How to impute missing data using the MICE package in R? - r

I have a dataset about 2000 observations for further analyses. There are 4 variables that have a lot of missing values (percentage of missing is over 50%). I'm trying to use MICE package to impute missing values. Here are my questions:
For the final dataset, it contains variables from different dataset previously. Should I use the final dataset to impute the missing values for those variables, or should I use the original dataset (where those 4 variables are from) which has data that are more relevant to those 4 variables?
I saw two different codes online:
imputed_Data <- mice(iris.mis, m=5, maxit = 50, method = 'pmm', seed = 500)
completeData <- complete(imputed_Data,2)
Another one:
mice(anesimp2, maxit = 5,
predictorMatrix = predM,
method = meth, print = FALSE)
I'm wondering what the difference is between these two codes and which one I should use. If I use the first code, I'm also wondering what value of the seed I should set in my case.
Should I do any preprocessing of the data before running these codes?
Thanks a lot for the help!

Related

Fastshap summary plot - Error: can't combine <double> and <factor<919a3>>

I'm trying to get a summary plot using fastshap explain function as in the code below.
p_function_G<- function(object, newdata)
caret::predict.train(object,
newdata =
newdata,
type = "prob")[,"AntiSocial"] # select G class
# Calculate the Shapley values
#
# boostFit: is a caret model using catboost algorithm
# trainset: is the dataset used for bulding the caret model.
# The dataset contains 4 categories W,G,R,GM
# corresponding to 4 diferent animal behaviors
library(caret)
shap_values_G <- fastshap::explain(xgb_fit,
X = game_train,
pred_wrapper =
p_function_G,
nsim = 50,
newdata= game_train[which(game_test=="AntiSocial"),])
)
However I'm getting error
Error in 'stop_vctrs()':
can't combine latitude and gender <factor<919a3>>
What's the way out?
I see that you are adapting code from Julia Silge's Predict ratings for board games Tutorial. The original code used SHAPforxgboost for generating SHAP values, but you're using the fastshap package.
Because Shapley explanations are only recently starting to gain traction, there aren't very many standard data formats. fastshap does not like tidyverse tibbles, it only takes matrices or matrix-likes.
The error occurs because, by default, fastshap attempts to convert the tibble to a matrix. But this fails, because matrices can only have one type (f.x. either double or factor, not both).
I also ran into a similar issue and found that you can solve this by passing the X parameter as a data.frame. I don't have access to your full code but you could you try replacing the shap_values_G code-block as so:
shap_values_G <- fastshap::explain(xgb_fit,
X = game_train,
pred_wrapper =
p_function_G,
nsim = 50,
newdata= as.data.frame(game_train[which(game_test=="AntiSocial"),]))
)
Wrap newdata with as.data.frame. This converts the tibble to a dataframe and so shouldn't upset fastshap.

Issue with h2o Package in R using subsetted dataframes leading to near perfect prediction accuracy

I have been stumped on this problem for a very long time and cannot figure it out. I believe the issue stems from subsets of data.frame objects retaining information of the parent but I also feel it's causing issues when training h2o.deeplearning models on what I think is just my training set (though this may not be true). See below for sample code. I included comments to clarify what I'm doing but it's fairly short code:
dataset = read.csv("dataset.csv")[,-1] # Read dataset in but omit the first column (it's just an index from the original data)
y = dataset[,1] # Create response
X = dataset[,-1] # Create regressors
X = model.matrix(y~.,data=dataset) # Automatically create dummy variables
y=as.factor(y) # Ensure y has factor data type
dataset = data.frame(y,X) # Create final data.frame dataset
train = sample(length(y),length(y)/1.66) # Create training indices -- A boolean
test = (-train) # Create testing indices
h2o.init(nthreads=2) # Initiate h2o
# BELOW: Create h2o.deeplearning model with subset of dataset.
mlModel = h2o.deeplearning(y='y',training_frame=as.h2o(dataset[train,,drop=TRUE]),activation="Rectifier",
hidden=c(6,6),epochs=10,train_samples_per_iteration = -2)
predictions = h2o.predict(mlModel,newdata=as.h2o(dataset[test,-1])) # Predict using mlModel
predictions = as.data.frame(predictions) # Convert predictions to dataframe object. as.vector() caused issues for me
predictions = predictions[,1] # Extract predictions
mean(predictions!=y[test])
The problem is that if I evaluate this against my test subset I get almost 0% error:
[1] 0.0007531255
Has anyone encountered this issue? Have an idea of how to alleviate this problem?
It will be more efficient to use the H2O functions to load the data and split it.
data = h2o.importFile("dataset.csv")
y = 2 #Response is 2nd column, first is an index
x = 3:(ncol(data)) #Learn from all the other columns
data[,y] = as.factor(data[,y])
parts = h2o.splitFrame(data, 0.8) #Split 80/20
train = parts[[1]]
test = parts[[2]]
# BELOW: Create h2o.deeplearning model with subset of dataset.
mlModel = h2o.deeplearning(x=x, y=y, training_frame=train,activation="Rectifier",
hidden=c(6,6),epochs=10,train_samples_per_iteration = -2)
h2o.performance(mlModel, test)
It is hard to say what the problem with your original code is, without seeing the contents of dataset.csv and being able to try it. My guess is that train and test are not being split, and it is actually being trained on the test data.

PLS in R: Predicting new observations returns Fitted values instead

In the past few days I have developed multiple PLS models in R for spectral data (wavebands as explanatory variables) and various vegetation parameters (as individual response variables). In total, the dataset comprises of 56. The first 28 (training set) have been used for model calibration, now all I want to do is to predict the response values for the remaining 28 observations in the tesset. For some reason, however, R keeps on the returning the fitted values of the calibration set for a given number of components rather than predictions for the independent test set. Here is what the model looks like in short.
# first simulate some data
set.seed(123)
bands=101
data <- data.frame(matrix(runif(56*bands),ncol=bands))
colnames(data) <- paste0(1:bands)
data$height <- rpois(56,10)
data$fbm <- rpois(56,10)
data$nitrogen <- rpois(56,10)
data$carbon <- rpois(56,10)
data$chl <- rpois(56,10)
data$ID <- 1:56
data <- as.data.frame(data)
caldata <- data[1:28,] # define model training set
valdata <- data[29:56,] # define model testing set
# define explanatory variables (x)
spectra <- caldata[,1:101]
# build PLS model using training data only
library(pls)
refl.pls <- plsr(height ~ spectra, data = caldata, ncomp = 10, validation =
"LOO", jackknife = TRUE)
It was then identified that a model comprising of 3 components yielded the best performance without over-fitting. Hence, the following command was used to predict the values of the 28 observations in the testing set using the above calibrated PLS model with 3 components:
predict(refl.pls, ncomp = 3, newdata = valdata)
Sensible as the output may seem, I soon discovered that all this piece of code generates are the fitted values of the PLS model for the calibration/training data, rather than predictions. I discovered this because the below code, in which newdata = is omitted, yields identical results.
predict(refl.pls, ncomp = 3)
Surely something must be going wrong, although I cannot seem to find out what specifically is. Is there someone out there who can, and is willing to help me move in the right direction?
I think the problem is with the nature of the input data. Looking at ?plsr and str(yarn) that goes with the example, plsr requires a very specific data frame that I find tricky to work with. The input data frame should have a matrix as one of its elements (in your case, the spectral data). I think the following works correctly (note I changed the size of the training set so that it wasn't half the original data, for troubleshooting):
library("pls")
set.seed(123)
bands=101
spectra = matrix(runif(56*bands),ncol=bands)
DF <- data.frame(spectra = I(spectra),
height = rpois(56,10),
fbm = rpois(56,10),
nitrogen = rpois(56,10),
carbon = rpois(56,10),
chl = rpois(56,10),
ID = 1:56)
class(DF$spectra) <- "matrix" # just to be certain, it was "AsIs"
str(DF)
DF$train <- rep(FALSE, 56)
DF$train[1:20] <- TRUE
refl.pls <- plsr(height ~ spectra, data = DF, ncomp = 10, validation =
"LOO", jackknife = TRUE, subset = train)
res <- predict(refl.pls, ncomp = 3, newdata = DF[!DF$train,])
Note that I got the spectral data into the data frame as a matrix by protecting it with I which equates to AsIs. There might be a more standard way to do this, but it works. As I said, to me a matrix inside of a data frame is not completely intuitive or easy to grok.
As to why your version didn't work quite right, I think the best explanation is that everything needs to be in the one data frame you pass to plsr for the data sources to be completely unambiguous.

MICE imputation even when same data in column

Is it possible to get an imputation using the package MICE even when all the values in the column are the same? Then it would impute just with that number.
Example:
test<-data.frame(var1=c(2.3,2.3,2.3,2.3,2.3,NA),var2=c(5.3,5.6,5.9,6.4,4.5,NA))
miceImp<-mice(test)
testImp<-complete(miceImp)
only imputate on var2. I would like it to replace the NA in var1 too with 2.3.
You can use passive imputation for this. For a full explanation, see section 3.4 on page 25 of this article. As applied to constant variables, the objective here would be to set the imputation method for any constant variable x to the constant value of x. If the constant value of x is y, then the imputation method for x should be "~I(y)".
test = data.frame(
var1=c(2.3,2.3,2.3,2.3,2.3,NA,2.3),
var2=c(5.3,5.6,5.9,6.4,4.5,5.1,NA),
var3=c(NA,1:6))
cVars = which(sapply(test,sd,na.rm=T)==0) #determine which vars are constant (props to SimonG)
allMeans = colMeans(test,na.rm=T) #get the column means
miceImp.ini = mice(test,maxit=0,print=F) #initial mids object with no imputations
meth = miceImp.ini$method #extract the imputation method vector
meth[cVars] = paste0("~I(",allMeans[cVars],")") #set the imputation method to be a constant (the current column mean)
miceImp = mice(test,method=meth) #run the imputation with the user defined imputation methods
testImp = complete(miceImp) #extract an imputedly complete dataset
View(testImp) #take a look at it
All that being said, constant values tend not to be of great use in statistics, so it might be more efficient to drop any constant variables before imputation (since imputation is such a costly process).

Perform operation on each imputed dataset in R's MICE

How can I perform an operation (like subsetting or adding a calculated column) on each imputed dataset in an object of class mids from R's package mice? I would like the result to still be a mids object.
Edit: Example
library(mice)
data(nhanes)
# create imputed datasets
imput = mice(nhanes)
The imputed datasets are stored as a list of lists
imput$imp
where there are rows only for the observations with imputation for the given variable.
The original (incomplete) dataset is stored here:
imput$data
For example, how would I create a new variable calculated as chl/2 in each of the imputed datasets, yielding a new mids object?
This can be done easily as follows -
Use complete() to convert a mids object to a long-format data.frame:
long1 <- complete(midsobj1, action='long', include=TRUE)
Perform whatever manipulations needed:
long1$new.var <- long1$chl/2
long2 <- subset(long1, age >= 5)
use as.mids() to convert back manipulated data to mids object:
midsobj2 <- as.mids(long2)
Now you can use midsobj2 as required. Note that the include=TRUE (used to include the original data with missing values) is needed for as.mids() to compress the long-formatted data properly. Note that prior to mice v2.25 there was a bug in the as.mids() function (see this post https://stats.stackexchange.com/a/158327/69413)
EDIT: According to this answer https://stackoverflow.com/a/34859264/4269699 (from what is essentially a duplicate question) you can also edit the mids object directly by accessing $data and $imp. So for example
midsobj2<-midsobj1
midsobj2$data$new.var <- midsobj2$data$chl/2
midsobj2$imp$new.var <- midsobj2$imp$chl/2
You will run into trouble though if you want to subset $imp or if you want to use $call, so I wouldn't recommend this solution in general.
Another option is to calculate the variables before the imputation and place restrictions on them.
library(mice)
# Create the additional variable - this will have missing
nhanes$extra <- nhanes$chl / 2
# Change the method of imputation for extra, so that it always equals chl/2
# Change the predictor matrix so only chl predicts extra
ini <- mice(nhanes, max = 0, print = FALSE)
meth <- ini$meth
meth["extra"] <- "~I(chl / 2)"
pred <- ini$pred # extra isn't used to predict
pred["extra", "chl"] <- 1
# Imputations
imput <- mice(nhanes, seed = 1, pred = pred, meth = meth, print = FALSE)
There are examples in mice: Multivariate Imputation by Chained Equations in R.
There is an overload of with that can help you here
with(imput, chl/2)
the documentation is given at ?with.mids
There's a function for this in the basecamb package:
library(basecamb)
apply_function_to_imputed_data(mids_object, function)

Resources