Additional x axis on ggplot - r

I'm aware there are similar posts but I could not get those answers to work in my case.
e.g. Here and here.
Example:
diamonds %>%
ggplot(aes(scale(price) %>% as.vector)) +
geom_density() +
xlim(-3, 3) +
facet_wrap(vars(cut))
Returns a plot:
Since I used scale, those numbers are the zscores or standard deviations away from the mean of each break.
I would like to add as a row underneath the equivalent non scaled raw number that corresponds to each.
Tried:
diamonds %>%
ggplot(aes(scale(price) %>% as.vector)) +
geom_density() +
xlim(-3, 3) +
facet_wrap(vars(cut)) +
geom_text(aes(label = price))
Gives:
Error: geom_text requires the following missing aesthetics: y
My primary question is how can I add the raw values underneath -3:3 of each break? I don't want to change those breaks, I still want 6 breaks between -3:3.
Secondary question, how can I get -3 and 3 to actually show up in the chart? They have been trimmed.
[edit]
I've been trying to make it work with geom_text but keep hitting errors:
diamonds %>%
ggplot(aes(x = scale(price) %>% as.vector)) +
geom_density() +
xlim(-3, 3) +
facet_wrap(vars(cut)) +
geom_text(label = price)
Error in layer(data = data, mapping = mapping, stat = stat, geom = GeomText, :
object 'price' not found
I then tried changing my call to geom_text()
geom_text(data = diamonds, aes(price), label = price)
This results in the same error message.

You can make a custom labeling function for your axis. This takes each label on the axis and performs a custom transform for you. In your case you could paste the z score, a line break, and the z-score times the standard deviation plus the mean. Because of the distribution of prices in the diamonds data set, this means that z scores below about -1 represent negative prices. This may not be a problem in your own data. For clarity I have drawn in a vertical line representing $0
labeller <- function(x) {
paste0(x,"\n", scales::dollar(sd(diamonds$price) * x + mean(diamonds$price)))
}
diamonds %>%
ggplot(aes(scale(price) %>% as.vector)) +
geom_density() +
geom_vline(aes(xintercept = -0.98580251364833), linetype = 2) +
facet_wrap(vars(cut)) +
scale_x_continuous(label = labeller, limits = c(-3, 3)) +
xlab("price")

We can use the sec_axis functionality in scale_x_continuous. To use this functionality we need to manually scale your data. This will add a secondary axis at the top of the plot, not underneath. So it's not quite exactly what you're looking for.
library(tidyverse)
# manually scale the data
mean_price <- mean(diamonds$price)
sd_price <- sd(diamonds$price)
diamonds$price_scaled <- (diamonds$price - mean_price) / sd_price
# make the plot
ggplot(diamonds, aes(price_scaled))+
geom_density()+
facet_wrap(~cut)+
scale_x_continuous(sec.axis = sec_axis(~ mean_price + (sd_price * .)),
limits = c(-3, 4), breaks = -3:3)
You could cheat a bit by passing some dummy data to geom_text:
geom_text(data = tibble(label = round(((-3:3) * sd_price) + mean_price),
y = -0.25,
x = -3:3),
aes(x, y, label = label))

Related

How do I add data labels to a ggplot histogram with a log(x) axis?

I am wondering how to add data labels to a ggplot showing the true value of the data points when the x-axis is in log scale.
I have this data:
date <- c("4/3/2021", "4/7/2021","4/10/2021","4/12/2021","4/13/2021","4/13/2021")
amount <- c(105.00, 96.32, 89.00, 80.84, 121.82, 159.38)
address <- c("A","B","C","D","E","F")
df <- data.frame(date, amount, address)
And I plot it in ggplot2:
plot <- ggplot(df, aes(x = log(amount))) +
geom_histogram(binwidth = 1)
plot + theme_minimal() + geom_text(label = amount)
... but I get the error
"Error: geom_text requires the following missing aesthetics: y"
I have 2 questions as a result:
Why am I getting this error with geom_histogram? Shouldn't it assume to use count as the y value?
Will this successfully show the true values of the data points from the 'amount' column despite the plot's log scale x-axis?
Perhaps like this?
ggplot(df, aes(x = log(amount), y = ..count.., label = ..count..)) +
geom_histogram(binwidth = 1) +
stat_bin(geom = "text", binwidth = 1, vjust = -0.5) +
theme_minimal()
ggplot2 layers do not (at least in any situations I can think of) take the summary calculations of other layers, so I think the simplest thing would be to replicate the calculation using stat_bin(geom = "text"...
Or perhaps simpler, you could pre-calculate the numbers:
library(dplyr)
df %>%
count(log_amt = round(log(amount))) %>%
ggplot(aes(log_amt, n, label = n)) +
geom_col(width = 1) +
geom_text(vjust = -0.5)
EDIT -- to show buckets without the log transform we could use:
df %>%
count(log_amt = round(log(amount))) %>%
ggplot(aes(log_amt, n, label = n)) +
geom_col(width = 0.5) +
geom_text(vjust = -0.5) +
scale_x_continuous(labels = ~scales::comma(10^.),
minor_breaks = NULL)

How to rescale color mapping in scale_color_distiller (ggplot2)?

My data consists of three numeric variables. Something like this:
set.seed(1)
df <- data.frame(x= rnorm(10000), y= rnorm(10000))
df$col= df$x + df$y + df$x*df$y
Plotting this as a heatplot looks good:
ggplot(df, aes(x, y, col= col)) + geom_point(size= 2) + scale_color_distiller(palette = "Spectral")
But real variables can have some skewness or outliers and this totally changes the plot. After df$col[nrow(df)] <- 100 same ggplot code as above returns this plot:
Clearly, the problem is that this one point changes the scale and we get a plot with little information. My solution is to rank the data with rank() which gives a reasonable color progression for any variable I`ve tried so far. See here:
ggplot(df, aes(x, y, col= rank(col))) + geom_point(size= 2) + scale_color_distiller(palette = "Spectral")
The problem with this solution that the new scale (2,500 to 10,000) is shown as the color label. I want the original scale to be shown as color label (o to 10). Therefor, I want that the color progression corresponds to the ranked data; i.e. I need to somehow map the original values to the ranked color values. Is that possible? I tried to change limits argument to limits= c(0, 10) inside scale_color_distiller() but this does not help.
Sidenotes: I do not want to remove the outlier. Ranking works well. I wan to use scale_color_distiller(). If possible, I want not to use any additional packages than ggplot2.
rescale the rank to the range of your original df$col.
library(tidyverse)
set.seed(1)
df <- data.frame(x = rnorm(10000), y = rnorm(10000))
df %>%
mutate(
col = x + y + x * y,
scaled_rank = scales::rescale(rank(col), range(col))
) %>%
ggplot(aes(x, y, col = scaled_rank)) +
geom_point(size = 2) +
scale_color_distiller(palette = "Spectral")
Created on 2021-11-17 by the reprex package (v2.0.1)

How to graph "before and after" measures using ggplot with connecting lines and subsets?

I’m totally new to ggplot, relatively fresh with R and want to make a smashing ”before-and-after” scatterplot with connecting lines to illustrate the movement in percentages of different subgroups before and after a special training initiative. I’ve tried some options, but have yet to:
show each individual observation separately (now same values are overlapping)
connect the related before and after measures (x=0 and X=1) with lines to more clearly illustrate the direction of variation
subset the data along class and id using shape and colors
How can I best create a scatter plot using ggplot (or other) fulfilling the above demands?
Main alternative: geom_point()
Here is some sample data and example code using genom_point
x <- c(0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1) # 0=before, 1=after
y <- c(45,30,10,40,10,NA,30,80,80,NA,95,NA,90,NA,90,70,10,80,98,95) # percentage of ”feelings of peace"
class <- c(0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,1,1) # 0=multiple days 1=one day
id <- c(1,1,2,3,4,4,4,4,5,6,1,1,2,3,4,4,4,4,5,6) # id = per individual
df <- data.frame(x,y,class,id)
ggplot(df, aes(x=x, y=y), fill=id, shape=class) + geom_point()
Alternative: scale_size()
I have explored stat_sum() to summarize the frequencies of overlapping observations, but then not being able to subset using colors and shapes due to overlap.
ggplot(df, aes(x=x, y=y)) +
stat_sum()
Alternative: geom_dotplot()
I have also explored geom_dotplot() to clarify the overlapping observations that arise from using genom_point() as I do in the example below, however I have yet to understand how to combine the before and after measures into the same plot.
df1 <- df[1:10,] # data before
df2 <- df[11:20,] # data after
p1 <- ggplot(df1, aes(x=x, y=y)) +
geom_dotplot(binaxis = "y", stackdir = "center",stackratio=2,
binwidth=(1/0.3))
p2 <- ggplot(df2, aes(x=x, y=y)) +
geom_dotplot(binaxis = "y", stackdir = "center",stackratio=2,
binwidth=(1/0.3))
grid.arrange(p1,p2, nrow=1) # GridExtra package
Or maybe it is better to summarize data by x, id, class as mean/median of y, filter out ids producing NAs (e.g. ids 3 and 6), and connect the points by lines? So in case if you don't really need to show variability for some ids (which could be true if the plot only illustrates tendencies) you can do it this way:
library(ggplot)
library(dplyr)
#library(ggthemes)
df <- df %>%
group_by(x, id, class) %>%
summarize(y = median(y, na.rm = T)) %>%
ungroup() %>%
mutate(
id = factor(id),
x = factor(x, labels = c("before", "after")),
class = factor(class, labels = c("one day", "multiple days")),
) %>%
group_by(id) %>%
mutate(nas = any(is.na(y))) %>%
ungroup() %>%
filter(!nas) %>%
select(-nas)
ggplot(df, aes(x = x, y = y, col = id, group = id)) +
geom_point(aes(shape = class)) +
geom_line(show.legend = F) +
#theme_few() +
#theme(legend.position = "none") +
ylab("Feelings of peace, %") +
xlab("")
Here's one possible solution for you.
First - to get the color and shapes determined by variables, you need to put these into the aes function. I turned several into factors, so the labs function fixes the labels so they don't appear as "factor(x)" but just "x".
To address multiple points, one solution is to use geom_smooth with method = "lm". This plots the regression line, instead of connecting all the dots.
The option se = FALSE prevents confidence intervals from being plotted - I don't think they add a lot to your plot, but play with it.
Connecting the dots is done by geom_line - feel free to try that as well.
Within geom_point, the option position = position_jitter(width = .1) adds random noise to the x-axis so points do not overlap.
ggplot(df, aes(x=factor(x), y=y, color=factor(id), shape=factor(class), group = id)) +
geom_point(position = position_jitter(width = .1)) +
geom_smooth(method = 'lm', se = FALSE) +
labs(
x = "x",
color = "ID",
shape = 'Class'
)

dodge columns in ggplot2

I am trying to create a picture that summarises my data. Data is about prevalence of drug use obtained from different practices form different countries. Each practice has contributed with a different amount of data and I want to show all of this in my picture.
Here is a subset of the data to work on:
gr<-data.frame(matrix(0,36))
gr$drug<-c("a","a","a","a","a","a","a","a","a","a","a","a","a","a","a","a","a","a","b","b","b","b","b","b","b","b","b","b","b","b","b","b","b","b","b","b")
gr$practice<-c("a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r","a","b","c","d","e","f","g","h","i","j","k","l","m","n","o","p","q","r")
gr$country<-c("c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c2","c2","c2","c2","c2","c2","c3","c3","c1","c1","c1","c1","c1","c1","c1","c1","c1","c1","c2","c2","c2","c2","c2","c2","c3","c3")
gr$prevalence<-c(9.14,5.53,16.74,1.93,8.51,14.96,18.90,11.18,15.00,20.10,24.56,22.29,19.41,20.25,25.01,25.87,29.33,20.76,18.94,24.60,26.51,13.37,23.84,21.82,23.69,20.56,30.53,16.66,28.71,23.83,21.16,24.66,26.42,27.38,32.46,25.34)
gr$prop<-c(0.027,0.023,0.002,0.500,0.011,0.185,0.097,0.067,0.066,0.023,0.433,0.117,0.053,0.199,0.098,0.100,0.594,0.406,0.027,0.023,0.002,0.500,0.011,0.185,0.097,0.067,0.066,0.023,0.433,0.117,0.053,0.199,0.098,0.100,0.594,0.406)
gr$low.CI<-c(8.27,4.80,12.35,1.83,7.22,14.53,18.25,10.56,14.28,18.76,24.25,21.72,18.62,19.83,24.36,25.22,28.80,20.20,17.73,23.15,21.06,13.12,21.79,21.32,22.99,19.76,29.60,15.41,28.39,23.25,20.34,24.20,25.76,26.72,31.92,24.73)
gr$high.CI<-c(10.10,6.37,22.31,2.04,10.00,15.40,19.56,11.83,15.74,21.52,24.87,22.86,20.23,20.68,25.67,26.53,29.86,21.34,20.21,26.10,32.79,13.63,26.02,22.33,24.41,21.39,31.48,17.98,29.04,24.43,22.01,25.12,27.09,28.05,33.01,25.95)
The code I wrote is this
p<-ggplot(data=gr, aes(x=factor(drug), y=as.numeric(gr$prevalence), ymax=max(high.CI),position="dodge",fill=practice,width=prop))
colour<-c(rep("gray79",10),rep("gray60",6),rep("gray39",2))
p + theme_bw()+
geom_bar(stat="identity",position = position_dodge(0.9)) +
labs(x="Drug",y="Prevalence") +
geom_errorbar(ymax=gr$high.CI,ymin=gr$low.CI,position=position_dodge(0.9),width=0.25,size=0.25,colour="black",aes(x=factor(drug), y=as.numeric(gr$prevalence), fill=practice)) +
ggtitle("Drug usage by country and practice") +
scale_fill_manual(values = colour)+ guides(fill=F)
The figure I obtain is this one where bars are all on top of each other while I want them "dodge".
I also obtain the following warning:
ymax not defined: adjusting position using y instead
Warning message:
position_dodge requires non-overlapping x intervals
Ideally I would get each bar near one another, with their error bars in the middle of its bar, all organised by country.
Also should I be concerned about the warning (which I clearly do not fully understand)?
I hope this makes sense. I hope I am close enough, but I don't seem to be going anywhere, some help would be greatly appreciated.
Thank you
ggplot's geom_bar() accepts the width parameter, but doesn't line them up neatly against one another in dodged position by default. The following workaround references the solution here:
library(dplyr)
# calculate x-axis position for bars of varying width
gr <- gr %>%
group_by(drug) %>%
arrange(practice) %>%
mutate(pos = 0.5 * (cumsum(prop) + cumsum(c(0, prop[-length(prop)])))) %>%
ungroup()
x.labels <- gr$practice[gr$drug == "a"]
x.pos <- gr$pos[gr$drug == "a"]
ggplot(gr,
aes(x = pos, y = prevalence,
fill = country, width = prop,
ymin = low.CI, ymax = high.CI)) +
geom_col(col = "black") +
geom_errorbar(size = 0.25, colour = "black") +
facet_wrap(~drug) +
scale_fill_manual(values = c("c1" = "gray79",
"c2" = "gray60",
"c3" = "gray39"),
guide = F) +
scale_x_continuous(name = "Drug",
labels = x.labels,
breaks = x.pos) +
labs(title = "Drug usage by country and practice", y = "Prevalence") +
theme_classic()
There is a lot of information you are trying to convey here - to contrast drug A and drug B across countries using the barplots and accounting for proportions, you might use the facet_grid function. Try this:
colour<-c(rep("gray79",10),rep("gray60",6),rep("gray39",2))
gr$drug <- paste("Drug", gr$drug)
p<-ggplot(data=gr, aes(x=factor(practice), y=as.numeric(prevalence),
ymax=high.CI,ymin = low.CI,
position="dodge",fill=practice, width=prop))
p + theme_bw()+ facet_grid(drug~country, scales="free") +
geom_bar(stat="identity") +
labs(x="Practice",y="Prevalence") +
geom_errorbar(position=position_dodge(0.9), width=0.25,size=0.25,colour="black") +
ggtitle("Drug usage by country and practice") +
scale_fill_manual(values = colour)+ guides(fill=F)
The width is too small in the C1 country and as you indicated the one clinic is quite influential.
Also, you can specify your aesthetics with the ggplot(aes(...)) and not have to reset it and it is not needed to include the dataframe objects name in the aes function within the ggplot call.

ggplot's scale_y_log10 behavior

Trying to plot a stacked histogram using ggplot:
set.seed(1)
my.df <- data.frame(param = runif(10000,0,1),
x = runif(10000,0.5,1))
my.df$param.range <- cut(my.df$param, breaks = 5)
require(ggplot2)
not logging the y-axis:
ggplot(my.df,aes_string(x = "x", fill = "param.range")) +
geom_histogram(binwidth = 0.1, pad = TRUE) +
scale_fill_grey()
gives:
But I want to log10+1 transform the y-axis to make it easier to read:
ggplot(my.df, aes_string(x = "x", y = "..count..+1", fill = "param.range")) +
geom_histogram(binwidth = 0.1, pad = TRUE) +
scale_fill_grey() +
scale_y_log10()
which gives:
The tick marks on the y-axis don't make sense.
I get the same behavior if I log10 transform rather than log10+1:
ggplot(my.df, aes_string(x = "x", fill = "param.range")) +
geom_histogram(binwidth = 0.1, pad = TRUE) +
scale_fill_grey() +
scale_y_log10()
Any idea what is going on?
It looks like invoking scale_y_log10 with a stacked histogram is causing ggplot to plot the product of the counts for each component of the stack within each x bin. Below is a demonstration. We create a data frame called product.of.counts that contains the product, within each x bin of the counts for each param.range bin. We use geom_text to add those values to the plot and see that they coincide with the top of each stack of histogram bars.
At first I thought this was a bug, but after a bit of searching, I was reminded of the way ggplot does the log transformation. As described in the linked answer, "scale_y_log10 makes the counts, converts them to logs, stacks those logs, and then displays the scale in the anti-log form. Stacking logs, however, is not a linear transformation, so what you have asked it to do does not make any sense."
As a simpler example, say each of five components of a stacked bar have a count of 100. Then log10(100) = 2 for all five and the sum of the logs will be 10. Then ggplot takes the anti-log for the scale, which gives 10^10 for the total height of the bar (which is 100^5), even though the actual height is 100x5=500. This is exactly what's happening with your plot.
library(dplyr)
library(ggplot2)
# Data
set.seed(1)
my.df <- data.frame(param=runif(10000,0,1),x=runif(10000,0.5,1))
my.df$param.range <- cut(my.df$param,breaks=5)
# Calculate product of counts within each x bin
product.of.counts = my.df %>%
group_by(param.range, breaks=cut(x, breaks=seq(-0.05, 1.05, 0.1), labels=seq(0,1,0.1))) %>%
tally %>%
group_by(breaks) %>%
summarise(prod = prod(n),
param.range=NA) %>%
ungroup %>%
mutate(breaks = as.numeric(as.character(breaks)))
ggplot(my.df, aes(x, fill=param.range)) +
geom_histogram(binwidth = 0.1, colour="grey30") +
scale_fill_grey() +
scale_y_log10(breaks=10^(0:14)) +
geom_text(data=product.of.counts, size=3.5,
aes(x=breaks, y=prod, label=format(prod, scientific=TRUE, digits=3)))

Resources