task by assigning it to different dags.
def create_new_task_for_dag(task: BaseOperator,
dag: models.DAG) -> BaseOperator:
"""Create a deep copy of given task and associate it with given dag
"""
new_task = copy.deepcopy(task)
new_task.dag = dag
return new_task
print_datetime_task = python_operator.PythonOperator(
task_id='print_datetime', python_callable=_print_datetime)
# define a new dag ...
# add to the new dag
create_new_task_for_dag(print_datetime_task, new_dag)
Then it gives the error Task is missing the start_date parameter.
If I define the dag when creating the operator, print_datetime_task = PythonOperator(task_id='print_datetime', python_callable=_print_datetime, dag=new_dag), then it is OK.
I have searched around, and this seems to be the root cause: https://github.com/apache/airflow/pull/5598, but PR has been marked as stale.
I wonder if there is any other approach to reuse an existing airflow task assign to a different dag.
I am using apache-airflow[docker,kubernetes]==1.10.10
While I don't know the solution to your problem with current design (code-layout), it can be made to work by tweaking the design slightly (note that the following code-snippets have NOT been tested)
Instead of copying a task from a DAG,
def create_new_task_for_dag(task: BaseOperator,
dag: models.DAG) -> BaseOperator:
"""Create a deep copy of given task and associate it with given dag
"""
new_task = copy.deepcopy(task)
new_task.dag = dag
return new_task
you can move the instantiation of task (as well as it's assignment to the DAG) to a separate utility function.
from datetime import datetime
from typing import Dict, Any
from airflow.models.dag import DAG
from airflow.operators.python_operator import PythonOperator
def add_new_print_datetime_task(my_dag: DAG,
kwargs: Dict[str, Any]) -> PythonOperator:
"""
Creates and adds a new 'print_datetime' (PythonOperator) task in 'my_dag'
and returns it's reference
:param my_dag: reference to DAG object in which to add the task
:type my_dag: DAG
:param kwargs: dictionary of args for PythonOperator / BaseOperator
'task_id' is mandatory
:type kwargs: Dict[str, Any]
:return: PythonOperator
"""
def my_callable() -> None:
print(datetime.now())
return PythonOperator(dag=my_dag, python_callable=my_callable, **kwargs)
Thereafter you can call that function everytime you want to instantiate that same task (and assign to any DAG)
with DAG(dag_id="my_dag_id", start_date=datetime(year=2020, month=8, day=22, hour=16, minute=30)) as my_dag:
print_datetime_task_kwargs: Dict[str, Any] = {
"task_id": "my_task_id",
"depends_on_past": True
}
print_datetime_task: PythonOperator = add_new_print_datetime_task(my_dag=my_dag, kwargs=print_datetime_task_kwargs)
# ... other tasks and their wiring
References / good reads
Astronomer.io: Dynamically Generating DAGs in Airflow
Apache Airflow | With Statement and DAG
Related
My dag is started with configuration JSON:
{"foo" : "bar"}
I have a Python operator which uses this value:
my_task = PythonOperator(
task_id="my_task",
op_kwargs={"foo": "{{ dag_run.conf['foo'] }}"},
python_callable=lambda foo: print(foo))
I’d like to replace it with a TaskFlow task…
#task
def my_task:
# how to get foo??
How can I get a reference to context, dag_run, or otherwise get to the configuration JSON from here?
There are several ways to do this using the TaskFlow API:
import datetime
from airflow.decorators import dag, task
from airflow.operators.python import get_current_context
#dag(start_date=datetime.datetime(2023, 1, 1), schedule=None)
def so_75303816():
#task
def example_1(**context):
foo = context["dag_run"].conf["foo"]
print(foo)
#task
def example_2(dag_run=None):
foo = dag_run.conf["foo"]
print(foo)
#task
def example_3():
context = get_current_context()
foo = context["dag_run"].conf["foo"]
print(foo)
#task
def example_4(params=None):
foo = params["foo"]
print(foo)
example_1()
example_2()
example_3()
example_4()
so_75303816()
Depending on your needs/preference, you can use one of the following examples:
example_1: You get all task instance context variables and have to extract "foo".
example_2: You explicitly state via arguments you want only dag_run from the task instance context variables. Note that you have to default arguments to None.
example_3: You can also fetch the task instance context variables from inside a task using airflow.operators.python.get_current_context().
example_4: DAG run context is also available via a variable named "params".
For more information, see https://airflow.apache.org/docs/apache-airflow/stable/tutorial/taskflow.html#accessing-context-variables-in-decorated-tasks and https://airflow.apache.org/docs/apache-airflow/stable/templates-ref.html#variables.
I have a use case where I want to run dynamic tasks.
The expectation is
Task1 (output = list of dicts)-> Task2(a) - > Task3(a)
|
----> Task 2(b) -> Task3(b)
Task 2 and Task 3 needs to be run for every object in list and needs to be sequential.
You can connect multiple dynamically mapped tasks. For example:
import datetime
from airflow import DAG
from airflow.decorators import task
with DAG(dag_id="so_74848271", schedule_interval=None, start_date=datetime.datetime(2022, 1, 1)):
#task
def start():
return [{"donald": "duck"}, {"bugs": "bunny"}, {"mickey": "mouse"}]
#task
def create_name(cartoon):
first_name = list(cartoon.keys())[0]
last_name = list(cartoon.values())[0]
return f"{first_name} {last_name}"
#task
def print_name(full_name):
print(f"Hello {full_name}")
print_name.expand(full_name=create_name.expand(cartoon=start()))
The task create_name will generate one task for each dict in the list returned by start. And the print_name task will generate one task for each result of create_name.
The graph view of this DAG looks as follows:
I am trying to use airflow variables to determine whether to execute a task or not. I have tried this and it's not working:
if '{{ params.year }}' == '{{ params.message }}':
run_this = DummyOperator (
task_id = 'dummy_dag'
)
I was hoping to get some help making it work. Also is there a better way of doing something like this in airflow?
I think a good way to solve this, is with BranchPythonOperator to branch dynamically based on the provided DAG parameters. Consider this example:
Use params to provide the parameters to the DAG (could be also done from the UI), in this example: {"enabled": True}
from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
from airflow.operators.python import get_current_context, BranchPythonOperator
#dag(
default_args=default_args,
schedule_interval=None,
start_date=days_ago(1),
catchup=False,
tags=["example"],
params={"enabled": True},
)
def branch_from_dag_params():
def _print_enabled():
context = get_current_context()
enabled = context["params"].get("enabled", False)
print(f"Task id: {context['ti'].task_id}")
print(f"Enabled is: {enabled}")
#task
def task_a():
_print_enabled()
#task
def task_b():
_print_enabled()
Define a callable to the BranchPythonOperator in which you will perform your conditionals and return the next task to be executed. You can access the execution context variables from **kwargs. Also keep in mind that this operator should return a single task_id or a list of task_ids to follow downstream. Those resultant tasks should always be directly downstream from it.
def _get_task_run(ti, **kwargs):
custom_param = kwargs["params"].get("enabled", False)
if custom_param:
return "task_a"
else:
return "task_b"
branch_task = BranchPythonOperator(
task_id="branch_task",
python_callable=_get_task_run,
)
task_a_exec = task_a()
task_b_exec = task_b()
branch_task >> [task_a_exec, task_b_exec]
The result is that task_a gets executed and task_b is skipped :
AIRFLOW_CTX_DAG_OWNER=airflow
AIRFLOW_CTX_DAG_ID=branch_from_dag_params
AIRFLOW_CTX_TASK_ID=task_a
Task id: task_a
Enabled is: True
Let me know if that worked for you.
Docs
I'm struggling to understand how to read DAG config parameters inside a task using Airflow 2.0 dag and task decorators.
Consider this simple DAG definition file:
from airflow.decorators import dag, task
from airflow.utils.dates import days_ago
#dag()
def lovely_dag():
#task(start_date=days_ago(1))
def task1():
return 1
something = task1()
my_dag = lovely_dag()
I can trigger the dag using the UI or the console and pass to it some (key,value) config, for example:
airflow dags trigger --conf '{"hello":"there"}' lovely_dag
How can I access {"hello":"there"} inside the task1 function?
My use case is I want to pass 2 parameters to dag and want task1 to see them.
You can access the context as follows:
from airflow.operators.python import task, get_current_context
#task
def my_task():
context = get_current_context()
dag_run = context["dag_run"]
dagrun_conf = dag_run.conf
where dagrun_conf will be the variable containing the DAG config parameters
Source: http://airflow.apache.org/docs/apache-airflow/2.0.0/concepts.html#accessing-current-context
I have a stored XCom value that I wanted to pass to another python function which is not called using PythonOperator.
def sql_file_template():
<some code which uses xcom variable>
def call_stored_proc(**kwargs):
#project = kwargs['row_id']
print("INSIDE CALL STORE PROC ------------")
query = """CALL `{0}.dataset_name.store_proc`(
'{1}' # source table
, ['{2}'] # row_ids
, '{3}' # pivot_col_name
, '{4}' # pivot_col_value
, 100 # max_columns
, 'MAX' # aggregation
);"""
query = query.format(kwargs['project'],kwargs['source_tbl'] ,kwargs['row_id'],kwargs['pivot_col'],kwargs['pivot_val'])
job = client.query(query, location="US")
for result in job.result():
task_instance = kwargs['task_instance']
task_instance.xcom_push(key='query_string', value=result)
print result
return result
bq_cmd = PythonOperator (
task_id= 'task1'
provide_context= True,
python_callable= call_stored_proc,
op_kwargs= {'project' : project,
'source_tbl' : source_tbl,
'row_id' : row_id,
'pivot_col' : pivot_col,
'pivot_val' : pivot_val
},
dag= dag
)
dummy_operator >> bq_cmd
sql_file_template()
The output of stored proc is a string which is captured using xcom.
Now I would like to pass this value to some python function sql_file_template without using PythonOperator.
As per Airflow documentation xcom can be accessed only between tasks.
Can anyone help on this?
If you have access to the Airflow installation you'd like to query (configuration, database access, and code) you can use Airflow's airflow.models.XCom:get_one class method:
from datetime import datetime
from airflow.models import XCom
execution_date = datetime(2020, 8, 28)
xcom_value = XCom.get_one(execution_date=execution_date,
task_id="the_task_id",
dag_id="the_dag_id")
So you want to access XCOM outside Airflow (probably a different project / module, without creating any Airflow DAGs / tasks)?
Airflow uses SQLAlchemy for mapping all it's models (including XCOM) to corresponding SQLAlchemy backend (meta-db) tables
Therefore this can be done in two ways
Leverage Airflow's SQLAlchemy model
(without having to create a task or DAG). Here's an untested code snippet for reference
from typing import List
from airflow.models import XCom
from airflow.settings import Session
from airflow.utils.db import provide_session
from pendulum import Pendulum
#provide_session
def read_xcom_values(dag_id: str,
task_id: str,
execution_date: Pendulum,
session: Optional[Session]) -> List[str]:
"""
Function that reads and returns 'values' of XCOMs with given filters
:param dag_id:
:param task_id:
:param execution_date: datetime object
:param session: Airflow's SQLAlchemy Session (this param must not be passed, it will be automatically supplied by
'#provide_session' decorator)
:return:
"""
# read XCOMs
xcoms: List[XCom] = session.query(XCom).filter(
XCom.dag_id == dag_id, XCom.task_id == task_id,
XCom.execution_date == execution_date).all()
# retrive 'value' fields from XCOMs
xcom_values: List[str] = list(map(lambda xcom: xcom.value, xcoms))
return xcom_values
Do note that since it is importing airflow packages, it still requires working airflow installation on python classpath (as well as connection to backend-db), but here we are not creating any tasks or dags (this snippet can be run in a standalone python file)
For this snippet, I have referred to views.py which is my favorite place to peek into Airflow's SQLAlchemy magic
Directly query Airflow's SQLAlchemy backend meta-db
Connect to meta db and run this query
SELECT value FROM xcom WHERE dag_id='' AND task_id='' AND ..