R Shiny dynamically edit reactiveTimer timer interval - r

I am trying to create an R shiny dashboard which has a play and pause button for updating displaying a graph data along a sequence of time. To do this I was using a reactiveTimer, but it does not allow me to dynamically edit the reactiveTimer interval.
Error in .getReactiveEnvironment()$currentContext() :
Operation not allowed without an active reactive context. (You tried to do something that can only be done from inside a reactive expression or observer.)
My attempted code is
library(shiny)
library(ggplot2)
library(tidyr)
input.df <- read.csv(file = 'InputData.csv', header = TRUE, sep=",")
ui<-fluidPage(
titlePanel("Auckland Volcanic Simulation"),
hr(style="border-color: grey;"),
sidebarLayout(
# panel with all inputs
sidebarPanel(
fluidRow(
column(7,actionButton("stop","Pause")),
column(5,actionButton("play","Play"))
),
fluidRow(
column(7,actionButton("skip","Skip")),
column(3,actionButton("reset","Reset"))
)
),
# plot panel
mainPanel(
# visual data on same row
fluidRow(
span(textOutput("Date"), style="font-size: 24px;font-style: italic;")
),
fluidRow(
column(12,plotOutput('defGraph'))
)
)
)
)
server<-function(input,output){
control<-reactiveValues() # reactive to store all reactive variables
control$resetindicator<-0 # used to change button labels
control$count<-0 # day number in sequence
control$min<-0
control$max<-0
control$timer<-Inf
forward<-function(){
print("in forward")
control$resetindicator<-1 # change button label
step <- 12
if (step >= control$count) {
min <- 0
max <- control$count
} else {
min <- control$count - step
max <- control$count
}
control$min <- min
control$max <- max
control$count<-control$count+1
}
observeEvent(input$skip,{
forward()
})
session<-reactiveValues()
session$timer<-reactiveTimer(intervalMs = control$timer, session = getDefaultReactiveDomain())
observeEvent(input$play,{
print("play")
control$timer<-1000
#session$timer<-reactiveTimer(intervalMs = 1000, session = getDefaultReactiveDomain())# Time interval
observeEvent(session$timer(),{
print("calling forward")
forward()
})
})
observeEvent(input$stop,{
print("stop")
control$timer<-Inf
#session$timer<-reactiveTimer(intervalMs = Inf, session = getDefaultReactiveDomain())
})
## when reset button is pressed (set everything to original values, plus set seed)
observeEvent(input$reset,{
control$resetindicator<-0
control$count= 0
})
# ## depth plot output
output$DepthGraph <- renderPlot({
eqdepthdata.df <- input.df[(input.df$DayTimeID <= control$max & input.df$DayTimeID >= control$min), ]
ggplot(data.df, aes(x = DateTime, y = -1*AverageDepth_km)) +
geom_point() +
scale_color_manual(values = c("darkorange")) +
labs(title = "Average depth of earthquakes", x = "", y = "Depth (km)") +
ylim(-40, 0) +
theme_light() +
theme(text = element_text(size = 14)) +
theme(axis.text.x = element_text(angle = 45, hjust = 1))
})
## visual data outputs
output$Date<-renderText({
paste("Date:", input.df$DateTime[input.df$DayTimeID == control$count-1])
})
}
shinyApp(ui = ui, server = server)
CSV example is
DayTimeID,Date, Time, DateTime, AverageDepth_km
0, 20/08/20, 0:00, 20/08/20 0:00, 17
1, 20/08/20, 4:00, 20/08/20 4:00, 8
2, 20/08/20, 8:00, 20/08/20 8:00, 14
3, 20/08/20, 12:00, 20/08/20 12:00, 3
4, 20/08/20, 16:00, 20/08/20 16:00, 5
5, 20/08/20, 20:00, 20/08/20 20:00, 9
I was trying to update a parameter for the interval by updating the parameter. I was following code presented here https://nhsrcommunity.com/blog/animating-a-graph-over-time-in-shiny/ but if press play->pause->play but the time interval goes twice as fast as if I understand you create another reactiveTimer.
Any assistance would be appreciated.

Related

How can I summarize reactive data from outside a render function in a Shiny app?

For this particular shiny example I am trying to apply a circular model and display and summarize it within the ggplot and a summary table. This is straightforward up until trying to add in reactive 'brushplot' capabilities. Each of the data points represent a date and the point of the selective graph is to be able to discard undesirable dates. As far as I've figured out, this requires the filtering and model fitting to be within a renderPlot which then leads to complications (unable to find the data/model) trying to call the filtered data and the circular model's statistical outputs outside the function and/or within another reactive function. This yields the Error: object 'k_circ.lm' not found So my questions are:
How can I read the filtered data from the renderPlot function
to the summarytable matrix?
How could I similarly add the fitted model values and residuals from k_circ.lm?
Is there a better or simpler way to arrange app to avoid this?
Alternatative code lines are commented out for a working (if poorly formatted) summary table.
library(dplyr) # For data manipulation
library(ggplot2) # For drawing plots
library(shiny) # For running the app
library(plotly) # For data manipulation
library(circular) # For Circular regressions
library(gridExtra)
# Define UI ----
ui <- fluidPage(
# App title ----
titlePanel("Circular Brushplot Demo"),
# Sidebar layout with input and output definitions ----
sidebarLayout(
sidebarPanel(
actionButton("exclude_toggle", "Toggle points"),
actionButton("exclude_reset", "Reset")
),
# Main panel for displaying outputs ----
mainPanel(
#reactive plot output with point and 'brush' selection
fluidRow(plotOutput("k", height = 400,
click = "k_click",
brush = brushOpts(
id = "k_brush" ))),
plotOutput("s", height = 400)
)
)
)
# Define server logic
server <- function(input, output) {
psideg <- c(356,97,211,232,343,292,157,302,335,302,324,85,324,340,157,238,254,146,232,122,329)
thetadeg <- c(119,162,221,259,270,29,97,292,40,313,94,45,47,108,221,270,119,248,270,45,23)
## Data in radians then to "circular format"
psirad <- psideg*2*pi/360
thetarad <- thetadeg*2*pi/360
cpsirad <- circular(psirad)
cthetarad <- circular(thetarad)
cdat <- data.frame(cpsirad, cthetarad)
###### reactive brush plot ########
# For storing which rows have been excluded
vals <- reactiveValues(
keeprows = rep(TRUE, nrow(cdat)))
output$k <- renderPlot({
# Plot the kept and excluded points as two separate data sets
keep <- cdat[ vals$keeprows, , drop = FALSE]
exclude <- cdat[!vals$keeprows, , drop = FALSE]
## Fits circular model specifically for 'keeprows' of selected data
k_circlm <- lm.circular(type = "c-c", y = keep$cthetarad, x = keep$cpsirad, order = 1)
k_circlm
ggplot(keep, aes(cthetarad, cpsirad)) +
geom_point(aes(cthetarad, cpsirad, colour = keep$Vmag, size = 5))+
scale_colour_gradient(low ="blue", high = "red")+
geom_smooth(method = lm, fullrange = TRUE, color = "black") +
geom_point(data = exclude, shape = 13, size = 5, fill = NA, color = "black", alpha = 0.25) +
annotate("text", x = min(keep$cthetarad), y = Inf, hjust = .1, vjust = 1,
label = paste0("p value 1 = ", round(k_circlm$p.values[1], 2)), size = 7)+
annotate("text", x = min(keep$cthetarad), y = Inf, hjust = .1, vjust = 2.5,
label = paste0("p value 2 = ", round(k_circlm$p.values[2], 2)), size = 7)+
annotate("text", x = min(keep$cthetarad), y = Inf, hjust = .1, vjust = 4,
label = paste0("rho = ", round(k_circlm$rho, 2)), size = 7)+
xlab("Lighthouse Direction (radians)")+ ylab("ADCP site direction (radians)")+
theme(axis.title.x = element_text(size = 20), axis.title.y = element_text(size = 20))
})
# Toggle points that are clicked
observeEvent(input$k_click, {
res <- nearPoints(cdat, input$k_click, allRows = TRUE)
vals$keeprows <- xor(vals$keeprows, res$selected_)})
# Toggle points that are brushed, when button is clicked
observeEvent(input$exclude_toggle, {
res <- brushedPoints(cdat, input$k_brush, allRows = TRUE)
vals$keeprows <- xor(vals$keeprows, res$selected_)})
# Reset all points
observeEvent(input$exclude_reset, {
vals$keeprows <- rep(TRUE, nrow(cdat))})
output$s <- renderPlot({
# Create Summary table
summarytable <- data.frame(matrix(ncol = 4, nrow = nrow(keep)))
colnames(summarytable) <- c( "Psi_dir", "Theta_dir", "Fitted_values", "Residuals")
# Un-comment lines below to read from non-reactive data for working summary table
#summarytable$Psi_dir <- round(cdat$cpsirad, 2)
#summarytable$Theta_dir <- round(cdat$cthetarad, 2)
# attempting to pull from circlm within render plot
# comment out for summarytable to work
summarytable$Psi_dir <- round(keep$cpsirad, 2)
summarytable$Theta_dir <- round(keep$cthetarad, 2)
summarytable$Fitted_values <- round(k_circ.lm$fitted)
summarytable$Residuals <- round(k_circ.lm$residuals)
# outputing table with minimal formatting
summarytable <-na.omit(summarytable)
t <- tableGrob(summarytable)
Q <- grid.arrange(t, nrow = 1)
Q
}
)
}
shinyApp(ui = ui, server = server)
Here's a few ideas - but there are multiple approaches to handling this, and you probably want to restructure your server function a bit more after working with this further.
First, you probably want a reactive expression that will update your model based on vals$keeprows as this changes with your clicks. Then, you can access the model results from this expression from both your plot and data table.
Here is an example:
fit_model <- reactive({
## Keep and exclude based on reactive value keeprows
keep = cdat[ vals$keeprows, , drop = FALSE]
exclude = cdat[!vals$keeprows, , drop = FALSE]
## Fits circular model specifically for 'keeprows' of selected data
k_circlm <- lm.circular(type = "c-c", y = keep$cthetarad, x = keep$cpsirad, order = 1)
## Returns list of items including what to keep, exclude, and model
list(k_circlm = k_circlm, keep = keep, exclude = exclude)
})
It will return a list that you can access from the plot:
output$k <- renderPlot({
exclude <- fit_model()[["exclude"]]
keep <- fit_model()[["keep"]]
k_circlm <- fit_model()[["k_circlm"]]
ggplot(keep, aes(cthetarad, cpsirad)) +
...
And can access the same from your table (though you have as renderPlot?):
output$s <- renderPlot({
keep = fit_model()[["keep"]]
k_circ.lm <- fit_model()[["k_circlm"]]
# Create Summary table
summarytable <- data.frame(matrix(ncol = 4, nrow = nrow(keep)))
...
Note that because the table length changes with rows kept, you might want to use nrow(keep) as I have above, rather than nrow(cdat), unless I am mistaken.
I also loaded gridExtra library for testing this.
I suspect there are a number of other improvements you could consider, but thought this might help you get to a functional state first.

Shiny combining inputs

I have a data set with three laps (15s/lap) each of which shows the different speed for every second:
AA <- as.data.frame(cbind(c(10,12,11,12,12,11,12,13,11,9,9,12,11,10,12,9,8,7,9,8,7,9,9,8,9,7,9,10,10,10,7,6,7,8,8,7,6,6,7,8,7,6,7,8,8),
c(rep("Lap_1",15),rep("Lap_2",15),rep("Lap_3",15))))
I want to compare the three laps together, but for the first one I'd like to use a sliderInput to select only some of the 15 secondes. I'm having some difficulties to add that to my code. Here is what I have for the moment:
install.packages("shiny")
install.packages("ggplot2")
library(shiny)
library(ggplot2)
colnames(AA) <- c("Speed","Lap")
AA$Speed <- as.numeric(as.character(AA$Speed))
ui=shinyUI(
fluidPage(
titlePanel("Title here"),
sidebarLayout(
sidebarPanel(
checkboxGroupInput("lap_choose",
label = "Choose the laps",
choices = c("Lap_1","Lap_2","Lap_3")),
sliderInput("secs_1",
"Seconds in L1:",
min = 0,
max = 15,
value = c(3,10),
step=1)),
mainPanel(
plotOutput("Comparison"))
)
)
)
server=function(input,output){
#data manipulation
data_1=reactive({
return(AA[AA$Lap%in%input$lap_choose,])
})
output$Comparison <- renderPlot({
ggplot(data=data_1(), aes(Speed, fill = Lap)) +
stat_density(aes(y = ..density..),
position = "identity",
color = "black",
alpha = 0.8) +
xlab("Distribution") +
ylab("Density") +
ggtitle("Comparison") +
theme(plot.title = element_text(hjust = 0.5,size=24, face="bold"))
})
}
shinyApp(ui,server)
I should use the secs_1 at some point to update data_1, but didn't find out how yet. Any ideas?
If i am understanding correctly, you want to filter out some values(based on sec_1 sliderInput) if "lap" variable is "lap_1".
Try using ifelse statement in data_1 function.
data_1=reactive({
xc <- AA[AA$Lap%in%input$lap_choose,]
gh <- ifelse(xc$Lap == "Lap_1" & xc$Speed %in% c(input$secs_1[1],input$secs_1[2]),
FALSE, TRUE)
return(xc[gh,])
})

R Shiny plot for time series data, ggplot, producing NAs only

I have problems with my ggplot in Shiny. I am new to Shiny, so there are probably some rookie mistakes in the code. But I receive the following warnings:
Listening on http://127.0.0.1:4278`
Warning: Removed 93 rows containing non-finite values (stat_smooth).
Warning: Removed 93 rows containing missing values (geom_point).
Warning: Removed 1 rows containing missing values (geom_text).
The R code:
library(shiny)
library(ggplot2)
ggplot_df <- data.frame("start_ts"=c(1555279200,1555280100,1555281000,1555281900,1555282800),
"V1"=c(6.857970e-04,7.144347e-05,1.398045e-06,2.997632e-05,2.035446e-06),
"sum"=c(20,21,22,15,23))
# Small test data set with 5 observations... 93 in original one
# Define UI for application
ui <- fluidPage(sliderInput("time", "Time:",
min = as.POSIXct("00:00",format="%H:%M", tz=""),
max = as.POSIXct("24:00",format="%H:%M", tz=""),
value = c(
as.POSIXct("00:00",format="%H:%M")
), timeFormat = "%H:%M", step=60*15, timezone = "",
animate=
animationOptions(interval=300, loop=TRUE)),
plotOutput("plot")
)
# Define server logic required
server <- function(input, output) {
output$plot<-renderPlot({
ggplot_df$start_ts <-as.POSIXct(ggplot_df$start_ts, format="%H:%M", tz="",origin="1970-01-01")
ggplot_df<-ggplot_df[ggplot_df$start_ts==input$time,]
ggplot(ggplot_df,aes(x=sum,y=V1))+geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = FALSE) +
ylim(0,3) +
xlim(0,max(ggplot_df$sum)) +
annotate('text', max(ggplot_df$sum)-10,3,
label = paste("~R^{2}==",round(cor(ggplot_df$sum, ggplot_df$V1), digits=2)),parse = TRUE,size=4)
})
}
# Run the application
shinyApp(ui = ui, server = server)
Note that exactly the same thing is happening even if I define the time zone.
ggplot_df is a data frame with 93 rows. What have I done wrong? The plot I receive is empty, no points, etc, as shown below:
The problem is that the POSIXct column is a datetime, but the slider input is only a time. Is date important here is it only time of day which is of interest? The code below makes some plots, although I can't tell what the desired end result is, so it may not be quite right
ui <- fluidPage(sliderInput("time", "Time:",
min = as.POSIXct("2019-04-14 00:00",format="%Y-%m-%d %H:%M", tz=""),
max = as.POSIXct("2019-04-15 24:00",format="%Y-%m-%d %H:%M", tz=""),
value = c(
as.POSIXct("2019-04-14 00:00")
), timeFormat = "%Y-%m-%d %H:%M", step=60*15, timezone = "",
animate=
animationOptions(interval=300, loop=TRUE)),
plotOutput("plot")
)
# Define server logic required
server <- function(input, output) {
output$plot<-renderPlot({
ggplot_df$start_ts <-as.POSIXct(ggplot_df$start_ts, tz="",origin="1970-01-01")
ggplot_df<-ggplot_df[ggplot_df$start_ts==input$time,]
ggplot(ggplot_df,aes(x=sum,y=V1))+geom_point() +
theme_bw() +
geom_smooth(method = "lm", se = FALSE) +
ylim(0,3) +
xlim(0,max(ggplot_df$sum)) +
annotate('text', max(ggplot_df$sum)-10,3,
label = paste("~R^{2}==",round(cor(ggplot_df$sum, ggplot_df$V1), digits=2)),parse = TRUE,size=4)
})
}

Updating y-axis Reactively with geom_histogram from ggplot and Shiny R

So I am trying to tackle the following but I may have started down the wrong road.
As these sample sizes increase, I need to update the y-limits so the highest bar in geom_histogram() doesn't go off the top. The especially happens if the st. dev. is set near 0.
This is literally my second day working with Shiny and reactive applications so I feel I've gotten myself into a pickle.
I think I need to save the ggplot() objects and then update their ylimit reactively with the value of the largest bar from the last histogram. Just not sure if I can do that the way this thing is set up now.
(I am realizing I had a similar problem over 2 years ago)
ggplot2 Force y-axis to start at origin and float y-axis upper limit
This is different because it is the height of a histogram that needs to tell the y-axis to increase, not the largest data value. Also, because Shiny.
My server.R function looks like
library(shiny)
library(ggplot2)
library(extrafont)
# Define server logic for random distribution application
function(input, output, session) {
data <- reactive({
set.seed(123)
switch(input$dist,
norm = rnorm(input$n,
sd = input$stDev),
unif = runif(input$n,-4,4),
lnorm = rlnorm(input$n)
)
})
height="100%"
plotType <- function(blah, maxVal, stDev, n, type) {
roundUp <- function(x) 10^ceiling(log10(x)+0.001)
maxX<- roundUp(maxVal)
breakVal<-max(floor(maxX/10),1)
switch(type,
norm = ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth = 0.2,
boundary = 0,
colour = "black") +
scale_y_continuous(limits = c(0, maxX),
breaks = seq(0, maxX, breakVal),
expand = c(0, 0)) +
scale_x_continuous(breaks = seq(-4, 4, 1),
expand = c(0, 0)) +
theme_set(theme_bw(base_size = 40) +
ylab("Frequency")+
xlab("")+
coord_cartesian(xlim=c(-4, 4))+
ggtitle(paste("n = ",n, "St Dev =", stDev," Normal Distribution ", sep = ' ')),
unif = ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth=0.1, boundary =0,colour = "black")+
scale_y_continuous(limits = c(0,roundUp(maxVal*(3/stDev))),
breaks=seq(0,roundUp(maxVal*(3/stDev)), roundUp(maxVal*(3/stDev))/10),
expand = c(0, 0))+
scale_x_continuous(breaks=seq(-4,4,1),expand = c(0, 0))+
theme_set(theme_bw(base_size = 40))+
ylab("Frequency")+xlab("")+
coord_cartesian(xlim=c(-4,4))+
ggtitle(paste("n = ",n, " Uniform Distribution ", sep = ' ')),
lnorm = ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth=0.2, boundary =0,colour = "black")+
scale_y_continuous(limits = c(0,maxX),
breaks=seq(0,maxX, breakVal),
expand = c(0, 0))+
scale_x_continuous(breaks=seq(0,8,1),expand = c(0, 0))+
theme_set(theme_bw(base_size = 40))+
ylab("Frequency")+xlab("")+
coord_cartesian(xlim=c(0,8))+
ggtitle(paste("n = ",n, " Log-Normal Distribution ", sep = ' '))
)
}
observe({
updateSliderInput(session, "n",
step = input$stepSize,
max=input$maxN)
})
plot.dat <- reactiveValues(main=NULL, layer1=NULL)
#plotType(data, maxVal, stDev, n, type)
output$plot <- renderPlot({
plotType(data(),
switch(input$dist,
norm = max((input$n)/7,1),
unif = max((input$n)/50,1),
lnorm =max((input$n)/8,1)
),
input$stDev,
input$n,
input$dist) })
# Generate a summary of the data
output$summary <- renderTable(
as.array(round(summary(data())[c(1,4,6)],5)),
colnames=FALSE
)
output$stDev <- renderTable(
as.array(sd(data())),
colnames=FALSE
)
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(x=data())
})
}
And my ui.R looks like
library(shiny)
library(shinythemes)
library(DT)
# Define UI for random distribution application
shinyUI(fluidPage(theme = shinytheme("slate"),
# Application title
headerPanel("Michael's Shiny App"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the
# br() element to introduce extra vertical spacing
sidebarLayout(
sidebarPanel(
tags$head(tags$style("#plot{height:90vh !important;}")),
radioButtons("dist", "Distribution:",
c("Standard Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm")),
br(),
numericInput("stepSize", "Step", 1, min = 1, max = NA, step = NA,
width = NULL),
numericInput("maxN", "Max Sample Size", 50, min = NA, max = NA, step = NA,
width = NULL),
br(),
sliderInput("n",
"Number of observations:",
value = 0,
min = 1,
max = 120000,
step = 5000,
animate=animationOptions(interval=1200, loop=T)),
sliderInput("stDev",
"Standard Deviation:",
value = 1,
min = 0,
max = 3,
step = 0.1,
animate=animationOptions(interval=1200, loop=T)),
p("Summary Statistics"),
tabPanel("Summary", tableOutput("summary")),
p("Sample St. Dev."),
tabPanel("Standard Dev", tableOutput("stDev")),
width =2
),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(
tabsetPanel(type = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Table", tableOutput("table"))
))
)))
The whole thing has a lot of redundancy. What I want to do, is once the biggest bar on the histogram gets close to the upper y-limit, I want the ylimit to jump to the next power of 10.
Any suggestions are greatly appreciated.
Update Loosely, the solution that I ended up using is as follows: In the renderPlot() function, you need to save the ggplot object. Then as mentioned below, access the ymax value (still within renderPlot()),
ggplot_build(norm)$layout$panel_ranges[[1]]$y.range[[2]]
and then use that to update the y-axis. I used the following function to make the axis limit "nice".
roundUpNice <- function(x, nice=c(1,2,4,5,6,8,10)) {
10^floor(log10(x)) * nice[[which(x <= 10^floor(log10(x)) * nice)[[1]]]]
}
Then updating the y-axis. (still within renderplot())
ymaxX = roundUpNice(ggplot_build(norm)$layout$panel_ranges[[1]]$y.range[[2]])
norm+scale_y_continuous(limits = c(0, max(ymaxX, 20)),
expand=c(0,0))
First, store the histogram (default axes).
p1 <- ggplot(...) + geom_histogram()
Then, Use ggplot_build(p1) to access the heights of the histogram bars. For example,
set.seed(1)
df <- data.frame(x=rnorm(10000))
library(ggplot2)
p1 <- ggplot(df, aes(x=x)) + geom_histogram()
bar_max <- max(ggplot_build(p1)[['data']][[1]]$ymax) # where 1 is index 1st layer
bar_max # returns 1042
You will need a function to tell you what the next power of 10 is, for example:
nextPowerOfTen <- function(x) as.integer(floor(log10(x) + 1))
# example: nextPowerOfTen(999) # returns 3 (10^3=1000)
You will want to check whether the bar_max is within some margin (based on your preference) of the next power of 10. If an adjustment is triggered, you can simply do p1 + scale_y_continuous(limits=c(0,y_max_new)).
I found the answer hidden in the "scale_y_continuous()" portion of your code. The app was very close, but in some cases, the data maxed out the y-axis, which made it appear like it was running further than the axis limits as you said.
To fix this problem, the expand argument within the scale_y_continuous section needs to be set to "c(0.05, 0)", instead of "c(0, 0)".
First, I've replicated an example of the graph run-off you were describing by setting the sample size to 50 and standard deviation to 0.3 within your app. After running the original code with "expand=c(0, 0)", we can see we get the following graph:
This problem is fixed by changing the argument to "expand=c(0.05, 0)", as shown here:
For copies of the fixed scripts, see below.
Part 1 -- server.R
library(shiny)
library(ggplot2)
library(extrafont)
# Define server logic for random distribution application
function(input, output, session) {
data <- reactive({
set.seed(123)
switch(input$dist,
norm = rnorm(input$n,
sd = input$stDev),
unif = runif(input$n,-4,4),
lnorm = rlnorm(input$n)
)
})
height="100%"
plotType <- function(blah, maxVal, stDev, n, type){
roundUp <- function(x){10^ceiling(log10(x)+0.001)}
maxX<- roundUp(maxVal)
breakVal<-max(floor(maxX/10),1)
switch(type,
norm=ggplot(as.data.frame(blah), aes(x=blah)) +
geom_histogram(binwidth = 0.2,
boundary = 0,
colour = "black") +
scale_y_continuous(limits = c(0, maxX),
breaks = seq(0, maxX, breakVal),
expand = c(0.05, 0)) +
scale_x_continuous(breaks = seq(-4, 4, 1),
expand = c(0, 0)) +
theme_set(theme_bw(base_size = 40)) +
ylab("Frequency") +
xlab("") +
coord_cartesian(xlim=c(-4, 4))+
ggtitle(paste("n = ",n, "St Dev =", stDev,
" Normal Distribution ", sep = ' ')),
unif=ggplot(as.data.frame(blah), aes(x=blah)) +
geom_histogram(binwidth=0.1, boundary=0, colour="black")+
scale_y_continuous(
limits = c(0,roundUp(maxVal*(3/stDev))),
breaks=seq(0,roundUp(maxVal*(3/stDev)),
roundUp(maxVal*(3/stDev))/10),
expand = c(0.05, 0))+
scale_x_continuous(breaks=seq(-4,4,1),expand=c(0, 0)) +
theme_set(theme_bw(base_size = 40))+
ylab("Frequency")+xlab("")+
coord_cartesian(xlim=c(-4,4))+
ggtitle(paste("n = ",n,
" Uniform Distribution ", sep = ' ')),
lnorm=ggplot(as.data.frame(blah), aes(x=blah))+
geom_histogram(binwidth=0.2,boundary=0, colour="black") +
scale_y_continuous(limits=c(o,maxX),
breaks=seq(0,maxX, breakVal),
expand = c(0.05, 0)) +
scale_x_continuous(breaks=seq(0,8,1),
expand = c(0, 0)) +
theme_set(theme_bw(base_size = 40)) +
ylab("Frequency") +
xlab("") +
coord_cartesian(xlim=c(0,8)) +
ggtitle(paste("n = ",n,
" Log-Normal Distribution ",
sep = ' '))
)
}
observe({
updateSliderInput(session, "n",
step = input$stepSize,
max=input$maxN)
})
plot.dat <- reactiveValues(main=NULL, layer1=NULL)
#plotType(data, maxVal, stDev, n, type)
output$plot <- renderPlot({
plotType(data(),
switch(input$dist,
norm = max((input$n)/7,1),
unif = max((input$n)/50,1),
lnorm =max((input$n)/8,1)
),
input$stDev,
input$n,
input$dist) })
# Generate a summary of the data
output$summary <- renderTable(
as.array(round(summary(data())[c(1,4,6)],5)),
colnames=FALSE
)
output$stDev <- renderTable(
as.array(sd(data())),
colnames=FALSE
)
# Generate an HTML table view of the data
output$table <- renderTable({
data.frame(x=data())
})
}
Part 2 -- ui.R
library(shiny)
library(shinythemes)
library(DT)
# Define UI for random distribution application
shinyUI(fluidPage(theme = shinytheme("slate"),
# Application title
headerPanel("Michael's Shiny App"),
# Sidebar with controls to select the random distribution type
# and number of observations to generate. Note the use of the
# br() element to introduce extra vertical spacing
sidebarLayout(
sidebarPanel(
tags$head(tags$style("#plot{height:90vh !important;}")),
radioButtons("dist", "Distribution:",
c("Standard Normal" = "norm",
"Uniform" = "unif",
"Log-normal" = "lnorm")),
br(),
numericInput("stepSize", "Step", 1,
min = 1, max = NA, step = NA, width = NULL),
numericInput("maxN", "Max Sample Size", 50,
min = NA, max = NA, step = NA,width = NULL),
br(),
sliderInput("n", "Number of observations:", value = 0,
min = 1, max = 120000, step = 5000,
animate=animationOptions(interval=1200, loop=T)),
sliderInput("stDev","Standard Deviation:",value = 1,
min = 0,max = 3,step = 0.1,
animate=animationOptions(interval=1200, loop=T)),
p("Summary Statistics"),
tabPanel("Summary", tableOutput("summary")),
p("Sample St. Dev."),
tabPanel("Standard Dev", tableOutput("stDev")),
width =2),
# Show a tabset that includes a plot, summary, and table view
# of the generated distribution
mainPanel(tabsetPanel(type = "tabs",
tabPanel("Plot", plotOutput("plot")),
tabPanel("Table", tableOutput("table"))
))
)))
Update Loosely, the solution that I ended up using is as follows: In the renderPlot() function, you need to save the ggplot object. Then as mentioned below, access the ymax value (still within renderPlot()),
ggplot_build(p1)$layout$panel_ranges[[1]]$y.range[[2]]
and then use that to update the y-axis. I used the following function to make the axis limit "nice".
roundUpNice <- function(x, nice=c(1,2,4,5,6,8,10)) {
if(length(x) != 1) stop("'x' must be of length 1")
10^floor(log10(x)) * nice[[which(x <= 10^floor(log10(x)) * nice)[[1]]]]
}

Delayed execution in R Shiny app

Is it possible have some parts of RShiny app execute in a delayed fashion much like the Delayed start in Windows Services?
Let me elaborate.
I have a shiny app with tabs. Each tab have a bunch of radio buttons on the sidebarPanel. Clicking on each radio button brings up a report. My set up is as simple as this.
However when I load the app every time and when the first tab is auto rendered, all reports associated with all radio buttons under this tab is executed and then the first radio button is selected and its correlating report is displayed. This whole process takes about 10-11 seconds which I want to bring down.
During server start, I simply read my myData.RData file in global.R. So all data is pre-fetched (and I am assuming kept in memory) during server start. What happens when the tab is brought to focus is that the data.frames from myData.RData are read and a series of ggplots (renderPlot) and tables (renderText) are called.
Is there a way I can render the first report within few seconds and then proceed to executing other ggplots and tables? I did go thru reactivity conductors and isolations but couldn't figure what solution fits my problem here.
Or is there any other way I can speeden the load (and refresh) time?
Some code to help understand the issue..
# In server.R
library(shiny)
library(plyr)
library(ggplot2)
library(grid)
source("a.R", local=TRUE)
source("b.R", local=TRUE)
shinyServer(function(input, output) {
# The below two lines represent a report pair to me. So I have a Bar plot and the associated Table report.
output$wSummaryPlot = renderPlot({ print(drawBarPlotA("Bar Plot A")) })
output$wSummaryTable = renderText({ tableA() })
# There are about 20 such pairs in server.R
# Please note that I am including other R file by "source". The first two lines shows that. Don't know if that is what is causing the problem.
# The drawBarPlotA and tableA are functions defined in one of the source files which are included above.
# There are 5 such files which are included similarly.
})
# In ui.R
shinyUI(pageWithSidebar(
headerPanel(windowTitle = "Perfios - DAS", addHeader()),
sidebarPanel(
conditionalPanel(condition = "input.reportTabs == 1 && input.reportType == 'reportTypeA'",
wellPanel(radioButtons("showRadio", strong("Attributes:"),
c("Analysis A" = "a",
"Analysis B" = "b",
"Analysis C" = "c",
"Analysis D" = "d",
"Analysis E" = "e",
"Analysis F" = "f"
)))
))
mainPanel(
tabPanel("A", value = "1",
conditionalPanel(condition = "input.reportType == 'reportTypeA'",
conditionalPanel(condition = "showRadio == 'X'",
plotOutput("wSummaryPlot"), h4("Summary:"), verbatimTextOutput("wSummaryTable"))
# Many such element here to accomodate for those 20 reports...
)))
))
# In drawBarPlotA
drawBarPlotA = function(mainText) {
ggplot(data, aes(variable, value, fill = some_fill)) +
geom_bar(stat = "identity", position = "dodge", color = "grey") +
ylab("Y Label") +
xlab(NULL) +
theme_bw() +
ggtitle(mainText) +
scale_fill_brewer(palette = "Set1") +
annotate("text", x = 1.2, y = 0, label = "Copyright...", size = 4) +
theme(axis.text.x = element_text(angle = 45, hjust = 1, size = "12", face = "bold"),
axis.text.y = element_text(size = "12"),
plot.title = element_text(size = "14", vjust = 3, face = "bold"))
}
tableA = function() {
# This is a data.frame which is returned
data
}
shinyServer(function(input, output, session) {
values <- reactiveValues(starting = TRUE)
session$onFlushed(function() {
values$starting <- FALSE
})
output$fast <- renderText({ "This happens right away" })
output$slow <- renderText({
if (values$starting)
return(NULL)
"This happens later"
})
})

Resources