Frequency Table of Categorical Variables as a Data Frame in R - r

I would like to create a frequency Table of all Categorical Variables as a Data Frame in R. I would like to find the frequency and percentage of each survey response (grouped by condition, as well as the total frequency). I would like to generate this as a data frame.
An example of the desired frequency count out for just ONE variable ("q1"). I want a similar freq count for most of the variables in my data:
I have data such as this. The actual data has many more categorical variables.
library(readr)
data_in <- read_table2("treatment_cur q13_3 q14_1 q14_2 q14_3 q14_4 q14_5 q14_6 q14_7 q14_8 q14_9 q14_10 q14_11 q14_12 q14_13 q14_14 q14_15
Control 3 2 3 6 5 6 6 6 4 5 5 5 4 6 6 5
Control 2 4 5 6 5 6 5 5 6 4 5 5 6 5 4 6
Treatment 3 1 2 6 4 6 5 4 6 4 6 1 5 6 4 6
Control 3 2 3 6 4 6 6 6 6 6 6 6 6 5 5 6
Control NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Control 4 6 5 6 5 6 5 6 6 5 1 1 6 5 5 6
Control 3 3 2 2 3 3 6 6 4 6 5 5 3 6 6 2
Treatment 2 3 2 3 1 3 1 1 1 3 3 3 3 3 3 1
Control 3 5 5 6 3 6 3 3 3 2 2 1 4 2 3 4
Control 2 1 1 1 1 1 4 4 1 1 1 1 1 4 4 2
Control 4 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6
Control 4 2 6 6 4 6 5 6 6 5 6 5 6 6 6 6
Control 2 2 3 3 2 3 5 6 5 3 3 3 3 5 3 2
Control 3 2 4 3 4 5 4 4 5 3 3 5 4 5 5 4
Treatment 2 2 2 2 2 3 1 1 2 2 3 2 3 3 2 3
Control 4 3 3 3 5 6 6 6 6 6 6 6 6 6 6 6
Treatment 2 1 3 3 2 1 3 4 2 2 3 3 2 3 3 3
Treatment 4 2 6 4 4 2 3 5 4 5 1 1 5 4 4 5
Control 3 3 3 4 4 4 4 5 3 2 5 4 5 5 4 4
Control 4 6 6 6 6 6 6 6 6 6 6 6 5 6 6 5
Control 2 2 3 6 2 5 1 2 4 4 1 1 6 4 4 6
Treatment 4 3 3 6 6 6 6 6 6 6 6 6 6 6 6 6
Treatment 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Treatment 1 1 2 4 4 4 1 1 1 1 1 1 6 1 1 6
Treatment 3 2 3 3 2 6 6 6 6 3 3 2 4 5 5 6
Control 2 1 1 1 1 1 1 2 1 1 1 1 1 2 2 1
Control 1 3 3 3 1 1 5 5 2 4 5 5 4 1 2 5
Treatment 3 4 4 5 5 4 4 4 3 5 3 4 4 6 6 5
Control NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Control 2 2 4 6 2 4 2 2 3 5 4 4 4 3 3 5
Treatment 1 1 2 1 1 1 1 1 6 1 1 1 6 2 3 6
Treatment 2 6 1 4 4 1 1 2 2 2 1 2 1 2 2 2
Treatment 3 3 4 4 4 6 6 5 4 6 3 5 5 6 6 4
Treatment 2 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Control 4 3 4 6 4 6 4 5 6 3 4 4 6 6 4 6
Control 4 4 3 6 2 5 2 2 4 3 1 6 5 5 5 5
Control NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Treatment 2 3 3 6 5 6 1 2 6 5 4 4 5 5 5 6
Control 4 6 6 6 6 6 5 5 5 5 5 6 5 5 5 5
Treatment 2 1 1 3 1 3 4 4 4 4 1 4 3 4 4 4
Treatment 2 1 3 3 3 3 4 6 5 4 5 5 4 6 6 5
Control 4 6 6 6 6 6 5 5 5 6 6 5 5 5 6 6
Control NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
Control 4 2 2 4 2 4 6 6 6 6 4 6 5 6 6 5
Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Treatment 3 4 2 5 5 5 6 5 5 5 5 5 5 6 6 6
Control NA 2 4 4 4 4 4 3 4 6 4 5 4 6 4 4
Control 2 2 2 3 1 3 4 1 1 1 2 1 3 3 3 3
Treatment 2 2 2 3 2 2 3 3 2 2 2 2 2 2 2 2
Control 3 3 3 6 6 6 6 6 6 6 5 6 6 6 6 6
Treatment 2 1 2 2 2 1 2 2 1 1 2 1 2 2 1 3
Treatment 4 5 5 6 6 5 5 6 5 5 4 5 5 4 4 5
Control 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Treatment 3 3 4 4 4 6 3 2 5 3 2 2 5 6 5 6
Control 4 4 3 3 6 3 6 6 3 2 4 4 4 4 4 4
Treatment 4 1 3 4 4 4 5 6 6 6 6 6 6 6 6 6
Control 4 4 5 6 5 5 4 6 6 6 6 5 6 6 6 6
Treatment 3 3 4 6 6 6 6 6 5 6 6 5 4 6 6 4
Control 4 4 6 6 4 6 6 6 6 4 4 3 5 6 6 6
Control 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Treatment 4 5 5 6 6 6 6 6 5 5 6 6 5 5 6 6
Treatment 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Control 2 1 2 1 1 1 1 3 1 4 4 1 1 1 1 1
Treatment 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Treatment 4 6 5 5 5 5 5 6 5 4 5 4 4 5 5 4
Treatment 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
Control 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4
Treatment 4 5 6 6 6 5 6 6 6 5 6 6 6 6 6 6
Control 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Treatment 3 3 2 5 4 4 5 6 6 4 5 5 4 5 4 6
Treatment 4 5 4 4 4 5 5 6 4 5 4 3 6 6 6 6
Control 1 2 3 2 1 4 1 1 3 1 3 3 3 3 4 4
Control 3 6 6 6 6 6 5 1 5 6 5 6 6 6 6 6
Control 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Control 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
")
My current solution is too complicated. If I wanted to know the frequency of variables from q13_3:q14_9, I know that I can do something like this to find it:
library(tables)
varList <- 2:11
data_in[varList] <- lapply(data_in[varList], factor,exclude = NULL)
lapply(varList,function(x,df,byVar){
tabular((Factor(df[[x]],paste(colnames(df)[x])) + 1) ~ ((Factor(df[[byVar]],paste(byVar)))*((n=1) + Percent("col"))),
data= df)
},data_in,"treatment_cur")
Below is a snippet of what my current output looks like. The problem is that the output is a list of a list which cannot be exported into a single excel sheet. I have to manually copy everything from the console onto an excel file.
treatment_cur
Control Treatment
q14_8 n Percent n Percent
1 6 13.953 4 12.50
2 4 9.302 4 12.50
3 5 11.628 2 6.25
4 6 13.953 4 12.50
5 5 11.628 7 21.88
6 13 30.233 11 34.38
NA 4 9.302 0 0.00
All 43 100.000 32 100.00
[[10]]
treatment_cur
Control Treatment
q14_9 n Percent n Percent
1 6 13.953 4 12.50
2 6 13.953 4 12.50
3 4 9.302 4 12.50
4 6 13.953 5 15.62
5 5 11.628 8 25.00
6 12 27.907 7 21.88
NA 4 9.302 0 0.00
All 43 100.000 32 10
This works alright, but I want to:
Find the total frequency of each variable value as well (treatment + condition) as an additional column (as seen in the image above);
I do not like the function I am using to produce this output. I want to export this into an excel file, but since this output is actually a list of lists (it cannot be exported to excel), and I am finding it quite cumbersome to copy and paste these values from the console into excel. I would like an easier way of finding these frequencies! Surely R has a better way of doing this...
Any help is MUCH appreciated!!

One way to do this would be to explore using the gtsummary package.
using your code above you can produce a table quite easily with counts and percentages:
library(gtsummary)
library(readr)
library(flextable)
tbl_summary(data_in, by = "treatment_cur") %>%
add_overall() %>%
as_flex_table() %>%
flextable::save_as_docx(., path = "G:/test.docx")
If you just run:
tbl_summary(data_in, by = "treatment_cur") %>%
add_overall()
you will see the table it generates for you. The extra code after that makes it so that it is able to be exported to a docx file. From there you can copy that into excel. This generates the counts you requested and you can determine if it is a simpler implementation.
Another alternative is to write directly to a csv file:
tbl_summary(data_in, by = "treatment_cur") %>%
add_overall() %>%
as_tibble() %>%
readr::write_csv( .,path = "G:/test.csv")
OR
if you really need everything in separate columns you can separate the n and percents into two tables, merge them and then write to csv.
#keep counts only
ncount <- tbl_summary(data_in, by = "treatment_cur",
statistic = all_categorical()~ "{n}") %>%
add_overall()
#keep pcts only
pctdata <- tbl_summary(data_in, by = "treatment_cur",
statistic = all_categorical()~ "{p}%") %>%
add_overall()
#combine and output
tbl_merge(list(ncount, pctdata)) %>%
as_tibble() %>%
readr::write_csv(., "G:/test2.csv")
Edit:
Another way to approach this is with the janitor package. You can adorn counts and percentages pretty easily and merge the datasets together. After that it is easy to export to a csv/Excel. One downside here is you have to loop through your variables to get a table for each and then combine them together, however the code below is a good start to create it:
library(janitor)
datatry <- data_in %>%
janitor::tabyl( q13_3,treatment_cur) %>%
adorn_totals("col") %>%
adorn_totals("row")
datatry2 <- data_in %>%
janitor::tabyl( q13_3,treatment_cur) %>%
janitor::adorn_percentages(denominator = 'col') %>%
adorn_totals("row") %>%
adorn_totals("col") %>%
mutate(Total = ifelse(is.na(q13_3), Total, ifelse(q13_3 == 'Total',1, Total)))
datatry3 <- inner_join(datatry, datatry2, by = 'q13_3') %>%
mutate(variable ='q13_3')

Assuming that you constructed data_in as above:
library(dplyr)
library(purrr)
# reformat
tt <- data_in$treatment_cur
data_in$treatment_cur <- NULL
data_in %>% map(function(a)
{
ret <- data.frame(Treatment.n=rep(0, 6), Control.n=rep(0, 6))
b <- table(a[tt=="Treatment"])
ret[names(b), "Treatment.n"] <- b
b <- table(a[tt=="Control"])
ret[names(b), "Control.n"] <- b
ret$Treatment.percent <- ret$Treatment.n / sum(ret$Treatment.n)
ret$Control.percent <- ret$Control.n / sum(ret$Control.n)
ret
}) %>% do.call(what=cbind)
It assumes answers data is \in 1..6 and NA are ignored.

Related

Convert a small dataset written in SPSS to CSV

I have a small dataset written in SPSS syntax which comes from Table 5.3 p. 189 of this book (type 210 in the page slot to see the table).
I was wondering if there might be a way to convert this data to .csv file? (I want to use the data in R afterwards)
# SPSS Code:
DATA LIST FREE/gpid anx socskls assert.
BEGIN DATA.
1 5 3 3 1 5 4 3 1 4 5 4 1 4 5 4
1 3 5 5 1 4 5 4 1 4 5 5 1 4 4 4
1 5 4 3 1 5 4 3 1 4 4 4
2 6 2 1 2 6 2 2 2 5 2 3 2 6 2 2
2 4 4 4 2 7 1 1 2 5 4 3 2 5 2 3
2 5 3 3 2 5 4 3 2 6 2 3
3 4 4 4 3 4 3 3 3 4 4 4 3 4 5 5
3 4 5 5 3 4 4 4 3 4 5 4 3 4 6 5
3 4 4 4 3 5 3 3 3 4 4 4
END DATA.
EDIT - in order to check answers I am adding here the actual way the data looks after reading it in SPSS :
gpid anx socskls assert
1 5 3 3
1 5 4 3
1 4 5 4
1 4 5 4
1 3 5 5
1 4 5 4
1 4 5 5
1 4 4 4
1 5 4 3
1 5 4 3
1 4 4 4
2 6 2 1
2 6 2 2
2 5 2 3
2 6 2 2
2 4 4 4
2 7 1 1
2 5 4 3
2 5 2 3
2 5 3 3
2 5 4 3
2 6 2 3
3 4 4 4
3 4 3 3
3 4 4 4
3 4 5 5
3 4 5 5
3 4 4 4
3 4 5 4
3 4 6 5
3 4 4 4
3 5 3 3
3 4 4 4
If I understand correctly, the 1st, 5th, 9th, and 13th column of the dataset belong to variable gpid, the 2nd, 6th, 10th, and 14th column belong to variable anx, and so on. So, we need to
reshape from wide to long format
with multiple measure variables
where each measure variable spans several columns
and where some values are missing.
Many roads lead to Rome.
This is what I would do using my favourite tools. In particular, this approach uses the feature of data.table::melt() to reshape multiple measure columns simultaneously. There is no manual cleanup of the data section in a text editor required.
The resulting dataset result can be used directly afterwards in any subsequent R code as requested by the OP. There is no need to take a detour using a .csv file (However, feel free to save result as a .csv file).
library(data.table)
library(magrittr)
cols <- c("gpid", "anx", "socskls", "assert")
raw <- fread(text = "
1 5 3 3 1 5 4 3 1 4 5 4 1 4 5 4
1 3 5 5 1 4 5 4 1 4 5 5 1 4 4 4
1 5 4 3 1 5 4 3 1 4 4 4
2 6 2 1 2 6 2 2 2 5 2 3 2 6 2 2
2 4 4 4 2 7 1 1 2 5 4 3 2 5 2 3
2 5 3 3 2 5 4 3 2 6 2 3
3 4 4 4 3 4 3 3 3 4 4 4 3 4 5 5
3 4 5 5 3 4 4 4 3 4 5 4 3 4 6 5
3 4 4 4 3 5 3 3 3 4 4 4",
fill = TRUE)
mv <- colnames(raw) %>%
matrix(ncol = 4L, byrow = TRUE) %>%
as.data.table() %>%
setnames(new = cols)
result <- melt(raw, measure.vars = mv, na.rm = TRUE)[
order(rowid(variable))][
, variable := NULL]
result
gpid anx socskls assert
1: 1 5 3 3
2: 1 5 4 3
3: 1 4 5 4
4: 1 4 5 4
5: 1 3 5 5
6: 1 4 5 4
7: 1 4 5 5
8: 1 4 4 4
9: 1 5 4 3
10: 1 5 4 3
11: 1 4 4 4
12: 2 6 2 1
13: 2 6 2 2
14: 2 5 2 3
15: 2 6 2 2
16: 2 4 4 4
17: 2 7 1 1
18: 2 5 4 3
19: 2 5 2 3
20: 2 5 3 3
21: 2 5 4 3
22: 2 6 2 3
23: 3 4 4 4
24: 3 4 3 3
25: 3 4 4 4
26: 3 4 5 5
27: 3 4 5 5
28: 3 4 4 4
29: 3 4 5 4
30: 3 4 6 5
31: 3 4 4 4
32: 3 5 3 3
33: 3 4 4 4
gpid anx socskls assert
Some explanations
fread() returns a data.table raw with default column names V1, V2, ... V16 and with missing values filled with NA
mv is a data.table which indicates which columns of raw belong to each target variable:
mv
gpid anx socskls assert
1: V1 V2 V3 V4
2: V5 V6 V7 V8
3: V9 V10 V11 V12
4: V13 V14 V15 V16
This informations is used by melt(). melt() also removes rows with missing values from the resulting long format.
After reshaping, the rows are ordered by the variable number but need to be reordered in the original row order by using rowid(variable). Finally, the variable column is removed.
EDIT: Improved version
Giving a second thought, here is a streamlined version of the code which skips the creation of mv and uses data.table chaining:
library(data.table)
cols <- c("gpid", "anx", "socskls", "assert")
result <- fread(
text = "
1 5 3 3 1 5 4 3 1 4 5 4 1 4 5 4
1 3 5 5 1 4 5 4 1 4 5 5 1 4 4 4
1 5 4 3 1 5 4 3 1 4 4 4
2 6 2 1 2 6 2 2 2 5 2 3 2 6 2 2
2 4 4 4 2 7 1 1 2 5 4 3 2 5 2 3
2 5 3 3 2 5 4 3 2 6 2 3
3 4 4 4 3 4 3 3 3 4 4 4 3 4 5 5
3 4 5 5 3 4 4 4 3 4 5 4 3 4 6 5
3 4 4 4 3 5 3 3 3 4 4 4",
fill = TRUE, col.names = rep(cols, 4L))[
, melt(.SD, measure.vars = patterns(cols), value.name = cols, na.rm = TRUE)][
order(rowid(variable))][
, variable := NULL][]
result
Here, the columns are renamed within the call to fread(). In this case, duplicated column names are desirable (as opposed to the usual use case) because the patterns() function in the subsequent call to melt() use the duplicated column names to combine the columns which belong to one measure variable.
This requires some manual clean-up in Notepad or similar to place the data in the right format. But essentially, this could be imported using the following
df <- data.frame(
gpid = c(1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,
2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3,3),
anx = c(5,5,4,4,3,4,4,4,5,5,4,6,6,5,6,
4,7,5,5,5,5,6,4,4,4,4,4,4,4,4,4,5,4),
socskls = c(3,4,5,5,5,5,5,4,4,4,4,2,2,2,2,
4,1,4,2,3,4,2,4,3,4,5,5,4,5,6,4,3,4),
assert = c(3,3,4,4,5,4,5,4,3,3,4,1,2,3,2,
4,1,3,3,3,3,3,4,3,4,5,5,4,4,5,4,3,4)
)
write.csv(df, "df.csv", row.names = F)
Note that the first 4 values (1, 5, 3, 3) are the gpid, anx, socskls, and assert values for row 1. Whereas the values 1, 5, 4, 3 which appear to be in the next column of the pasted data in SPSS syntax (i.e. the next 4 values reading the syntax left to right) are actually the values for participant 10.
Note: I'm assuming you don't have SPSS installed. If you did the easiest option would using SPSS syntax to create the dataset in SPSS and then just export to R.
Using readLines and some string manipulating tools.
tmp <- readLines("spss1.txt") ## read from .txt
tmp <- trimws(gsub("[A-Z/.]", "", tmp)) ## remove caps and specials
nm <- strsplit(tmp[[1]], " ")[[1]] ## split names
tmp <- unlist(strsplit(tmp[3:11], "\\s{2,}") ) ## split data blocks
Finally, splitting at the spaces gives the result.
dat <- setNames(
type.convert(do.call(rbind.data.frame, strsplit(tmp, "\\s"))),
nm)
Result
dat
# gpid anx socskls assert
# 1 1 5 3 3
# 2 1 5 4 3
# 3 1 4 5 4
# 4 1 4 5 4
# 5 1 3 5 5
# 6 1 4 5 4
# 7 1 4 5 5
# 8 1 4 4 4
# 9 1 5 4 3
# 10 1 5 4 3
# 11 1 4 4 4
# 12 2 6 2 1
# 13 2 6 2 2
# 14 2 5 2 3
# 15 2 6 2 2
# 16 2 4 4 4
# 17 2 7 1 1
# 18 2 5 4 3
# 19 2 5 2 3
# 20 2 5 3 3
# 21 2 5 4 3
# 22 2 6 2 3
# 23 3 4 4 4
# 24 3 4 3 3
# 25 3 4 4 4
# 26 3 4 5 5
# 27 3 4 5 5
# 28 3 4 4 4
# 29 3 4 5 4
# 30 3 4 6 5
# 31 3 4 4 4
# 32 3 5 3 3
# 33 3 4 4 4
Note: Results in the same Wilks' lambda as #emily-kothe's method. Maybe the authors used different data or your manova method is flawed?

How can I read an Elliptical Fourier Descriptor from SHAPE under the Momocs package of Rstudio?

I wish to load a CHC or NEF file from the SHAPE software in order to read the contours under MOMOCS and make the related analyses (Plot, PCA...)
I have difficulties under R as well as under the package.
How should I proceed?
Here is an extract of an outline. The first one is from a CHC and the other one from NEF.
Thank you in advance, any help is welcome.
CHC
IMG_20200710_0001_1 1045 531 1,428639E-02 46736 5 5 4 4 4 5 4 4 4 5 5 4 5 5 5 5 5 5 4 5 6 5 4 5 5 5 6 5 5 6 5 5 5 5 6 5 6 5 5 6 5 5 6 5 6 5 5 6 6 5 6 5 6 5 6 5 6 5 6 6 5 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 6 5 6 5 6 5 6 6 5 6 6 6 5 5 6 6 5 6 6 5 6 6 5 6 6 5 5 6 6 6 6 5 6 5 6 6 6 5 6 5 6 6 6 6 5 6 6 6 5 6 5 6 6 6 6 6 5 6 6 6 5 6 6 5 6 6 6 5 6 6 5 6 6 5 6 6 5 6 6 6 5 6 6 6 6 5 6 6 5 6 6 5 6 6 6 6 5 6 6 5 6 6 6 5 6 6 6 6 6 6 6 5 6 6 6 5 6 5 6 6 6 6 6 6 6 5 6 6 5 6 6 6 5 6 6 6 5 6 6 5 6 6 6 6 5 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 5 6 6 6 5 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 5 6 6 6 6 7 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 5 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 7 6 6 6 6 6 7 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 7 6 7 6 6 6 6 6 7 6 6 6 6 6 6 7 6 6 7 6 6 7 6 6 6 6 6 7 6 7 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 6 7 6 6 6 6 6 7 6 6 7 6 6 6 6 7 6 6 6 6 6 6 7 6 6 6 6 7 6 6 7 6 6 6 6 6 6 7 6 6 6 6 7 6 6 6 6 7 6 6 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 5 6 6 7 6 6 6 7 6 7 6 6 6 6 7 6 6 6 6 7 6 6 6 6 6 7 6 6 7 6 6 6 6 7 6 6 6 6 6 6 6 7 6 6 7 6 6 6 6 7 6 6 6 7 6 6 7 6 6 6 6 6 7 6 6 6 7 6 6 6 6 6 7 6 7 6 6 6 6 6 7 6 6 6 6 7 6 6 7 6 6 7 6 6 6 6 7 6 6 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 2 1 0 2 1 1 0 0 0 0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 3 1 2 2 4 3 1 0 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 2 2 3 1 2 2 3 2 2 2 2 2 2 2 3 1 2 2 2 2 3 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 3 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 2 2 2 1 2 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 2 2 2 1 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 1 2 2 2 2 2 2 1 2 2 2 2 2 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 1 1 2 2 2 2 1 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 1 2 2 2 1 2 2 2 1 2 2 2 2 1 0 2 2 2 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 3 1 0 2 1 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 3 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 1 2 2 3 2 2 2 2 3 2 2 2 2 2 2 2 2 2 3 2 2 2 2 3 2 2 2 3 2 2 3 2 2 3 2 2 3 2 3 2 3 2 2 3 3 2 4 3 2 3 3 4 4 -1
NEF
#CONST 1 1 1 0
#HARMO 15
IMG_20200710_0001_1
1.0000000e+00 3.5723303e-18 -2.2782437e-17 1.4062862e-01
-3.5345700e-03 -2.9677476e-04 -7.7529255e-02 2.8661995e-02
1.0149772e-01 3.3103762e-03 1.0055048e-03 3.3982778e-02
-5.6327330e-04 -3.2074328e-03 -5.6057424e-03 4.8512662e-03
3.8131276e-02 -1.5129959e-05 2.2552160e-03 1.4017338e-02
1.1789915e-04 -2.9600305e-03 -8.4295737e-04 -3.4299796e-04
1.7271413e-02 -7.2651006e-04 -1.2037379e-04 7.6870442e-03
-2.0549746e-04 -1.3433972e-03 -1.8426509e-03 -5.7843862e-04
1.0074513e-02 -9.3238318e-04 4.8671011e-05 5.6731905e-03
-7.5994187e-04 -1.0418345e-03 -7.7574542e-04 -2.8944747e-04
6.4933570e-03 -4.0572074e-04 -7.6458810e-04 4.0939891e-03
-5.4921053e-04 -8.4817676e-04 1.6206266e-04 -4.6108536e-04
4.5195469e-03 -5.4106090e-04 1.6321172e-04 3.1721989e-03
-1.8313986e-04 -3.5979483e-04 4.8276592e-04 -9.0690768e-04
3.0959844e-03 -6.1876139e-04 -6.3948596e-04 2.2105213e-03
In Momocs version 1.3.2 installed from GitHub https://github.com/MomX/Momocs/ I see the function chc2pix() that should import SHAPE's chain codes to R. In earlier Momocs documentation (https://www.rdocumentation.org/packages/Momocs/versions/0.2-03/topics/nef2Coe), you can find (in Examples!) the function nef2Coe(). I do not see this function in the current Momocs 1.3.2 but you can copy the whole function to your R script or save it to .txt and call it from R as source('path/to/your/NEF2COE.txt'). When the Momocs will be fully resurrected as MomX (https://momx.github.io/MomX/), perhaps the function again will be a part of the package.
sorry for the delay.
If you want to use CHC, then chc2pix is your friend indeed. You end up with an traditionnal outline as defined by its (x, y) coordinates.
For the NEF, it's "just" a simple string manipulation task. The clue pointed by #ordynets would likely work (or at least be very useful). Another option would be to go around :
# read the nef
m <- read.table("~/Desktop/nef.txt", skip=3)
# transpose to get in the "right" order
coe <- m %>% t %>% c %>% matrix(nrow=1)
# name columns to make thngs clear
colnames(coe) <- paste0(rep(LETTERS[1:4], times=nrow(m)),
rep(1:nrow(m), each=4))
# from now you can do whatever you want in Momocs
# eg rbind many to have an OutCoe, calculate the inverse EFT:
coe %>% coeff_rearrange("name") %>% coeff_split(nb.h=10) %>% efourier_i() %>% coo_plot()
(by the way, I'm still working on MomX, and such wrapper would fit in Momit but I struggle to find time to finish it).
do not hesitate to contact me directly !

spatstat deleting marks from a point pattern and subseuently the points

I am looking at the point pattern data set in spatstat anemones which has 231 points with marks attached to them which define the diameter.. I want to delete the marks and the points within the point pattern when the diameter is equal to 2
Here is the data:
>
[1] 6 4 4 6 3 3 5 3 5 4 4 6 5 3 4 7 4 6 6 5 4 4 5 3 3 6 4 5 4 4 5 3 3 5
3 4 5 8 5 4 6 5 6 4 5 3 3 4 5 6 4 4 3 4 4 6 5 4 3 6 5 3 [63] 3 6 5 3
3 2 5 7 4 4 4 3 3 4 3 6 2 6 6 3 4 3 7 6 3 4 2 7 4 5 4 4 4 6 4 3 3 3 3
6 7 3 7 3 2 4 3 5 2 3 4 4 3 3 3 6 3 4 5 3 6 3 [125] 7 5 3 3 4 4 5 4 4
6 5 3 3 3 5 3 6 5 5 4 4 3 4 4 4 4 3 4 7 4 6 5 7 6 3 6 5 4 6 4 5 4 5 3
6 3 3 6 4 6 4 4 6 3 5 3 4 6 5 5 4 5 [187] 4 3 3 4 4 4 4 5 4 5 5 5 4 6
4 4 5 3 5 4 3 4 4 4 3 4 5 5 3 3 5 3 4 5 6 2 5 2 3 2 3 3 7 5 4
thanks!
Another solution is to use the generic R command subset:
X <- subset(anemones, marks != 2)
From the question it is not quite clear whether you want to get rid of all the marks after deleting these points. In that case use unmark:
X <- unmark(X)
Correct me if I'm wrong but I'm reading this as meaning you wish to remove observations when anemones$marks is equal to 2.
If so this should do it:
updated_anemones <- anemones[!anemones$marks == 2,]

Create a new variable based on existing variable

My current dataset look like this
Order V1
1 7
2 5
3 8
4 5
5 8
6 3
7 4
8 2
1 8
2 6
3 3
4 4
5 5
6 7
7 3
8 6
I want to create a new variable called "V2" based on the variables "Order" and "V1". For every 8 items in the "Order" variable, I want to assign a value of "0" in "V2" if the varialbe "Order" has observation equals to 1; otherwise, "V2" takes the value of previous item in "V1".
This is the dataset that I want
Order V1 V2
1 7 0
2 5 7
3 8 5
4 5 8
5 8 5
6 3 8
7 4 3
8 2 4
1 8 0
2 6 8
3 3 6
4 4 3
5 5 4
6 7 5
7 3 7
8 6 3
Since my actual dataset is very large, I'm trying to use for loop with if statement to generate "V2". But my code keeps failing. I appreciate if anyone can help me on this, and I'm open to other statements. Thank you!
(Up front: I am assuming that the order of Order is perfectly controlled.)
You need simply ifelse and lag:
df <- read.table(text="Order V1
1 7
2 5
3 8
4 5
5 8
6 3
7 4
8 2
1 8
2 6
3 3
4 4
5 5
6 7
7 3
8 6 ", header=T)
df$V2 <- ifelse(df$Order==1, 0, lag(df$V1))
df
# Order V1 V2
# 1 1 7 0
# 2 2 5 7
# 3 3 8 5
# 4 4 5 8
# 5 5 8 5
# 6 6 3 8
# 7 7 4 3
# 8 8 2 4
# 9 1 8 0
# 10 2 6 8
# 11 3 3 6
# 12 4 4 3
# 13 5 5 4
# 14 6 7 5
# 15 7 3 7
# 16 8 6 3
with(dat,{V2<-c(0,head(V1,-1));V2[Order==1]<-0;dat$V2<-V2;dat})
Order V1 V2
1 1 7 0
2 2 5 7
3 3 8 5
4 4 5 8
5 5 8 5
6 6 3 8
7 7 4 3
8 8 2 4
9 1 8 0
10 2 6 8
11 3 3 6
12 4 4 3
13 5 5 4
14 6 7 5
15 7 3 7
16 8 6 3

Mean and SD in a table

In R, when doing table of two variables, you'll get a frequency table
> table(data$Var1, data$Var2)
1 2 3 4 5
0 0 1 5 6 12
1 1 10 6 7 0
2 2 6 7 6 3
3 2 9 8 3 2
4 4 9 5 3 3
5 3 4 9 4 4
6 2 7 7 4 4
7 2 7 7 6 2
8 5 7 5 5 2
9 5 4 5 6 4
is there a way such that you include the mean and SD in each row, something like
1 2 3 4 5 mean SD
0 0 1 5 6 12 4.20833 0.93153
1 1 10 6 7 0 .. ..
2 2 6 7 6 3
3 2 9 8 3 2
4 4 9 5 3 3
5 3 4 9 4 4
6 2 7 7 4 4
7 2 7 7 6 2
8 5 7 5 5 2
9 5 4 5 6 4
Save the table in something called T, and then:
For the mean and sd:
> cbind(T,
mean=apply(T,1,function(x){
(sum(x*(1:5)))/sum(x)}),
sd=apply(T,1,function(x){sd(rep(1:5,x))}))
1 2 3 4 5 mean sd
0 4 3 1 1 1 2.200000 1.3984118
1 1 2 3 3 3 3.416667 1.3113722
2 2 2 1 2 1 2.750000 1.4880476
3 0 1 2 4 1 3.625000 0.9161254
So 2.2 and 1.3984 is mean and sd of (c(1,1,1,1,2,2,2,3,4,5))
Its probably inefficient to compute the sd by reconstructing the original vector with rep - but its late and working out all the sums of squares and squares of sums for the sd is not something my brain can do at 1am.

Resources